
Device Driver for the MS-DOS Operating
System Installation Guide (Hostess 550 16-
Port)

Scope

Use this document to install the device driver for the MS-DOS operating system (the device
driver was developed and tested using levels 5.0 and 6.2).

Prerequisites

This document assumes you have already installed MS-DOS and you have a basic
understanding of the operating system.

Audience

This document is primarily for the System Administrator or the person who installs software
and hardware on the system. The secondary audience includes the system user.

Organization

This guide contains the following information to install and use the device driver:
Section 1. Overview - Contains an installation overview and lists device driver features.
Section 2. Installation - Explains how to install the device driver.
Section 3. Developing Applications - Provides information to develop applications for the
device driver in BASIC, C, and Assembly languages.

Section 4. Troubleshooting and Technical Support - Contains information that may help
you resolve installation or operations problems. In addition, it lists information that you should
gather before calling for technical support.

Section 1. Overview

1.1. Introduction

The Hostess 550 supports a 16550 UART.
Flowchart 1-1 shows an installation overview.

Flowchart 1-1. Software and Hardware Installation Overview
Note: See Section 4. Troubleshooting if you have installation problems.

2. Configure and install the controller.

3. Configure and attach the interface.
See the Interface Reference Card.

1. Install the device driver and edit the
CONFIG.SYS file. See Subsections 2.1

See your hardware installation doc.

4. Optionally, use Section 3 to develop
applications.

and 2.2.

1.2. Device Driver Features

The device driver has the following features:
• Fully interrupt driven
• The Hostess 550 supports FIFO mode
The device driver is a file I/O driver that supports DOS IOCTL. All communication parameters
(including baud rate, parity, number of bits in character, stop bit, flow control, protocols, and
so forth) can be changed by using an IOCTL with the proper function call (see Section 3.
Developing Applications).
Once parameters are set, they stay set until they are changed by another IOCTL or the system
is reset.

Section 2. Software Installation

This section contains the following information:
• Installing the device driver
• Setting up the CONFIG.SYS file
• Resolving errors associated with the CONFIG.SYS file

2.1. Device Driver Installation

Use the following steps to install the device driver:
1. Insert the device driver diskette.
2. Create a new directory at the C: prompt

md \comtrol
3. Change to the Comtrol directory

cd \comtrol
4. Copy the contents of the device driver to the Comtrol directory

copy a: *.*
where a is the drive the diskette is located in.

5. Edit the CONFIG.SYS file in your root directory or create a CONFIG.SYS file if one does not
exist. See Subsection 2.2 to set up this file.

6. Reboot the system to initialize the CONFIG.SYS file.
Note: The device driver installation is based on the MS-DOS operating system, level 6.0.
After the device driver is installed, see your hardware installation documentation to configure
and install the controller. Once the device driver and controller are both installed, a message
appears on the screen during the startup process indicating that the device driver is active. If
you get an error, see Subsection 2.3.

2.2. Setting Up the CONFIG.SYS File

The device driver is contained in three binary files:
• COM.BIN
• HOSTESS.BIN
• PORT.BIN
Software configuration involves the addition of several DEVICE statements to your CONFIG.SYS
file in the root directory. These device statements specify the names of the three files contained
in the device driver.
CONFIG.SYS contains three types of statements which configure the device driver:

device=path\com.bin
device=path\hostess.bin /required parameters (See Table 2-1)
device=path\port.bin /required parameters (See Table 2-2) /optional parameters (See Table 2-3)

Note: For any number of controllers being installed, the device=com.bin statement is required
only once in the CONFIG.SYS file. A device=hostess.bin statement is needed for each
controller that is installed and a device=port.bin statement is required for each port that
is installed.

The following shows an example CONFIG.SYS file for a Hostess 550 16-port controller. Although
this example uses the same parameters for each port, you may choose different parameters for
your own needs (see Tables 2-1 through 2-3).

device=\comtrol\com.bin
device=\comtrol\hostess.bin /3/2c0h
device=\comtrol\port.bin /port1/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port2/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port3/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port4/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port5/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port6/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port7/9600/n/8/1/1024/1024/0/0/ioctl

device=\comtrol\port.bin /port8/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port9/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port10/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port11/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port12/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port13/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port14/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port15/9600/n/8/1/1024/1024/0/0/ioctl
device=\comtrol\port.bin /port16/9600/n/8/1/1024/1024/0/0/ioctl

Example 2-1. Sample CONFIG.SYS File

The device statements in the CONFIG.SYS file should follow these rules:
• The required and optional parameters are separated by a slash.
• Spaces are not allowed between the slash and the parameter it delimits, however, any

number of spaces may appear between a parameter and the next slash.
• The required parameters must be specified in the order listed in Tables 2-1 and 2-2.
• The optional parameters may be specified in any order.
• The device=com.bin statement provides the majority of the processing for the device driver.

For any number of controllers being installed, this statement appears only once and must
precede all other configuration statements in the file that pertain to the controller. No
parameters are required.

• The device=hostess.bin statement provides the data structures and processing for an
individual controller. This statement must be followed by the device=port.bin statements
(16 statements) that pertain to the controller. Both of these statements are required for
each controller installed.
Refer to Section 2. Software Installation for information about device=hostess.bin parameter1
and parameter2 (interrupt request and base address).

Note: Optional parameters do not exist for HOSTESS.BIN.

Table 2-1. HOSTESS.BIN Required Parameters

Parameter Description

parameter1 - COMM
INTERRUPT REQUEST #

This parameter defines the I/O channel interrupt request line
for the controller. This interrupt request line must not conflict
with any other device in the system.
Allowable values are 2, 3, 4, 5, 10, 11, or 12.(Refer to the
hardware installation documentation for switch setting
information.)

parameter2 - COMM
BASE ADDRESS

This parameter defines the base I/O address for the group of I/O
addresses that will be occupied by the controller. Each serial
port occupies a contiguous block of eight I/O addresses:
• A 16-port controller occupies 128 contiguous I/O addresses.
These I/O addresses must not conflict with any other device in
the system. (Refer to your hardware installation
documentation for switch setting information.)
Allowable values include one of the following:
• Hexadecimal numbers ranging from 0 through 1FFFh
• Decimal numbers ranging from 0 through 8191
Hexadecimal numbers are specified by adding an upper or
lowercase “h” (280h for example).

The PORT.BIN file provides the data structures and processing for an individual serial port.
Table 2-2 shows the required parameters for PORT.BIN.

Table 2-2. PORT.BIN Required Parameters

Parameter Description

parameter1 -
DEVICE NAME

This parameter specifies a 1 to 8 character device name for the serial
port. This device name must not conflict with any existing file or
device in the system.

parameter2 - BIT
RATE

This parameter specifies the bit rate (or baud rate) in bits per second
for the serial port. Allowable values include 50, 75, 110, 134.5, 150,
300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200,
38400, or 56000.

parameter3 - PARITY

This parameter specifies the parity used by the serial port.
Allowable values include one of the following:
• e (specifying even parity)
• o (specifying odd parity)
• n (specifying no parity)
These letters may be upper or lowercase.

parameter4 - DATA
BITS

This parameter specifies the number of data bits used by the serial
port. Allowable values include 5, 6, 7, or 8.

parameter5 - STOP
BITS

This parameter specifies the number of stop bits used by the serial
port. Allowable values are 1 or 2.

parameter6 -
TRANSMIT BUFFER
SIZE

This parameter specifies the transmit buffer size. Allowable values
include 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, or 32768. If any other value is specified, it is rounded up to
the next higher power of two.

parameter7 -
RECEIVE BUFFER
SIZE

This parameter specifies the receive buffer size. Allowable values
are the same as those for TRANSMIT BUFFER SIZE.

parameter8 -
TRANSMIT TIME-
OUT VALUE

This parameter specifies the number of clock ticks that the device
driver will wait before returning control to the application upon a
transmit buffer full condition. The device driver will wait indefinitely
if this value is FFFFh (65,535 decimal).
Approximately 18.2 clock ticks occur per second on the IBM PC.
Allowable values range from 0 through FFFFh (0 through 65535
decimal).
When executing our sample programs, set this value to 0. The IOCTL
option must be enabled for the serial port being used. The sample
programs expect the read and write calls to return immediately, even
if all of the data has not been moved.
When the output of DOS commands are sent to a port on the
controller (copy file port1 or type file > port1), best results may be
obtained by specifying ffffh for this value. DOS commands expect the
write to return only when all of the data is moved. If the write returns
before it is complete, an abort, retry, or fail message will appear. In
addition, the IOCTL option should not be enabled.

Table 2-2. PORT.BIN Required Parameters (Continued)

Parameter Description

parameter9 -
RECEIVE TIME-OUT
VALUE

This parameter specifies the number of clock ticks that the device
driver will wait before returning control to the application upon a
receive buffer empty condition. The device driver will wait
indefinitely if this value is FFFFh (65,535 decimal).
Approximately 18.2 clock ticks occur per second on the IBM PC.
Allowable values range from 0 through FFFFh (0 through 65,535
decimal).
When executing our sample programs, set this value to 0. The IOCTL
option must be enabled for the serial port being used. The sample
programs expect the read and write calls to return immediately, even
if all of the data has not been moved.
When the output of DOS commands are sent to a port on the
controller (copy file port1 or type file > port1), best results may be
obtained by specifying ffffh for this value. DOS commands expect the
write to return only when all of the data is moved. If the write returns
before it is complete, an abort, retry, or fail message will appear. In
addition, the IOCTL option should not be enabled.

Table 2-2. PORT.BIN Required Parameters (Continued)

Parameter Description

Table 2-3 shows the optional parameters which may be specified for PORT.BIN if the function is
required.

Table 2-3. PORT.BIN Optional Parameters

Parameter Description

ioctl

This parameter is set to allow the device driver to recognize the DOS
IOCTL function. IOCTL requests are used to perform input and output to
a device through a separate channel from normal data input and output.
IOCTL input and output are device dependent, but are usually used to
exercise control of various features of the device.
The device driver returns error and status information through the
IOCTL input channel. The IOCTL output allows the application program
to flush a transmit or a receive buffer, change a communication
parameter (baud rate, parity, and so on), and change an optional
parameter (echo option and so on). See Subsection 3.7.3.

echo This parameter is set to allow the device driver to echo received
characters back to the sender.

hifc (Hardware
Input Flow
Control)

This parameter enables hardware flow control of inbound data, through
the DTR signal. If you use this option, the device driver deactivates the
DTR signal when the receive buffer reaches 7/8 of capacity. When the
receive buffer drops to 3/8 of capacity, the DTR signal is activated again.

hofc (Hardware
Output Flow
Control)

This parameter enables hardware flow control of outbound data, through
the CTS signal. If you use this option, the device driver suspends
transmission of data whenever it detects an inactive CTS signal.
Transmission resumes when the CTS signal becomes active again.

2.3. Configuration Errors Associated with CONFIG.SYS

The following error message may appear:
'Bad or missing FILENAME'

This is an error that is issued by DOS when it is trying to load a device driver file that is
specified by a DEVICE=FILENAME statement in CONFIG.SYS. The error is issued if DOS is unable
to find the specified file. If this error occurs, correct the file name specified in the
DEVICE=FILENAME statement in CONFIG.SYS.

sifc
(Software Input
Flow Control)

This parameter enables software flow control of inbound data, through
XON and XOFF (DC1 and DC3) characters. If you use this option, the
driver transmits an XOFF character (ASCII DC3) when the receive buffer
reaches 7/8 of capacity. When the receive buffer drops to 3/8 of capacity,
the driver transmits an XON character (ASCII DC1).

sofc
(Software
Output Flow
Control)

This parameter enables software flow control of outbound data, through
XON and XOFF (DC1 and DC3) characters. If you use this option, the
device driver suspends transmission of data whenever it receives an
XOFF character (ASCII DC3). Transmission resumes when an XON (ASCII
DC1) is received.

dtr
(Data Terminal
Ready)

This parameter causes the DTR signal to be asserted on the port.

rts
(Request To
Send)

This parameter causes the RTS signal to be asserted on the port.

Table 2-3. PORT.BIN Optional Parameters (Continued)

Parameter Description

Error messages may also be issued by the configuration software when the device driver files
load. These error messages are issued when a required parameter is missing, incorrectly
specified, or out of order. The error messages have the following form:

'configuration error: device : parameter name - message'
If error messages of this type appear, check the parameter specified by parameter name for the
device specified by device.
Parameter errors that occur on device=hostess.bin statements will have a device name of
HOSTESS*. If the DEVICE NAME parameter is missing from a device=port.bin statement,
that port will be assigned the default device name PORTx.
If problems persist, see Section 4. Troubleshooting before calling technical support.
Once the device driver is installed, see your hardware installation documentation to install the
controller.

Section 3. Developing Applications

3.1. Introduction

The device driver interfaces with any programming language which supports the following
DOS INT 21h low level file I/O functions:
• open (prepares a port for I/O operation)
• close (terminates logical connection)
• read (retrieves data from a port)
• write (sends data to a port)
• IOCTL (accesses device specific functions and information)
The interface to the driver will vary depending on the language being used.
This section provides detailed information about interfacing to BASIC, C, and Assembly
languages, including sample programs. Error handling and the use of the DOS IOCTL functions
are also described.
Note: See Subsection 3.7 for general DOS IOCTL information that is not language specific.

3.1. Verifying Device Driver Installation

Verify the operation of the device driver and the validity of the parameters in the CONFIG.SYS
file by using the loopback plug and the TERM.EXE sample application.
Note: Before executing any of Comtrol’s sample applications, set the Transmit Time-Out

Value and the Receive Time-Out Value to 0 (see Table 2-2 for more information).
1. Attach the loopback plug to the serial port you want to test.
2. Enter term to invoke the TERM.EXE terminal program, which was placed in the \Comtrol

directory during the device driver installation. The enter device name message displays.
3. Enter the name of the port to test, as it was defined in the CONFIG.SYS file (PORT.BIN

parameter1).
4. Enter a character from the keyboard.

If the character entered is displayed twice on the screen, the installation is correct.
If you see only one character:
• Check the switch settings on the controller (you may need to choose different switch

settings), and the parameters specified in the CONFIG.SYS file.
• Reboot the system and try again.

If problems persist, refer to Section 4. Troubleshooting for troubleshooting information.

3.2. Low Level File I/O Functions

The Comtrol device driver supports the following DOS INT 21h functions, which are commonly
referred to as low level file I/O functions:
• INT 21h function 3Dh - open
• INT 21h function 3Eh - close
• INT 21h function 3Fh - read
• INT 21h function 40h - write
• INT 21h function 44h - IOCTL

- Subfunction 00h - get device information
- Subfunction 01h - set device information
- Subfunction 02h - device IOCTL read
- Subfunction 03h - device IOCTL write

DOS INT 21h functions are accessed differently depending on the programming language being
used. open, read, write, and close functions allow the passing of transmit and receive data
between the port and your application program. IOCTL subfunctions allow your application to
do the following:
• Configure communication parameters for a port
• Determine error types

• Clear errors
• Check buffer counts for the ports
The following flowchart shows the normal flow for low level file I/O functions:

Flowchart 3-1. Low Level File I/O Overview

Open a port to get a file handle.

Optionally, use IOCTL functions to
set communications parameters.

Use read and write to move data between
the port and the application program.

Error?

Use IOCTL functions
to determine and
clear the errors.

More data to move?

Close the port.

Yes

No

Yes

No

3.3. BASIC Language

The following information for the BASIC language was developed and tested using IBM’s
BASIC interpreter, release 3.0 under DOS 3.10. The TERM.BAS program (which contains these
instructions) was tested under Microsoft’s Quick BASIC versions 3.0 and 4.0.
The statement and function descriptions that follow are abbreviated examples. For detailed
information, see your BASIC programming reference materials.

3.3.1.open for BASIC (DOS INT 21h, Function 3Dh)

Prior to performing any I/O function, the program must make a logical connection between
itself and the device. This is done through the BASIC open statement, which has the following
format:

open filespec for mode as # filenum

Where:
filespec is the 1 to 8 character device name.
mode is OUTPUT or INPUT (APPEND should not be used).
filenum is an integer between 1 and the maximum number of files allowed.

The following shows an example open statement:
open "host3" for output as #1

This statement allows the program to begin executing output operations to the serial port with
the HOST3 device name. HOST3 should be defined in the DEVICE NAME parameter of a
DEVICE=PORT.BIN statement in the CONFIG.SYS file.
Once a device has been opened, I/O operations can execute in the direction defined by the mode
parameter of the open statement.
Both input and output can be performed on the same device by using two open statements, one
for input and one for output. Each of these statements must use a different filenum.

3.3.2.read for BASIC (DOS INT 21h, Function 3Fh)

Data received from a serial port is retrieved (read from a port) from the device driver through
the BASIC INPUT$ statement, which accesses the DOS read function. The following shows the
format of this statement:

v$ = input$ (n, # filenum)
Where:

n is the number of characters to be read from the device.
filenum is the number used when the device was opened for input.

When this statement executes, the destination string variable (v$, in this case) contains the
number of characters requested from the device driver receive buffer. If there are not enough
characters in the receive buffer to satisfy the request, the device driver waits the number of
clock ticks specified by the TIME-OUT parameter (in the CONFIG.SYS file). This allows more
characters to be received. When the request is satisfied or the timer expires, control returns to
the application program. The number of characters returned can be determined by checking
the length of the string variable.
BASIC (or DOS) returns an input past end error (#62) to the application when the receive buffer
is empty. If this or any other error occurs and an ON ERROR statement is not active, the
program halts. You must set up an ON ERROR sequence to enable error trapping and to
interrogate error variables. The ON ERROR statement transfers control to a subroutine that
reads the variable ERR and provides error handling.
When an input error occurs, take the following actions:
1. If the value of ERR is 62, the device driver receive buffer is empty. The appropriate action

depends on the application.
2. If the value of ERR is 57 (device I/O error), read the error flags through the BASIC IOCTL$

function (see Subsection 3.7.2).
3. If the ERR variable is zero, read the ERDEV variable. If the value of ERDEV is 800C

hexadecimal (device driver general failure), a more serious device driver error has
occurred. The error flags should be read through the IOCTL, as described in the previous
paragraph.

3.3.3.write for BASIC (DOS INT 21h, Function 40h)

Program data is sent to the device driver (written to a port) through the BASIC PRINT #
statement, which accesses the DOS write function. The following shows the format of this
statement:

print # filenum, list of expressions
Where:

filenum is the number used when the device was opened for output.
list of expressions is a list of numeric or string expressions to be output to the device.

When this statement executes, the list of expressions is output to the device driver transmit
buffer. If there is not enough room in the transmit buffer for all of the characters, an error
condition is returned. If an error occurs and an ON ERROR statement is not active, the program
halts.
Note: Make sure you set up an ON ERROR sequence to interrogate the error variables and to

take the appropriate action.
When an output error occurs, take the following action:
1. If the value of ERR is non-zero, an error has occurred that is not directly related to the

device driver. This error can most likely be corrected by altering the BASIC program.
2. If the ERR variable is zero, read the ERDEV variable. If the value of ERDEV is 800A

hexadecimal (device driver “write fault”), there is not enough room in the transmit buffer
for all of the characters. Continue trying to output characters to the transmit buffer until
space is available, or ignore the error and go on to other processing.

3. The only other value that is returned in ERDEV on an output request is 800C hexadecimal
(device driver general failure). If this value is returned, a more serious device driver error
has occurred and the error flags should be read through the BASIC IOCTL$ function (see
Subsection 3.7.3).

3.3.4.IOCTL for BASIC (DOS INT 21h, Function 44h, Subfunctions 02h and
03h)

The device IOCTL read and write functions read or write a string of control information from or
to the driver. These strings and their functions are described in Subsections 3.7.2 and 3.7.3.
Note: BASIC does not provide support for subfunctions 00h and 01h
• Reading IOCTL Information

IOCTL data is retrieved from the device driver through the BASIC IOCTL$ statement, which
accesses the DOS device IOCTL read function (IOCTL Subfunction 02h).
The following shows the format of the BASIC IOCTL$ statement:

v$ = ioctl$ (# filenum)
Where:

filenum is the number used when the device was opened.
When this function executes, the destination string variable (v$ in this case) contains a
character string consisting of 11 bytes of device driver error and status information.

• Writing IOCTL Information
IOCTL data is sent to the device driver through the IOCTL statement, which accesses the
DOS device IOCTL write function (IOCTL Subfunction 03h).
The following shows the format of the IOCTL statement:

ioctl # filenum, string

Where:
filenum is the number used when the device was opened.
string is a string expression containing the device IOCTL write information.

3.3.5.close for BASIC (DOS INT 21h, Function 3Eh)

When finished with a port, the program severs the logical connection to the device through
the BASIC close statement:

close # filenum

Where:
filenum is the number used when the device was opened.

3.3.6.Sample Programs for BASIC

The following files contain sample programs for BASIC:
• TERM.BAS

This file contains the source code for a simple terminal program that provides examples of
all of the I/O statements and functions previously described.

• IOCTL$.BAS
This file contains the source code for a program that displays the error and status
information returned by the device driver.

• IOCTL.BAS
This file contains the source code for a program that clears the transmit and receive buffers
through the IOCTL output function.

3.4. C Language

The following information for the C language was developed and tested using Microsoft C.
More detailed information can be found in your C compiler documentation.
The following header files are generally included to allow access to the DOS low level file I/O
functions:
• <types.h>
• <stat.h>
• <io.h>
• <fcntl.h>

3.4.1.open for C (DOS INT 21h, Function 3Dh)

The C open function opens the port called name in the mode specified by mode. open returns a
file handle for the port or, in the case of an error, a value of -1 is returned.
The following shows how to open a port. The return value from open() is a file handle.
Subsequent operations on the port refer to the file handle obtained here.

handle = open("HOS1",O_RDWR|O_BINARY);
Where:

HOS1 is the port’s device name specified in CONFIG.SYS.

3.4.2.close for C (DOS INT 21h, Functions 3Eh)

The C close function closes the port associated with handle. The close function returns zero if
the port was successfully closed or, in the case of an error, a value of -1 is returned.
The following shows how to close a file:

close(handle);

3.4.3.read for C (DOS INT 21h, Function 3Fh)

The C read function attempts to read count bytes into buf from the port associated with handle.
The read function returns:
• The number of bytes actually read
• -1 if an error occurred
• 0 if an attempt to read at end-of-file occurred
The following shows an example of a read function:

char *buf; /* character buffer to store read data */
int retcnt; /* number of characters actually read */
int count; /* number of characters requested to be read */
retcnt = read(handle,buf,count);

3.4.4.write for C (DOS INT 21h, Function 40h)

The C write function writes count bytes from buff into the file associated with handle. The write
function returns:
• The number of bytes actually written
• -1 if an error occurred
The following shows an example of a write function:

char *buf; /* buffer containing write data */
int sentcnt; /* number of characters actually sent */
int count; /* number of characters requested to be sent */
sentcnt=write(handle,buf,count);

3.4.5.IOCTL for C (DOS INT 21h, Function 44h, Subfunctions 00h, 01h, 02h
and 03h)

The C language does not provide standard functions that directly relate to the DOS IOCTL
functions. These functions must be accessed through DOS INT 21h. For Microsoft C, this can be
done by using the intdos() function.
The intdos function invokes system calls specified by register values. These values are defined
in the inregs union and return the effect of the system call in the outregs union. The intdos
function returns:
• The value of the AX register after the system call is completed
• outregs.cflag to show the status of the carry flag

Your compiler may vary from the following abbreviated examples. See your DOS programming
documentation for a complete description of DOS INT 21h calls. See your compiler
documentation for details concerning DOS INT 21h access. (This installation guide assumes
that the reader is familiar with DOS INT 21h or has reference material pertaining to it.)
The following definitions may be required for Microsoft C to allow access to DOS INT 21h.

#include <dos.h>
int intdos(inregs,outregs);/* Microsoft C library function for INT 21h */
union REGS inregs;/* 8086 register unions for use with intdos() */
union REGS outregs;

The following is a get device information example, which uses DOS INT 21h, function 44,
subfunction 00h:

inregs.h.ah = 0x44; /* IOCTL */
inregs.h.al = 0; /* subfunction 0, get device information */
inregs.x.bx = handle; /* file handle from open() */
inregs.x.dx = 0;
intdos(&inregs,&outregs); /* information returned in outregs.x.dx */

Example 3-1. get device information for C

The following is a set device information example, which uses DOS INT 21h, function 44h,
subfunction 01h:

inregs.h.ah = 0x44; /* IOCTL */
inregs.h.al = 1; /* subfunction 1, set device information */
inregs.x.bx = handle; /* file handle from open() */
inregs.x.dx=INFO_WORD; /* device information word equate */
intdos(&inregs,&outregs); /* DOS INT 21h */

Example 3-2. set device information for C

After the intdos() call, the port’s information word will be set to the value of INFO_WORD (see
Subsection 3.7.1).

The following shows how to perform a device IOCTL read:
inregs.h.ah = 0x44; /* IOCTL */
inregs.h.al = 2; /* subfunction 2, device IOCTL read */
inregs.x.bx = handle; /* file handle */
inregs.x.cx = 11; /* driver always returns 11 bytes */
inregs.x.dx = buf; /* where to put string */intdos(&inregs,&outregs);/* DOS INT 21h */

Example 3-3. device IOCTL read for C

After the intdos() call, buf contains 11 bytes of status and error information (see Subsection 3.7.2
for a description of this information).
The following shows how to perform a device IOCTL write:

inregs.h.ah = 0x44; /* IOCTL */
inregs.h.al = 3; /* subfunction 3, device IOCTL write */
inregs.x.bx = handle; /* file handle */
inregs.x.cx = command_size; /* number of bytes in buffer */

/* number depends on command */
inregs.x.dx = buff; /* pointer to data buffer */
intdos(&inregs,&outregs); /* DOS INT 21h */

Example 3-4. device IOCTL write for C

After the intdos() call, the command string contained in buf executes (see Subsection 3.7.3 for
the available commands).

3.4.6.Sample Programs for C

The TERM1.C file contains the source code for a simple terminal program that provides
examples of some I/O operations previously described. This program contains the example of
the replacement of the DOS critical error handler.
The executable code for this program is in the TERM1.EXE file. Link the TERMERR.OBJ file to
TERM1.OBJ. TERMLINK.BAT is a batch file, which will create TERM1.EXE.

3.5. Assembly Language

The following information explains the interfacing requirements for Assembly language.
These instructions were developed and tested using the Microsoft Macro Assembler, version
4.0 under the MS-DOS operating system, level 3.10.
The Assembly language interface to the device driver makes use of standard DOS function calls
(through the 21h software interrupt). The function descriptions that follow are abbreviated.
For detailed information, see your DOS programming reference materials.

3.5.1.open for Assembly (DOS INT 21h, Function 3Dh)

Entry parameters include:
• AH = 3Dh
• DS:DX => device name (terminated by a null)
• AL = access code

0 = read
1 = write
2 = read/write

Exit parameters include:
• If carry is clear, the operation was successful; AX = file handle
• If carry is set, the operation failed; AX = error code

The following example shows how to open a port:
...
call get_device ; get device name string and return it in DS:DX
mov ah,3Dh ; function 3Dh = open the file
mov al,READ_WRITE ; READ_WRITE is equal to 02h
int 21h ; invoke DOS function

; handle returned in ax
 ...

Example 3-5. open for Assembly

3.5.2.close for Assembly (DOS INT 21h, Function 3Eh)

Entry parameters include:
• AH = 3Eh
• BX = file handle
Exit parameters include:
• If carry is clear, the operation was successful
• If carry is set, the operation failed; AX = error code

The following example shows how to close a file:
...
mov bx,handle ; file handle
mov ah,3eh ; function 3Eh = close the file
int 21h ; invoke function
 ...

Example 3-6. close for Assembly

3.5.3.read for Assembly (DOS INT 21h, Function 3Fh)

Entry parameters include:
• AH = 3Fh
• BX = file handle
• DS:DX=> buffer (data destination)
• CX = number of bytes to be read
Exit parameters include:
• If carry is clear, the operation was successful; AX = number of bytes actually transferred

(read)
• If carry is set, the operation failed; AX = error code

The following example shows how to read from a device:
...
mov bx,handle ; file handle
mov ah,3Fh ; function 3Fh = read from file or device
mov cx,1 ; number of bytes to read
mov dx,offset READ_BUF ; buffer address (DS:DX)
int 21h ; invoke function
 ...

Example 3-7. read for Assembly

3.5.4.write for Assembly (DOS INT 21h, Function 40h)

Entry parameters include:
• AH = 40h
• BX = file handle
• DS:DX=> buffer (data source)
• CX = number of bytes to write
Exit parameters include:
• If carry is clear, the operation was successful; AX = number of bytes actually transferred

(written)
• If carry is set, the operation failed; AX = error code

The following example shows how to write to a device:
...
mov bx,handle ; file handle
mov ah,40h ; function 40h = write to a file or device
mov cx,num_bytes ; number of bytes to write
mov dx,offset write_buf ; address of the data to write(DS:DX)
int 21h ; invoke function
 ...

Example 3-8. write for Assembly

3.5.5.IOCTL for Assembly (DOS INT 21h, Function 44h, Subfunctions 00h,
01h, 02h, and 03h)

Entry parameters include:
• AH = 44h
• BX = file handle
• AL = subfunction value (described below)

The exit parameter is function dependent (described below).
The I/O control function supports 12 subfunctions (DOS version 3.1), four of which are
important when interfacing with the device driver:
• AL = 0 (get device information)

- Function specific entry parameters
none

- Exit parameters

If carry is clear, the operation was successful; DX = status information
If carry set, operation failed; AX = error code

The following is a get device information example (see Subsection 3.7.1 for more information):
...
mov ah,44h ; function 44h = IOCTL
mov al,0 ; sub-function 00h = get device information
mov bx,handle ; file handle
int 21h ; invoke function
 ... ; DX has device information word

Example 3-9. get device information for Assembly

• AL = 1 (set device information)
- Function specific entry parameters

DX = status information (DH must be zero)
- Exit parameters

If carry is clear, the operation was successful;
If carry is set, the operation failed; AX = error code

The following is a set device information example (see Subsection 3.7.1 for more information):
...
mov ah,44h ; function 44h = IOCTL
mov al,1 ; sub-function 01h = set device information
mov bx,handle ; file handle
mov dx,INFO_WORD ; equate for device information word
int 21h ;
 ...

Example 3-10. set device information for Assembly

• AL = 2 (device IOCTL read)
- Function specific entry parameters

DS:DX=> destination buffer
CX = number of bytes to read

- Exit parameters

If carry is clear, the operation was successful; AX = number of bytes actually
transferred (read)
If carry is set, the operation failed; AX = error code

The following shows how to perform a device IOCTL read (see Subsection 3.7.2 for more
information):

...
mov ah,44h ; function 44h = IOCTL
mov al,2 ; sub-function 02h = read from device
mov bx,handle ; file handle
mov cx,11 ; CX = number of bytes to read
mov dx,offset io_buf ; buffer address (where to put string)
int 21h ; invoke function
 ... ; io_buf contains 11 bytes

Example 3-11. device IOCTL read for Assembly
• AL = 3 (device IOCTL write)

- Function specific entry parameters
DS:DX=> source buffer
CX = number of bytes to write (size depends on the command)

- Exit parameters
If carry is clear, the operation was successful; AX = number of bytes actually
transferred (written)
If carry is set, the operation failed; AX = error code

The following shows how to perform a device IOCTL write (see Subsection 3.7.3):
...
mov ah,44h ; function 44h = IOCTL
mov al,3 ; sub-function 03h = write to device
mov bx,handle ; file handle
mov cx,command_size ; CX = number of bytes to write
mov dx,offset io_buf ; buffer address (command string address)
int 21h ;
 ...

Example 3-12. device IOCTL write for Assembly

3.5.6.Sample Programs for Assembly

The TERM.ASM file contains the source code for a simple terminal program that provides
examples of all of the I/O operations previously described. This program contains the example
of the replacement of the DOS critical error handler. The executable code for this program is
in the TERM.EXE file.
The TERM.ASM file contains IOCTL function calls that change the current parameter settings
to the following:
• Baud rate - 19,200
• Stop bits - 1.5
• Transmit time-out - 1
• Receive time-out - 0
• DTR option - ON

3.6. Error Conditions

This subsection contains error processing information. It explains how the DOS device driver
handles an error and what message numbers (for the error) are passed to the DOS critical
error handler in the REQUEST HEADER.
If an unknown function (DOS sub-function for INT 21h) or unknown command (in IOCTL control
output data) is chosen by the application, the STATUS word in the REQUEST HEADER (passed to
DOS from the driver) is set to:

done + error + dderr3
This is interpreted as an unknown command to DOS.
Two classes of errors are returned by the device driver. These include the write fault error and
the general failure error. When the device driver receives an output request, it adds characters
to the transmit buffer. If the buffer is full, and the transmit time-out period (if set) expires, the
device driver sets the STATUS word in the REQUEST HEADER to:

done + error + dderra
This is interpreted as a write fault error to DOS.

Prior to performing an input or output operation, the device driver checks the error flags. If
any of the error flags are set, the device driver returns general failure to the application. This
indicates to the application that a character error (overrun, parity, or framing error), a break
interrupt, or a receive buffer overrun condition occurred.
The STATUS word in the REQUEST HEADER is set to:

done + error + dderrc
If the IOCTL function is not enabled (IOCTL option is not chosen in the CONFIG.SYS file), the
application can not determine the type of error. The error flags are cleared by the device driver
after one general failure indication is returned to the application. In this case, an Abort, Retry,
or Ignore message appears on the screen and processing halts depending on the user’s response.
For C or Assembly language, the DOS critical error handler needs to be replaced by the user’s
own error handler. BASIC does have its own error handler.
If the IOCTL function is enabled (IOCTL option ON), the application queries the error channel
(through the device IOCTL read function) and determines the type of error that occurred. The
device driver continues to return a general failure error until the error flags are cleared by a
device IOCTL read.
Note: The general failure message also displays on the return from the IOCTL control output

data function. This occurs if the application requires changes in parameters, and the
IOCTL option is not ON.

DOS will generate a 24H interrupt based on the contents of the STATUS word in the REQUEST
HEADER.

3.7. IOCTL Subfunctions

The IOCTL is used to retrieve or pass a user defined control string from the device driver. The
following IOCTL subfunctions (00h through 03h) are discussed in this subsection. The
information is not language specific.
• 00h - get device information
• 01h - set device information
• 02h - device IOCTL read
• 03h - device IOCTL write

3.7.1.IOCTL get/set device information (Subfunctions 00h and 01h)

The format of the get/set device information is shown in Table 3-1 (see the programming
reference materials for the MS-DOS operating system for detailed information).
Note: Subfunctions 00h and 01h are not available with BASIC.

Table 3-1. Device Information Word

Bit Status Description Notes

15 (reserved)

14 IOCTL Set to 1

13 (reserved)

12 NETWORK Always 0 for this driver

11 (reserved)

10 (reserved)

9 (reserved)

8 (reserved)

7 ISDEV Always 1 for this driver

6 EOF Always set to 1*

* May be set to 0 by DOS, using an empty buffer read. If
this occurs, you must set the EOF bit to a 1 to allow
subsequent reads.

Normally, only Bits 5, 6, or 14 need to be set for the device driver. To preserve the remaining
bits, the information word should be read and the appropriate bits should be set or cleared and
then written back out.

5 BINARY Set to 1 for binary mode
Set to 0 for ASCII mode

4 (reserved)

3 ISCLK Always 0 for this driver

2 ISNUL Always 0 for this driver

1 ISCOT Always 0 for this driver

0 ISCIN Set to 0 for a driver

Table 3-1. Device Information Word(Continued)

Bit Status Description Notes

* May be set to 0 by DOS, using an empty buffer read. If
this occurs, you must set the EOF bit to a 1 to allow
subsequent reads.

3.7.2.device IOCTL read (Subfunction 02h)

This subsection describes the 11 bytes associated with the device IOCTL read function. The
IOCTL is used to pass error and status information from the driver to the application program.
The following is a description of the 11 bytes associated with device IOCTL read:
• Error Flags (bytes 1 and 2) - See Table 3-2 for this information.
• Overrun Error Count (byte 3)

This byte indicates the number of receive character overrun error conditions that have
occurred since the last IOCTL function was used. This count is incremented each time an
overrun error occurs, until a maximum value of 0FFh (255 decimal) is reached. The count
is reset to zero when read by an IOCTL function.

• Parity Error Count (byte 4)
This byte indicates the number of receive character parity error conditions that have
occurred since the last IOCTL function was used. This count is incremented each time a
parity error occurs, until a maximum value of 0FFh (255 decimal) is reached. The count is
reset to zero when read by an IOCTL function.

• Framing Error Count (byte 5)
This byte indicates the number of receive character framing error conditions that have
occurred since the last IOCTL function was used. This count is incremented each time a
framing error occurs, until a maximum value of 0FFh (255 decimal) is reached. The count
is reset to zero when read by an IOCTL function.

• Break Interrupt Count (byte 6)
This byte indicates the number of break interrupts, which occurred since the last IOCTL
function was used. This count increments each time a break interrupt occurs, until a
maximum value of 0FFh (255 decimal) is reached. The count resets to zero when read by
an IOCTL function.

• Receive Buffer Overrun Count (byte 7)
This byte indicates the number of receive buffer overflow error conditions (characters lost)
since the last IOCTL function was used. This count is incremented each time a character is
received, but there is no room in the receive buffer to store it. The count is not incremented
beyond 0FFh (255 decimal) and is reset to zero when read by an IOCTL function.

• Transmit Buffer Count (bytes 8 and 9)
This word (two bytes) indicates the number of characters in the transmit buffer.

• Receive Buffer Count (bytes 10 and 11)
This word (two bytes) indicates the number of characters in the receive buffer.

Table 3-2 lists the various error flags associated with bytes 1 and 2 of the device IOCTL read
function.

Table 3-2. device IOCTL read Error Flags (Bytes 1 and 2)

Bit Hex Error Description

0 0001h undefined

1 0002h overrun error occurred

2 0004h parity error occurred

3 0008h framing error occurred

4 0010h break interrupt occurred

5 0020h undefined

6 0040h undefined

Note: The error flags are cleared when an IOCTL function executes.

7 0080h undefined

8 0100h receive buffer overrun occurred

9 0200h undefined

10 0400h undefined

11 0800h undefined

12 1000h undefined

13 2000h undefined

14 4000h undefined

15 8000h undefined

Table 3-2. device IOCTL read Error Flags (Bytes 1 and 2)(Continued)

Bit Hex Error Description

3.7.3.device IOCTL write (Subfunction 03h)

This subsection describes the command string associated with the device IOCTL write function.
Use the IOCTL to pass a user defined command string to the device driver. This data is not
meant for the device to transmit, but for controlling the device.
Note: To execute the IOCTL from an application, the user must set the IOCTL option ON for the

port in the CONFIG.SYS file.
The first byte of the command string is always set to the command code. Subsequent bytes, if
any, are defined by the particular command.
The format of the command string is summarized as follows:

Byte 1 = COMMAND CODE:
1 (Flush Transmit Buffer)
2 (Flush Receive Buffer)
3 (Change Required Parameter)
4 (Change Optional Parameter)

Byte 2 = PARAMETER CODE

Byte 3 = PARAMETER VALUE

Byte 4 = PARAMETER VALUE

Note: Bytes 2, 3, and 4 may not be used for all commands, since the number of bytes depends
on the command being used.

The following is a description of the string passed to the device driver for each of the four
COMMAND CODES.

3.7.3.1. Flush Transmit Buffer String

COMMAND CODE (byte 1) = 1
Only COMMAND CODE is required for this command string. When COMMAND CODE is equal to
1, the transmit buffer count is reset to zero, discarding all characters currently in the buffer.
Use the following example command string to flush the transmit buffer of a port:

COMMAND CODE (byte 1) = 1 (Flush Transmit Buffer)
PARAMETER CODE (byte 2) = unused
PARAMETER VALUE (byte 3) = unused
PARAMETER VALUE (byte 4) = unused

Example 3-13. Flush Transmit Buffer

3.7.3.2. Flush Receive Buffer String

COMMAND CODE (byte 1) = 2
Only COMMAND CODE is required for this command string. When COMMAND CODE is equal to
2, the receive buffer count is reset to zero, discarding all characters currently in the buffer.
Use the following example command string to flush the receive buffer of a port:

COMMAND CODE (byte 1) = 2 (Flush Receive Buffer)
PARAMETER CODE (byte 2) = unused
PARAMETER VALUE (byte 3) = unused
PARAMETER VALUE (byte 4) = unused

Example 3-14. Flush Receive Buffer

3.7.3.3. Change Required Parameter String

COMMAND CODE (byte 1) = 3
PARAMETER CODE (byte 2) =

1 - change baud rate
2 - change parity
3 - change character size
4 - change number of stop bits
5 - change transmit time-out value
6 - change receive time-out value

PARAMETER VALUE (byte 3)= first byte of the parameter value in hex
PARAMETER VALUE (byte 4)= second byte of the parameter value in hex (if required)
The following is a list of PARAMETER CODES and their required PARAMETER VALUES:
1 (baud rate) - bytes 3 and 4 of the command string specify one of the following 16 bit values:
50, 75, 110, 134 (for 134.5), 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600,
19200, 38400, and 56000.
Note: These values should be converted to a 16 bit hex value and placed in low byte, high byte

form (byte 3 is low byte, byte 4 is high byte).

2 (parity) - byte 3 of the command string specifies one of the following ASCII values:
n no parity (ASCII 6Eh)
o odd parity (ASCII 6Fh)
e even parity (ASCII 65h)

3 (character size) - byte 3 of the command string specifies one of the following decimal values:
5 five bit character
6 six bit character
7 seven bit character
8 eight bit character

4 (number of stop bits) - byte 3 of the command string specifies one of the following decimal
values:

1 one stop bit
2 two stop bits

5 (transmit time-out value) - bytes 3 and 4 of the command string specify a 16 bit value
ranging from 0 to 65535 decimal (0 to FFFF hex)
6 (receive time-out value) - bytes 3 and 4 of the command string specify a 16 bit value
ranging from 0 to 65535 decimal (0 to FFFF hex)
Use the following example command string to change a port’s baud rate to 19200:

COMMAND CODE (byte 1) = 3 (Change Required Parameter)
PARAMETER CODE (byte 2) = 1 (change baud rate)
PARAMETER VALUE (byte 3) = 00h (low byte of 4B00h*)
PARAMETER VALUE (byte 4) = 4Bh (high byte of 4B00h*)

Example 3-15. Change Required Parameter

Note: *4B00h = 19200 decimal.

3.7.3.4. Change Optional Parameter String

COMMAND CODE (byte 1) = 4
PARAMETER CODE (byte 2) = optional parameter bitmap
The optional parameter bitmap is one byte that indicates the optional parameters for a port
that are active.
0 - on the proper position means optional parameter OFF
1 - on the proper position means optional parameter ON

bit position 0 ECHO option
bit position 1 HIFC option
bit position 2 HOFC option
bit position 3 SIFC option
bit position 4 SOFC option
bit position 5 DTR option
bit position 6 RTS option
bit position 7 IOCTL option

Note: Bit 7 must always be ON for subsequent IOCTL calls.
Use the following example command string to set the DTR on a port:

COMMAND CODE (byte 1) = 4 (Change Optional Parameter)
PARAMETER CODE (byte 2) = A0h* (bit mask)
PARAMETER VALUE (byte 3) = unused
PARAMETER VALUE (byte 4) = unused

Example 3-16. Change Optional Parameter

Note: *A0h is the bit mask needed to turn DTR (bit position 5) and IOCTL (bit position 7) on.
If you need specific information about how to use an IOCTL subfunction with BASIC, C, or
Assembly languages, refer to Table 3-1. For detailed information, see your programming
reference materials.

If you experience technical problems, refer to Section 4. Troubleshooting before calling Comtrol
Technical Support.

Section 4. Troubleshooting

4.1. Resolving Installation Problems

If installation fails or you are trying to resolve a problem, you should try the following before
calling the Comtrol technical support line:
• Check the signals between your peripherals and the interface box to verify that they

match.
• Check to make sure the cables are connected properly.
• Reseat the controller in the slot.
• Make sure that the expansion slot screw was replaced after inserting the controller.
• Verify that the switch settings are correct.
If you have not been able to get the controller operating:
1. Turn off your PC and insert the diagnostic diskette.
2. Boot the PC and follow the instructions provided by the diagnostic diskette.
Table 4-1 defines the 64-byte I/O address blocks from 0 through 3FFh and their known uses.

Table 4-1. System I/O Addresses – Up to 3FF

Address
Block

Addresses
Used Description

000 – 03F Reserved for Motherboard

040 – 07F Reserved for Motherboard

080 – 0BF Reserved for Motherboard

0C0 – 0FF Reserved for Motherboard

100 – 13F

140 – 17F

180 – 1BF

1C0 – 1FF 1F0 – 1F8 Fixed Disk

200 – 23F 218 – 21B

240 – 27F 278 – 27F LPT2, IDE controllers, and multifunction boards
(game ports)

280 – 2BF

2C0 – 2FF 2E8 – 2EF
2F8 – 2FF

COM4
COM2

300 – 33F 318 – 31B

340 – 37F 378 – 37F LPT1

380 – 3BF 3B0 – 3BF Monochrome Display and LPT3

3C0 – 3FF
3D0 – 3DF
3E8 – 3EF
3F0 – 3F7
3F8 – 3FF

Graphics Monitor Adapter
COM3
Floppy Disk Controller
COM1

Table 4-1. System I/O Addresses – Up to 3FF(Continued)

Address
Block

Addresses
Used Description

4.2. Placing a Support Call

Before you place a technical support call to Comtrol, please make sure that you have the
following information.

Table 4-2. Support Call Information

Item Your System Information

Controller type 16-port

Interface type
RS-232, RS-232/422,
RS-422/485, RS-232/Current
Loop

Base I/O address selection

Interrupt (IRQ) number
selection

Operating system type and
release

Device driver release
number

PC make, model, and speed

List of other devices in the
PC and their addresses

After you have gathered this information, contact Comtrol by email, FAX, or phone:
Comtrol Corporate Headquarters:

• Internet URL: www.comtrol.com

• email: support@comtrol.com

• FTP site: ftp.comtrol.com

• Phone: (612) 494-4100

• FAX: (612) 494-4199
Comtrol Europe:

• Internet URL: www.comtrol.co.uk

• email: support@comtrol.co.uk

• Phone: +44 (0) 1 869-323-220
• FAX: +44 (0) 1 869-323-211

Copyrights and Trademarks
Copyright (c)1999 Comtrol Corporation. All Rights Reserved.

Comtrol Corporation makes no representations or warranties with regard to the contents of
this file or to the suitability of the Comtrol products for any particular purpose. Specifications
subject to change without notice. Some software or features may not be available at the time
of publication. Contact your reseller for current product information.
Hostess and Comtrol are trademarks of Comtrol Corporation.

Other product and company names mentioned herein may be the trademarks and/or
registered trademarks of their respective owners.

