Developer’s Toolkit for

the Hostess® i Series

i —
—
—
—
=
—
C—
mﬂn”

COMTROL 33 —

Porverfid Chaices

©1994 Camirol. All Rights Reserved

2675 Patton Road

St. Paul, Minnesota 55113
(612) 631-7654

FAX: (612) 631-8117
1-800-026-6876

COMTROL »7$>

Powerfid Choices

AR

Part Mo, 62341 March 1, 1995

Copyright @ 1995. Comtrol Corporation.
All Rights Reserved.
First Edition March 1, 1995

Trademarks

The Comtrol logo is a registered trademark of Control Systems, Inc,
Hostess is a registered trademark of Comtrol Corporation.

Comtrol is a trademark of Comtrol Corporation.

80286 is a trademark of Intel Corporation.

Borland and Turbo Debugger are registered trademarks of Borland
International, Ine.

IBM PC is a trademark of International Business Machines
Corporation,

Intel is a registered trademark of Intel Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation,

Windows is a trademark of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories (USL).

Product names mentioned herein may be trademarks and/or registered
trademarks of their respective companies.

Comtrol Corporation Document Number: 6254
Printed in the U. 8. A,

nmm
i & K

n
W oW W W

TR VAT VA TR VR VARV VAT VAT VA1

Before You Begin

Scope

This guide deseribes the functionality of the Hostess i controller, along
with information needed to program the controller.
This manual provides information for Hostess i controllers with a
serial number of HIOT-002409 or greater.
The EPROM on the controller changed for models HIO7-002408 or
greater to reflect a revision to the Borland® Turbo Debugger® (version
4.02). This means if you use this manual for earlier serial numbers of
the controller:
* You will find that the steps for using the Turbo Debugger are not
quite correct,
* You can not use the 4.02 or greater version of the Turbo Debugger
H....:..r the EPROM on the controller; you must use version 3.2 or
OWEer.
Note: Unfortunately, Borland International did not make the 4.02
version of the Turbo Debugger backward compatible with
previous levels.

Prerequisites

This manual assumes that have also ordered the Development Board
Option (discussed below). To effectively use this toolkit, the manual
assumes the following conditions exist:

* The controller is installed in your system.

If it is not installed, refer to the User s Guide for this information.
* Your ISA personal computer system consists of the following:

- DOS version 4.01 or higher

- Optionally, Windows™ 3.1 or higher running in 386-enhanced
mode

* You are running one of the following compilers on the development
system:

- Borland C++ (version 4.02 or later)
- Microsoft® Visual C++ (version 1.0 or later)

Note: For a detailed list of the requirements for the development
system, refer to the documentation for the compiler.

it

Before You Begin

Audience

This guide is primarily for the programmer who is familiar with
C language or 80286™ Assembly language.

What the Developer’s Toolkit Contains

The Developer's Toolkit consists of the following pieces:
®= This manual,

* ADeveloper’s Toolkit diskette containing sample programs for your
controller.

* The Advanced Micro Devices manual for the serial communications
controller on your controller.

To readily use the Toolkit, vou should have ordered the Development
Board Option on your controller, This option is provided at no
additional charge and includes the following pieces:

* A debug/reset header soldered to the controller
* A debug/reset box and eable

Note: If you have any questions regarding the Toolkit or the
Development Board Option, contact Comtrol using the
information provided in Appendix A.

Organization

This guide contains the following information:

Section 1. Controller Overview

Describes features and components of the controller.
Section 2. Sample Programs

Discusses the toolkit's sample programs for the controller.
Section 3. System /'O Addresses

Discusses setting I/O addresses and the control registers.
Section 4. Controller Internal I/O Addresses

Discusses controller internal 10 addresses and the configuration
control register,

Section 5. Dual-Port Memory

Discusses how dual-port memory is mapped.

Section 6. Extended Addressing Mode

Describes relocating addresses and expanding memory,

v

oM M M TR

& A & W

i)

W

nLAATIAAAMANAAN AN,

Pt

W e W

W (R

' a e

) lw lal

Ll

_l.]L‘-JLlJLlJ

e

Before You Begin

Section 7. Direct Memory Access

Discusses the Direct Memory Access Control Unit (DMAU) registers.
Section 8. Interrupts

Explains how interrupts affect the system processor and the controller.
Section 9. Timers

Describes the Timer Control Unit (TCU) and its registers. The Count
and Multiple Lateh commands are also discussed.

Section 10, 3CC Port Communication

Lists the command and data register /O addresses.

Seetion 11. Downloading and Executing a Control Program
Discusses the steps involved to download and execute a control
program.

Section 12. Debugging Tools

Discusses the following debugging tools:

+ DPMMAP.C

® Btatus flag groups (SFGs)

* Trace Buffer

= The Borland Turbs Debugger

* Firmware debugger

Appendix A. Developer’s License Agreement and Contacting
Comtrol

Provides you with a copy of the Developer's License agreement and lists
methods for contacting Comtrol for technical support.

Index

Bibliography

AmB5I0H | AmE5030 Serial Communications Controller 1992
Technical Manual. U.S.A. Advanced Micro Devices, Inc., 1992,

NEC 16-Bit V-Series Microprocessor Data Book. U.5.A; NEC Electronics
Inec., May 1990,

Before You Bogin

Vi

T MM MM Tha ThETA

W W W W W W N W

|

Table of Contents

Before You Begin

Seope......... B S W A R e T iii
PrerequiBitesccoevrrennrsserssrsesssersssssssrsesemeessens e eessssnsnssaserinnssonennres iii
BB e G i i s S s o ey e b A iv
What the Developer’'s Toolkit Contains..........ccoicomiemiissinnioniissnnnion. v
OPERADIZEEIIN ... 0 vomasmpsnen rhssaerensssesrers sesss s smssgbssesss nisand sy s smsiinbrsssspissisions v
OB DY . o iiiiiinns i mmimissssssssimss vssresmers se reses ppAR TR TR SRS Y PP v
Table of Contents
BEHTIRNOR oo i iusvinonisnsinssssinss semmrmesmenmensans opeRAEE S sh ROABAR AR SRR ELES: crreens xi
Figarae i s e e AR xii
BN OEHRTES i s orcsss vt s N e o0 S s o SE R s e il
1 T) €8 Ml o b S S xv
Section 1. Controller Overview
1.1, Controller Features. it ciies s se e vaessssmsmsssessrsss 1-1
LL1. MICIOPTOCEBBUT (oicraesnsacensessssussansossrsssnssmmassessessssmsamsmnessnnans 1-2
Lo PR o s s s e 1-2
L1.3. Memory.......covervisinnns e e A R R T 1-3
1.2, Toolkit Installationcooeoieieieces e e 1-4
Section 2, H_mﬂmmnﬂmim Toolkit Sample Programs
2.1. Developer’s Toolkit Sample Programs Overview......covveeeeeeenes 2-1
2.2. How the Control Program Worksccevvvienrssnnenenniasienss 2-2
2.3. Dual-Port RAM Configuration for CPC. 111 R 2-8
2.4, DPLOADER.C...ooviiiitieiresisrscres e s ssissssnseamssstmessssenmsnsaes SRR 2-13
-1 - €1 1 R e T 2-13
2:8; HITERWLO. oo iicana e sssaiaivins R e s 2-18
2,6.1. Invoking HITERM
2.7. Compiling the Sample Programs Using the Borland Make
R i e S i R i s v 2-19
2.7.1. Using the MAKEFILE A A 2-20
2.7.2. Building the Sample Program........occoieeeisieieisesss 2-20
Section 3. System /O Addresses
Bl OVEIVIEW ...coiiiiiriiictiresieeresrmssnsssissssssssssssasceronssens . 3-1
4.2, SBetting System 1O AdAresses ..o e st 3-1
3.3. Reading the Controller Identification Byte..............coocooiennn 3-3
3.4. Hesetting and Initializing the Controller.......occvcievieenieesnennes 3-3
3.5. Interrupting the Controller e L e e 3-4
3.6. Enabling and Disabling Dual-Port Memorycoooeueviennn. 3-4
3.7. Control Register Overview........cocveieveecvniiinnns R e S e 3-4
3.7.1. Writing Contro] Registers.... 3-5
3.7.2. Control Register #1........... 3-6
3.7.3. Control Regiater B2 ... i iiinisssmsssinissssssmstssassssnss 3-8
3.74. Control Register #8.iiuuu i ssnsioniaisssis i}
Table of Contents TS lfﬁ

3.7.56. Control Register #4................... o R e 3-13
Section 4. Controller I/0 Addresses
4.1 Overview........o. B N S s B R R -1
4.2. Controller Internal I/0 Addresses s R SRR e |
4.3. Configuration Control Register......... A S B R R
4.3.1. RS-232 and R5-422 Synchronous Support -3
QAT TITR ANV s b st Mo o oo i R |
4.3.3. EPROM Enable.......cccooovveeessemnsiann TR P ey v ded
4.3.4. Configuration Control Register Interrupts.................... 4-5
4.3.4.1. Int24h — Configuration Control Register
Read.......c.-. T L R kb Lapaan i 4-5
4.3.42. Int 25h — Configuration Control Register
R oL OO T d-5
Section 5. Dual-Port Memory
Sk Overview . i, SRS s s nans e kst L R R 5-1
9.2, Dual-Port Memory MAap.........coouiossosrsoesosooooeo o 5-1
0.3, Ficmware User Aron MaD ... s i B-3
Section 6. Extended Addressing Mode
o 5 N, SA— R R R 6-1
6.2. Relocating Addresses............. R A8 R SR TR s 6-1
6.2.1. Page Registersccccccoovvrovnennns S T 6-2
6.3. Initializing the Extended Addressing Modeo.oooovn 8-5
6.4, Setting and Clearing the Extended Addressing Mode........ vrave B0
Section 7. Direct Memory Access
7.1. DMA Channels.................. U T S VA S -1
7.2, DMAAdressingccoovuveeeevnrsvessennn.. e s AT PP 7-1
7.2.1. DICM {Initialize Command Register) 7-5
7.2.2. DCH (Channel Register)....oio.ovmiisosssessioo veus -6
7.2.2.1. DCH Read................. B A i LR S
7222 DCH WEILR...iivireeisecserees soesssesssssens wwrat s ias 7-6
7.2.3. DBC/DCC (Base/Current Count Register)......cccovvreenenes 7-9
7.2.4, DBA/DCA (Base/Current Address Register)....cconnninns 7-8
7.2.5. DDC (Device Control Register............... T e 1=
7.2.6. DMD (Mode Control Register) S ¥-10
7.2.7. DST (Status Register) ... oiioisesosooio 7-12
7.2.8, DMK (Mask Register) A e T 7-12
Section 8. Interrupts
8.1, Interrupting the System Processor.............o.ooveoini PP 8.1
8.2, Interrupting the Controller ..o TR 8-1
8.3. Internal Interrupt Service ROUtINe ..c...ooovvveevernn o 8-2
B4 Interrupt Vectors........cooecorevneiinisinns i R 8-3
8.5. Interrupt Mask Register (IMR)...coooovreee, i 8-6
8.6. SCC Interrupt Vector TYPeS ..c.vvrvevrsoeern oo paienns i 8.7
8.7. Initializing SCC Interrupt VECtors ... 8-g
Section 9. Timers
B.1.. TOU Operation Proceaura . s s i i s 89-1
92, TOU BBBIBLETS......cosuvcenemsionisaesiieomiesbonsinsesiinestonis e .9-1
9.2.1. T™MD (Timer Mode Register) ...cooooreoo R 9.2
Viii Table of Contonts

9.2.2. TCKS (Timer Clock Selection Register)...........c..ccciunee. 9-3
8.2.3. TCT (Timer/Counter Registers)ccovveeiveeiiiissennnns 9.4
2.8; ‘Count Latch Command ... b i e s 9-5
8.4, Multiple Latch Command..........civiivueesmsiisisnmmissemsinssiasssismmnes 9-6
9.4.1. State of Multiple Latch Commandsoeveresieicemiesienens 9-8
B0 R BRI e litiaioiihns dapssnss mmmsmmomsaons smemamsangssemmanEanmseress 9-9
9.5, Timer Frequencin ... i i oeieiossiomosisansononsiivssss 9-10
9.5.2. DisablIng TIMerS. . iinsiismesiiiisiidsiossindiniiosiasos 8-11
Section 105CC Port Communications
10.1. Command and Data Register 10 Addresses ... 10-1
10.2. Writing a Valueto Port 1...ccooeevveeiiiiineinnnn, R T— 10-2
Section 11.Downloading and Executing a Control Program
A L voerre 111
11.2. Uning Firmware THAITEE.c..iccuamsersissssborssissassssssbssesssenboss 11-2
11.2.1. Using the Copy Command (02h)..........c..ccoiicvinnns v 11-3
11.2.2. Using the Execute Command (D1h} ..oevvioieriveiniinion 11-3
11.3. Using the DPLOADER Programccoceeovveeeeeeecseescnee s, 11-4
Section 12.Debugging Tools
12.1. Debugging Tools OVerview . .o issiieee e e sesseneens 12-1
12.2. Turbo Debugger OVervIBW .. iiciiieiseiirsssssssnsns e ens 12-1
12.2.1. Setting Up the Hardware Environmentccoe....... 12-1
12.2.2, Connecting a Two-PC Environmentcccoccvenmeienins 12-2
12.2.3. Configuring Symbal Tables...........cccocoeeiriceiiiccccennns 12-3
12.2.4 Involing the Remote Kerneloocvevivniciniiee e 12-3
12.2.5. Running the Turbo Debugger...........ccooovveeivirnsssinssnnns 12-4
12.2.6. Single-Stepping Instructions.. ... 12-6
12.3. Firmware Debugger Backgroundcoveiieeneniiiicciicreecinins 12-6
12.3.1. Invoking the Firmware Debupgger.........coccovviceireiivennne 12-7
12.3.2. Firmware Debugger Commandsc.ocovcrvnmrminnnnnes 12-7
12.3.3. Firmware Debugger Command Definitions 12-8
12.4. Using the Firmware Debugger.....occcvveeeicecieieeeeeioe e, 12-11
Appendix A. Developer's License Agreement and Contacting
Comtrol
A.l. Developer's License Agreementccvccoeveeerniasnssivesssessosinnns A-1
A2, Contacting Comtrol . ..ot sss e A-2
Index
Table of Contents ix

List of Examples, Figures,
Flowcharts

Example 5-1. Defining the Firmware Data ATea ..o 5-7
Example 6-1. Extended Addressing Mode ..o 6-7

-
|
]
M
e s
k = Examples
B =
L
=
L |
=

= Example 8-1. Setting and GHmE.Em 1 mu_.mwmnp Processor
“ Interrupt............ AP, . i |
1 Example 8-2. Clearing a Gazﬁﬂnﬁﬂ. anﬁ.ﬁﬁﬂ §-2
[T8 Example 8-3. Timer ISRccccovimmminrerssineerssessssssnssassssessassesssiessnsssans 8-2
E Example 8-4. Storing the System ISR Address.........cccvveiviiiicnnenns 8-3
1 Example 9-1. Setting TIMer L....cocieiiiieeisisssiresessssssesses s 8-11
m e Example 9-2. Setting Timer 2. ... iiiiimmiimiain. 9-11
m - Example 9-3. Clearing Timers 1 and 2cocunmemmmmmmsmmmrisssensrmanns 9-11
y Example 12-1.Embedding int Z7h......cccoiumiiimmmimmseieisiiesnssonsiens 12-4
| TR
F o=
E
E o=
E =
E o=
E =
)
B =
- =
=
Table of Contenta e Examples xi
—

Figures

Figure 1-1. Major Controller Components........o.oooveeeveeeeeoeeeoseeeson, 1-1
Figure 1-2. Installing the Toolkit..........cccoeeeiieeeereniee oo e 1-4
Figure 2-1. Data Flow Diagram for the CPC.C Program.....c.ccciiiinins 2.3
Figure 2-2. Data Flow Diagram for DPLOADER.C..covvvrvovooeeooeon, 2.13
Figure 3-1. Four Controllers Addressed Under One Megabyte......3-13

Figure 5-1.
Figure 5-2.

Fipgure -1,

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4,
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 9-1,
Figure 9-2,
Figure 2-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 12-1

System View of the Controller's Dual-Port RAM............5-2
Controller's View of It8 RAMcccoiemiiiersssssresiisismmsessinss 5-2
Expanding Memory...........oiiiioimeiommmmeneressesssessssnrss 6-1
1) (o T O 7-5
DCH Register (Read).........cocconinernnmrssmisseesssssesssersesserens 7-6
DCH Begister (WIIbe) ... i i smivviiin i 7-7
DBC/DCC Read/Write Command Register ..o, 7-7
DBA/DCA Read/Write Command Format...............ococo..... 7-B
218 T L S 7-9
IIMLY R b . o iy i st haiat s kmmmmemmr et s ppammd 7-10
BHTREIIEE, s s i o 7-12
DME ReZISEET ..o reeesienensr s vasessasesssassesssssenssesanesersnons 7-12
Y RO aiisai s v S STt oty 9.2
TOES REEISLRT covveecvrreviseseiieessesesreneersssssses s sesse st 9-4
Count Latch Command Formatccoovvevvveeeerenoinns 9-6
Multiple Latch Command Format.......c..cccvveerevenrisinns, 9-6
F2 LR o AR e e OO 9.7
NE Flag ChEDEE i it e 9.8

-Cabling between the Development System and the
Beaobs Seebem i s i S 12-2

xii

Flowcharts
Flowchart 6-1. Relocating Addressescoocvevvvniiicmiiine s 6-2
Flowchart 12-1. Executing int 27Th Before Downloading the
Contral Propram. i . i b seaisasi s 12-3
xiii

Flowcharta

List of Tables

Table 1-1. Standard Memory Map........c.iiiii oo 1-3
Table 2-1. Line Table Number and Controller Portscoo.o...... 2.2
Table 2-2. 64K Dual-Port Memory Mapcccoceveicivciniscssconessnennes 2-9
Table 2-3. Line Table MAP.......cccoioiimereeeereesseeseesseesesensstssessnens 2-11
Talled-1.. Bwitch Settings .. misnii. samnliimmiieiiis 3-2
Table 3-2. Input/Cubput MAap.........cveiimsmisssessesmmassnsmsmsnirasssianss 3-3
Table 3-3. Writing to Control Registers.........c.o..ooovovvoveeeeesnsecsesnsennes 3-b
Table 3-4. Control Register #1 Format........ooovoiieoovioeions s 3-6
Table 3-5. Control Register #1 (Bit D7) ...cccceceiveeeeercserrieeessersssssesens 3-6
Table 3-6. Memory Above One Megabytecoooooocvioeeeeeeiieeeeee 3.7
Table 3-7. Control Register #2 FOrMAtccoovievvvesinnsssreesesseesess 3-8
Table 3-8. Below One Megabyte Addressingc..c..cccouviievvannonnons 3-9
Table 3-9. Control Register #3 FOrMAL.........ccooveiieesessmsssessessssinss 3-10
Table 3-10. Control Register #3 Window Off8et.........ceoeevevereenneens 3-11
Table 3-11. Control Register #3 Sliding Window Sizesc.co....... 3-12
Table 3-12. Control Register #4 Interrupt Values.........o..cco.vevvnnnn.. 3-13
Table 4-1. Internal 'O Addressesccocciiiicniioesnisssies s sisieesinas 4-1
Table 4-2. Configuration Control Register Bitscovveceiovieesinenns 4-4
Table 5-1. Dual-Port Memory Map.......c.c.cccovivesionsesiinsssesssessssreses 5-1
Table 5-2. Firmware User Area Mapccoooovoieeovoeeeeeeiseereesnns 5-3
Table 5-8. BOC POrt MADiiiceiissisisisss sasssssssssnssoseeemresreoseserssesassenes 5-4
Table 5-4. Utility Commanaa........viieniiiiessrassisseessiossissasssmsrsss 5-f
Table 6-1. Address Conversion Tablec.ocooovvveevveeeereeeeeennns 6-3
fenle 71, DMACRADNGIE . s aiis 7-1
Table 7-2. DMAU Register Addresses (UPD71071 Mode)............... 7-3
Table 7-3. Accessing pPD71071 Mode Commandsoocvvn.. 7-4
Table 7-4. DMAU Register Initialization Changesccocccvevvnnn. 7-5
List of Tables T

Table 8-1. Interrupt Vectors........ T M 8-3
Table 8-2. Hardware Interrupt IMR Bits ... T . 8.6
Table 8-3. SCC Interrupt Vector Binary Values.........ooooooooo.... a-7
Table 8-4. Interrupt Vector Table Locations............. R RS TR 8-8
Table 9-1. TCU Register/Command Addresses..............................__ 9-1
Table 9-2. TCT Registers................ s e SR e | B
Table 9-3. NC Flag Changecccceecvmmvosesseoesoosoooeoeoeooees oo 9.7
Table 9-4. State of Multiple Latch Commands ... 8-8
Table 9-5. Timer Control Word VAIesooooeeooooooo 9-9
Table 9-6. Timer Count Register Addresses.......................... s 9-10
Table 9-7. Timer Frequencies............ P — i S -9-10
Table 10-1. SCC I/O AAresseso..ievneiiosioesoseoeeoeoeoeooeooen 10-1
Table 11-1. Utility Commands...........oovoveoooooooooo arie 11-2
Table 12-1. Debugger Commands...................o.ccouvvemmmommeoososooooen 12-7
Table 12-2. Debugger Command Definitions................... S 12-8
xvi Liat-of Tables

nmmmmm

rnmm.
Wow W W W W W W W

o w

Section 1. Controller Overview

1.1. Controller Features

The Hostess i is an 8-port intelligent serial controller, which can be
upgraded to 16 ports with an 8-port upgrade module. Each port can be
set for RS-232 or RS-422 mode. Ports 1 and 2 can be configured for
synchronous mode and support full-duplex DMA.

The controller contains four or eight Am8530 Serial Communication
Controllers (8CCs), depending on your model. This device implements
the eight or sixteen serial ports found on the controller. The SCCs are
mapped into the processor’s /0 address space. For more information
about programming the SCCs, refer to documentation for the 8530
SCCs listed in the Bibliography (in the Before You Begin section).

Figure 1-1 illustrates the architecture of the major components of the
controller,

[errom|[. vs3 | mnﬂwn L_lrs-asamn2 | [gperiy
5

_ _ Microprocessor Drivers and
_

[4 IJFH&EE 1 Connectar
_.bn_u.| Addre

ata us
muéw|_ RAM
mﬁﬁrw
Control
0 DIP
Eﬁmgﬁa _\ Switch
| H.__G.L _

yslem ddrese/Diiia us

]

| Dynamic

Controller
Bus
Connector

Figure 1-1. Major Controller Components

The following is a list of additional components and features of the
controller:

* 12 MHz, zero-wait-state, NEC V53 16-bit microprocessor
= 128K dual-ported RAM

* SIMM slots to upgrade local RAM to 640K, 2MB, or 8MB
® Switch-definable /0 addresses

* Software-definable memory addresses, IRQs, and 8 or 16-bit
memory transfers

Controller Overview 1-1

l

Microprocessar

* Three programmable timers

* A configuration control register, which controls the source of some
serial signala

Note: Refer to the User's Guide for information on the location of these
components or for controller specifications.

1.1.1. Microprocessor

The V53 microprocessor connects to many of the other components
through the local address bus and the local data bus, It is binary code
nuE_ﬁmmEn with the 80286 processor, operating in real mode. This
implies that it can address up to the one megabyte boundary. The V53
has a proprietary extended address mode that allows it to access
memory above the one megabyte boundary.

The Vi3 microprocessor has the following integrated components:
* An 8237 four-channel DMA controller

* An 8251 UART communications controller

* Three 8254 timer-counters

* An 8259 interrupt controller

* A refresh controller

1.1.2. EPROM

The EPROM contains 64K bytes mapped at the top of the processor's

one megabyte of memory space. This firmware contains code for the

following:

® V&3 bootstrap instruction

* V53 initialization

* Interrupt controller initialization

* Timer initialization

* Interrupt vector initialization

* Interrupt Service Routines (ISRs)

* Diagnostics for Serial Communication Controllers (SCCs) and
memaory

* Terminal debugger

* The Borland Turbo Debugger remote kernel

Although it is possible for users to produce their own EPROMs for the

controller, Comtrol does not recommend it. Instead, users can

customize the operation by developing their own control programs and
downloading them to the eontroller.

1-2 Controller Overview

mn.mm

e

LB RN EEEEED YW

Al

WOW oW W W W W W W W W W W W W ® m W & & &

~ - — -

Meomory

1.1.3. Memory

The standard memory block contains 128K bytes of dual-ported RAM.
This RAM is mapped at the bottom of the processor’s Memory space,
which is the controller's base configuration.

A small portion of this memory is reserved for the interrupt vector table
and for mﬂEiE.m usage. The remainder can be used to customize the
controller, by developing and downloading a user's own control
program into the dual-ported RAM.

Table 1-1 shows the standard memory map, as addressed by the local
processor,

Table 1-1. Standard Memory Map

Description W.,.n.ﬂh“m
Unused 10080h
Firmware user area (obsolete) 10000h
Firmware user area 00BBOh
Unused N0Co0h
Firmware work space 00400h
Interrupt vector table _ 000000

Additional memory can be added to the controller by adding 5IMM
modules (640K, 2MB, or 8MB). All memory is conti ous, starting at
address 0. When additional memory is added, the first 512K is dual-
port and the remainder is local, Only the V53 can access local memory,
All memory above the 1MB boundary is accessible to the V53 in
extended mode,

The dual-ported RAM can be viewed by the system processor through a
sliding window. This window represents the portion of dual-ported
RAM that is visible to the system processor at any one time. The
location and size of the window is software programmable through a
set of control registers.

The /O block contains the following functions, which can be performed
by I/0 writes or reads from the system’s processor:

* Write a control register index

* Write to a contral register

* Enable or disable dual-ported RAM

* Interrupt the on-board processor

* Select an interrupt request (IRQ)

* Enable or disable [RG=

= Reset the controller

Controller Overview

Toollit Inatallation

The control register block contains the functions that can be performed
by I/O writes from the system processor. The control registers are
accessed when an index, and then a control register value is written.

The control register functions select the following:

* The base address of dual-ported RAM in the system’s memory space
* The size of the system’s window in dual-ported RAM

* The portion of dual-ported RAM visible in the system’s window

* The IRQ line used by the controller

1.2. Toolkit Installation

Figure 1-2 illustrates how to install the Developer’s Toolkit.

__‘ Install the controller using the n_cn:EnEms.caf_
v that came with your controller {see note). J

l

H\ Create a directory on your hard drive for the sample E.cmaamm_
- [

On_uE, the files from the Developer's Toolkit Emw_wzn,luu

Note: The Toolkit programs use 218h as the base !0 address. If you use
a different address, you must edit the programs to reflect your
address selection,

Figure 1-2. Installing the Toolkit

See Section 2 for detailed information about the sample programs on
the Developer's Toolkit diskette, i

1-4 Controller Ovarviaw

W mmmmmmmmmmmmmmmmmn.

&

oW W W W

1

WoW W W) W W W W W W

Section 2. Developer’s Toolkit
Sample Programs

2.1. Developer’s Toolkit Sample Programs Overview

This section illustrates the sample programs included with this
manual on the Developer’s Toolkit diskette. The diskette contains the
source listings and executable files for a simplified control program
model that works on the Hostess i,

This manual and Developer's Toolkit use both C and 80286 assembly
language examples. Control programs often are a mix of both high-level
mﬂ%ﬁ”ﬁ-?ci code.

Comtrol encourages you to use these files on the diskette and examine
how the control program works. The control program, CPC.BIN, was
written in the C and the 80286 assembly languages. This section lists
the CPC.BIN source code, and the source code listings for the other
programs found on the Developer's Toolkit diskette.

The executable control program model (CPC.BIN) runs on the Hostess
i. It opens, closes, reads, and writes to any asynchronous line on the
controller.

These files make up the control program model:

* CPC.C —the source code for the control program model.

* CPC.BIN - the executable contrel program model,

* CPC.H - the header file for CPC.C.

* CPCSTART.ASM - the startup code, in assembly language.

* CPC.TDS - the symbol table (for debugging).

* DPLOADER.C - the source code for the loader program.

* DPLOADER.EXE - the executable loader program.

* DPRAM.H — header file used by both the control program and by
system applications.

* FIRMUSER.H — the C header file that defines the firmware user
area.

* FIRMUSER.EQU — the assembly language file that defines the
firmware user area.

* CLOCATE.EXE - a locator program that performs relocation of
CPC.BIN file producing CPC.BIN as it's output.

-Daveloper's Toollit- Sumple Progroms—

How the Control Program Works

2.2. How the Control Program Works

The following steps describe how the control program works:

* At power up, the local processor executes the initialization and
diagnostic code out of the firmware.

* The system processor downloads (writes] the control program into
dual-port memory (DPM) starting at the local processor's address
C0:0 using the COPY firmware utility command.

* The system processor invokes the EXEC firmware utility command,
which in turn invokes the eontrol program, at the C0:0 entry point.
The first section of the control program’s code initializes the
segment registers, stack, interrupt vectors, timer, and several
fields of the firmware user area,

After initializing these data structures, the control program enters an
infinite processing loop. Line refers to any one of the 16 serial lines
(ports) on the controller. The sample programs number the lines from
0 to 15. Each serial line has a line-table entry associated with it,

Table 2-1. Line Table Number and Controller Ports

Line Tables | Controller Port
Line 0 tahle _ Port 1
o Line 1 tahle _ Port 2
Linc 2 table | Port3
Line 3 table | Port 4
Line 4 tabie Fort 5
~ Line 5 table _ Port6
Line 6 table | Port 7 -
~ Line 7 table Port. 8
Line 8 tahle Port 9
Line 9 tahle Port 10
Line 10 table | Port 11
Line 11 tahle Port 12
Line 12 tahle Port 13
Line 13 table Port 14
Line 14 tahle Port 15
Line 15 tahle Port 16

The main loop sequentially checks each line's line-table entry, line-
status field. If the LINE_ACTIVE bit is nof set, processing continups
with the next line. i

20 . Developer's Toolkit Sample Programe

.'“. _..Inl ,-nJ'L-"I}.ﬂr
i W e W R & & O a

mmmmm
1)

L)

LAnImAmMAmMmemmm
oW Wb 0 U W W Wm W W W W W

M
5

How the Control Program Works

If the LINE_ACTIVE bit is set, the line status is checked to see if the
TX_ACTIVE hit is set. ,

The TX_ACTIVE bit indicates that the SCC is busy sending a character
and it cannot accept another character. !
If the SCC is free, the main loop calls the deq_Tx_data routine to write
the next character (if any) from the current line’s transmit buffer to the
SCC's internal transmit huffer. .

The data is placed in the transmit buffer queue at the location pointed
to by the transmit head pointer in the line table. Data 1s removed from
the transmit buffer queue transmit tail pointer in the line table.
(Consider these loop operations as background processing. Interrupt
service routines (ISRs) handle all other processing in the control

program.)
\/JWT_EF".M, ,..,”_ f., RGA_ist ™~

Intarmupl T T *

null_cmd
MessaEna AT
7 ESBC_isr /.
e int_sy 4 Sty
dlicdas, External

Closs Status
S .
T

caisiie fasat
open H Extom
e maﬂms_ﬁ

Closs _.__.__w\

InlerTup

] i X ¥l
P / sce

Figure 2-1. Data Flow Diagram for the CPC.C Program

Developer’s Toalkit Sample Progroms

How the Control Program Waorlas

void _.Hnnu.,.xlﬁ_wg__ﬂhﬁmuﬁz.ﬂ_ﬁdlﬂ far *t_p)
{

int tail;
if{lt_p-=line_status & ALLSENT _PEND) waiting for last Tx bit to clear*/
return; /* don't start next message till it does */

tail = It_p->Txq_tail;
if{lt_p->Txq_head = tail) M Tx quene empty *#/
returm;
if{{lt_p-=line_status & (RE4SSENABLEDITXMODE)) == RS485ENABLED) M*new
msg*/
{
disable();
txmoded85(1L_p.1); M set transceiver to transmit */
enable();
i
It_p->line_status = TX_ACTIVE; M indicate transmit nctive */

ilflt_p->line_status & RS485FNAR LED) /* doing R5-485 #/

{
disable(y; /* ensure ALLSENT PEND gets set in timely manner */
OUTB(L_p->io_base + 24N _p->Txg_com + tail)); /* write char to SCC */

if{lt_p-=Txq head == It _p-=Txqg_tail) M Tx queue empty */
{ /* the next TRE st indicates end of message */
It_p->line status |= SEND FLAG; £* mark it to send Mar char next *
I
enable();
]
else {* not doing RS-485 +/

{
OUTB(lt_p-=in_base + 2,*(It_p->Txq_com + tail)); /* write char to SCC */
}

During the control program’s initialization phase, an interrupt service
routine (system_isr) replaces the firmware routine that first invoked the
control program. The system_isr routine is responsible for processing
messages sent hy the system processor to the control program in the
Comq buffer,

Four messages have been defined

null_emd (does nothing)

open

close

int_sys (an example of interrupting the system),
Of these messages, only open and close are useful,

2.4 Developer's Toolkit Sample T._._”_n_.Eﬂm

n
Al

mmmmmnmnmn,

oW W oW W W oW oW W oW W oW &

rmmmmammmmMmmmmmm

w oW W oW W w

mn
u o

How the Control Program Works

The open message includes the line number and the communication
parameters, This information is passed to an open routine, which
initializes the appropriate SCC and enables the line by setting the
LINE_ACTIVE bit in the line-table entry, line-status field.

The close message includes the line number, which is passed to a close
routine to disable the appropriate SCC and clear the LINE_ACTIVE hit.

void interrupt far system_isr()

{
/* Set up dispatch table, one function for each Sys uP command */

statie void {*dispatch[NUM_SYSCMD]){void) =
[

null_cmd, o=
open, el
close, 2%
int_sys 3%
h
if{!deq_com_msg(}) /* pet message from Com uP */

{
EONINTCTL,EQIVAL): * end of interrupt to PIC */
return; * no message, return =/
}
ifimsg_buf{0] < 0l msg_buf]0] = NUM_SYSCMD) /* invalid command */
[

EOIINTCTL,EOIVAL); * end of interrupt to PIC */
return; /* no message, return *f
!
(®dispatch[msg_bof]0]])(): f* execute command Tunction */
EOKINTCTL,EOIVAL); ™ end of interrupt to PIC #/

}

Examples of system-side processing for open and close are contained in
HILIB.C, the hiopen and hiclose functions illustrate the system-side
processing for the open and close messages.

The hiopen function opens a serial line on the Hostess i. After a line has
been opened, data may be transmitted to that line. To transmit a
character, the system processor writes the character to that line's
tranamit buffer, using the normal queue operations, as used in the
HILIB.C, hiwrite routine.

The control program’s main loop removes the character from the quewne
and writes it to the SCC, and then sets the TX_ACTIVE bit in the line
table. No more characters can be sent by the contro) program until
TX_ACTIVE clears.

Developer's Toalkit Sample Programs 25

n

How the Control Pragram Works How the Control Program Works

el

The system can continue adding characters to the transmit buffer until
it is full. When the 5CC has completed serially shifting the character void RCA_ist{LINE_ENTRY _T far *It_p)
out, it issues an interrupt to the Hostess ; processor, which invokes the {

"l'!..
)

TBE_isr routine for that line. TBE isr clears TX_ACTIVE, which allows 5 int sce; {* SCC command register address */
the next character to be sent. T unsigned char ch; {* character read from SCC %/
== int head; * Rx queue head pointer */
- H a L3
void TBE_isr(LINE_ENTRY T far *It p) L int num_full; /* number Rx guene locations filled */
[-—. see = I_p->io_base; /* get SCC command register address */
int see; M* SCC command register address */ E = __n_. - F_m.ﬁnnﬂu_._ 8 /* read character from SCC #/
) - " ead = It_p->Rxq_head;
sce = l_p->io_hase; M get SCC command register address #/ m. .Jm ifiinu Ermr_m_ = head - ___Lu.u.mnuFFE =M /* num guene locations foll #/
ifilt_p->line_status & SEND FLAG) f* time to send R5-485 flag char */ - {
| E oum_full += RXB_SIZE; ™ adjust for queue wrap */
It_p-=line_status &= ~SEND_FLAG: =~]
It_p-=line_statns |= ALLSENT PEND; M next TBE _isr set Rx state #/ - ifinum_full < RXE_SIZE - 1) M if Rx queuc has empty space */
OUTB(It_p->io_base + ZFLAGCHAR}: /* write Nag char to SCC */ o {
It_p-=line_status &= ~TX_ACTIVE; M indicate no char in SCC Tx buffer */ *(It_p->Rxq_com + head) = ch; /* add received character to quene */
OUTB(sce, WR0); * end of interrupt to SCC */ 3 It_p->Rxq_head = (head + 1) % RXB_SIZE; /* bump head pointer */
OUTR{sec, RESET _IUS); = }
return; =

OUTB(sce, WRO); /* end of interrupt to SCC */
OUTR{scc,RESET_IUS);
!

| e

i
if{lt_p-=line_staius & ALLSENT_PEND) M* RS-485, set line to Rx %/
{

18

txmuoded85(1t_p,0); /¥ set transceiver to receive state */

It_p-=line_status &= ~ALLSENT_PEND: /* no longer waiting for last char */ R The Bystem processor may then remove that character from the queue,
! A as used in HILIB.C's hiread routine,
IL_p->line_status &= ~TX_ACTIVE; /* indicate no char in SCC Tx buffer %/ The SCC's are also capable of generating interrupts for external status
OUTB{sce, WRO): f* reset pending Tx interrupt */ changes or special receive conditions.
OUTE(sce, RESET_TX_INT); These i — : :

. X b — se mterrupts are handled by CPC.C's interrupt service routines

OUTB(sce, WR); * end of interrupt to SCC */ . ESC_isr and SRC_isr-

OUTR{sce, RESET _IUS);

l

void ESC_isr(LINE_ENTRY _T far *It_p)
{

After a line has been opened, data may also be received from that line.

mmmmmmmmmmm
|l

A : 0.1 ! ek int see; * SCC command register address */
When the SCC receives a serial nrmﬁmnw_,m... it i8sues an interrupt to the E.m_n._..& char status; /* suves the external status */
local processor, which invokes the RCA_isr routine for that line. RCA _isr e " i &
reads the character from the SCC and places it in that line's receive e sce = It_p->io_base; * get SCC command Eﬁmuq address */
buffer queue. The data is placed in the receive buffer queue at the o status = inp(sec); /* read the external status ___._.
location pointed to by the receive head pointerin the line table. Data is] status = status; f* prevent compiler warning */
removed from the receive buffer queue receive tajl pointer in the line /* Do External Status Change processing here */
tabla, = OUTB(sce, WRD): f* reset external status interrupts %/
OUTB{sce, RESET_EXT);
= OUTB(sec, WRO); /* end of interrupt to SCC */
== Gﬁ.mﬁmnn.mm_mmqu_cmu"
= I
-1
m e void SRC_isr(LINE_ENTRY T far *_p}
Ei
Ei
2.6 Developer's Toollit Sample Programs Ei- Developer's Toelkit Sample Programs 2.7
=L

Dual-Port RAM Confipuration for CPOBIN

int sce; f#* S3CC command register address %/
unsigned status; * suves the SRC status */
see=It_p->io_base; * get SCC command repister address #/
OUTE(sec,RR1); /* read the SRC status */

status = INB{scc); ™ read the external status */

status = status; {/* prevent compiler warning */

#* Do Special Receive Condition processing here */

OUTB{sce, WRD): /* for insurance */

OUTB(sce, ERROR_RESET): * issue error resel command */
OUTR(sce, WRO); #* end of interrupt to SCC */

OUTB(sce, RESET _IUS);

The local processor's timer 1 is initialized by the control program to
generate an interrupt 12 times a seeond, These are handled by the
Interrupt service routine timer1_isr, which does nothing except
increment the “heartbeat” counter found in the firmware user area.

void interrupt far timerd _ise()
{
fu_p->heartbeat++;
EOKINTCTL,EOTVAL);
I

/* bump heartbest counter */
/M end of interrupt to PIC #/

2.3. Dual-Port RAM Configuration for CPC.BIN

Information stored in dual-port memory (DPM) includes:

* General information about the controller as defined by firmware
(the irmware user area)

* Area for messages for the communications processor (Comg)
* Area for measages for the system processor [Sysq),

* Line tables for each of the 16 ports that describe the port,

* Transmit and receive buffer for each of the 1§ lines,

The control program uses less than 64K of dual-port memory,
r._mﬁ.._E..Em at the local processor's address 0000:0. The system processor
views this same memory beginning at address D000:0, See Table 2-2 for
a map of this area of dual-port memory.

2-8 Developer's Toolkit Sample Programe

W W W W & & & A

Ww W W W W E W

1 VRl §

LSRN EENS RN TED
L U W

W OWw W W

Dual-Port RAM Configuration for CPC.BIN

Table 2-2. 64K Dual-Port Memory Map

0 Reserved B&0
Firmware User Area
B8&0 Processor interaction flag 2
BB2 Boot/activity flag 2
Ba4 Configuration map {obsolete) 2
BHg Firmware release number 8
BSE Control program release number B
B9s Rezerved 4
BoA DRAM map 4
BOE SCC map 4
BAZ Board 1D 4
BAG Invalid interrupt flag 1
BAT Invalid interrupt type 1
BAS Invalid interrupt count 2
BAA Heartbent 4
BAE Utility eommand 1
BAF Utility status 1
EBEO Utility message buffer 15
BCO Balance of firmware area 64
Coo Control program and empty space 4400
Comm Message Queue
5000 Head pointer 2
5002 Tail pointer 2
5004 Message area 200
System Message Queue

5204 Head pointer 2
5208 Tail pointer 2
B20A Message ares 200
5408 Filler 8

nrn

L 1

Developer's Toolkit Sample Programa

Thial-Port RAM Configuration for CPC.BIN

Table 2-2. 84K Dual-Port Memory Map (Continued)

T Use o el
Line Tables
5410 Line 0 table 20
8440 Line 1 table 20
5470 Line 2 table 20
54A0 Line 3 table 20
5400 Line 4 table 20
8500 Line 5 table 20
5530 Line 6 table 20
5560 Line 7 table 20
8590 Line 8 tahle 20
55C0 Line 9 table 20
H5F0 Line 10 table 20
S620 Line 11 table 20
5650 Line 12 table 20
HBA0 Line 13 table 20
5680 Line 14 table 20
SEEDN Line 15 table 20
Transmit Buffers
6710 Line 00 200
5910 Line 01 200
BR10 Line 02 200
G010 Line 03 200
BF10 Line 04 200
6110 Line 05 200
6310 Line 06 200
6510 Line 07 200
6710 Line 08 200
6910 Line 08 200
6B10 Line 10 200
6010 Line 11 200
6F10 Line 12 200

Developer's Toolkit Sample Programs

n
a

E =
E =
E =
E =
& =
E
E =
E =
E =
E =
E =
| I
= =
E o=
B o
E =
E =
= =
= =
E =
E =

Drugl-Port RAM Configuration for CPC.BIN

Table 2-2, 64K Dual-Port Memory Map (Continued)

GmﬂMME Use _ Wmﬂ”ﬁ
7110 Line 13 200
7310 Line 14 200
7510 Line 15 200

Receive Buffers
7710 Line 00 800
TF10 Line 01 a00
8710 Line 02 800
HF10 Line 03 800
9710 Line 04 BOD
9F10 Line 05 800
AT10 Line 06 a00
AF10 Line 07 BOO
B710 Line (8 800
BF10 Line 09 800
C710 Line 10 8200
CF10 Line 11 800
D710 Line 12 800
DF10 Line 13 00
ET10 Line 14 800
EF10 Line 15 H00
F710 Unused BF0
10000 End of DPM
Table 2-3. Line Table Map
i Use Hex Bytes
0 SCC bage /O address 2
2 Line status 2
4 Write register 2 value 1
5] Write register 3 value 1
6 Write register 4 value 1
2-11

Developer's Teolkit Sumple Programa

&1

Dual-Port RAM Configuration for CPC.BIN

Table 2-3. Line Table Map (Continued)

O Use ox Bytes

7 Write register 5 value 1

8 Write register 12 value 1

9 Write register 13 value 1

A Write register 15 value 1

B Filler, keep pointers on even address 1

C Transmit buffer head pointer 2 B
E . Transmit buffer tail peinter 2

10 Transmit buffer local processor address 4

14 Transmit buffer system processor address 4

18 Receive buffer head pointer 2

1A Receive buffer tail pointer 2
1C Heceive buffer local processor address 4
20 Receive buffer system processor address 4
24 Filler C

30 End of DPM |

You can read through the listings to learn how a control program works
with the Hostess i controller. You will see some of this code again as
examples in the following subsections.

212 Developer's Toolkit Sumple Programs

DPLOADER.C

24. DPLOADER.C

DPLOADER is a DOS program written in C language. This program
can:

* Reaet the Hostess ¢ controller.

* Remove header bytes before downloading.

* Download a binary file into dual-port RAM on the controller,

* Start the Turbo Debugger debugger kernel code on the controller.
Figure 2-2 shows the DPLOADER.C.

Reset Controller

ef

Invoke ="Y"

A

Y

Interrupt

download Reset =|"y"

H_.:nﬂ.:ﬂ_ File

L

Va3 Dual-Port RAM Usear

Figure 2-2. Data Flow Diagram for DPLOADER.C
2.5. HILIB.C

HILIB.C is the file that contains four significant Hostess i functions:
® hiopen{)
= hiclose()
* hiread()
= hiwrite()

[Developer's Toolkit Sumple Programs 2-13

HILIB.C
HILIB.C

Compile and link the HILIB.C file with your application program to The function hiclose closes a requested serial line on the controller:
access Hostess i serial lines. The paragraphs that follow explain these

routines, with examples in C syntax,

The hiopen function opens a requested serial line on the Hostess i,
initializes the line to 9,600 baud, 8 data bits, 1 stop bit, and no parity,

int hiclose{int linenum)

{
/* Defanlt close message to controller */

static char closemsg|MSG_LEN] =
{

int hiopeniint linenum)

2 /* command number parameter */
{ ? /* line number parameter */
“ rﬁwﬁﬁhﬁﬂﬂ“ .N_Ja Wmﬁw_ﬁ * “”.__._,a.._.__...,__:,.w..a.ﬁ_.:.ﬁ /* unused */
wIlr =
- |4 i #
{ osemsg] 1] = (charjlinenum; * sel up line number in message
w, ,ﬁ mﬂﬂ.ﬂ_ﬂ_ﬁnﬂﬁ_ﬂhmuﬁm_ﬂ N mﬁ_muﬁ_lnwr_lﬁwﬂ closemsg)) /* add message to COMQ */
y ; A 1);
(il * WRS parameters {Tx character size) ®f | vehiemtl)
e, * WR12 parnmeter (lower byte of BRGTC) */ e
0, /* WR13 parameter (upper byte of BRGTC) #/ return(0); /* fail */
m, /* RS-485 parameter (O=disable RS485, 1=enable RS485) %/ _ '
1,0,0,0,0,0,0,0 /* unused */

ki
openmsg[1] = (charjlinenum; — /* set up line number in message */

iffenq_com_msg(openmsg)) f* add message to COMQ */
{

Returns 1 if successful, 0 if unsuccessful.

OUTB(IO_SYS+2,0); M interropt SYS uP
return(1); /* supcess ®/

!

else
return(i}; F* [ai) =/

}

Returns 1 if successful, 0 if unsuceessful.,

nmammmmMAmMAMAM A NN NN

» 2-15
2.14 Dovelaper's Taolkit Sample Programs Developer's Toolkit Sample Programs

U N W W e owowowmow w w ow owow s om ow & i

SELEEEY

f

HILIB.C

The hiread function reads up to a maximum ent bytes into the line's
receive buffer. The function does not wait for the bytes to read;

int hiread(char *shof,int ent.int linenum)

{
LINE_ENTRY _T far *It_p; /* pir to line table entry */
int i3 /* balance of chars to copy after q wrap */
int tail, head; * Rx buffer head & tail ptrs */
int heads; * save copy of head ptr */
int ecnt; /* count of chars copied */

It_p = line[linenum];
tail = I1_p->Rxq_tail;
head = li_p->Rxq_head; /* read head */

heads = 1i_p->Rxq_head; #* read head apnin *

M* Verify that head values mateh 1o prevent possibility that ctrlpgm
modified it in between 8 bit 5YS uP reads, Only need to do this
if controller is in 8 bit mode, */

whilethead != heads)

[
head = It_p->Rxq_head;
heads = It_p->Rxq_head;

}

M Get number of characters in Rx huffer *f

ifi{cent = head - tail) < 0)
cent += RXE_SIZE:

else if{cent == 00}

/* get pir to line table entry #/
/* read tail =

#* while the two head reads differ */

M read head */
/* read head again #/

* adjust for queue wrap */

returnicent); /* nothing in Bx buffer */
ificnt < ecnt)

cent = ent; /* don't overflow SYS uP bulfer */
i=cent - (RXB_SIZE - tail); ™ i = whats left after wrap aronnd */
ifii < 0)

i=0
* Copy to end of Rx buffer =/

BCOPY(It_p->Rxq_sys + tail.sbuf.cent - ik

* Point to beginning of buffer it already at end of it */
tail = (tail + (ccnt - i)) % RXB_SIZE:
* Copy the rest of the buffer, il amy left =/
if{il=m
{
BCOPY(lt_p->Rxq_sys.shufl + {cent - i
tail = i;
I
/* Update Rx bufTer tail =/
It_p->Rxq_tail = tail;
returnicent);

2-16

)

n
Wow W W W W

i

Developer's Toolkit Sample Programa Lh M

HILIB.C

Returns the number of bytes read (0 - 'ent’).

The hiwrite function writes up to a maximum ent bytes from the line's
receive buffer into dual-port memory. The function does not wait for
enough space to write if the request is too large

int hiwrite{char ®sbuf,int ent,int linenum)

{

/* pir to line table entry */

LINE_ENTRY _T far *It_p;
* balance of chars to copy after g wrap */

int i3

int numopen; /* num bytes open in Tx buffer */
int head, tail; {* Tx buffer head & tail ptrs */
int tails; * save copy of tail ptr */

It_p = line[linenumy|; /* get pir to line table entry */
head = It_p->Txq_head: /™ read head */

tail = It_p-=Txq_tail; M read tail %

tails = t_p->Txg_tail; /* read head again */

f* Verily that tail values match to prevent possibility that cirlpgm
maodified it in between 8 bit SYS uP reads. Only need to do this
if controller is in 8 bit mode. */

while{tail I= tails)

{
tail = It_p->Txq_tail;
tails = It_p-=Txq_tail;

I

M Get number bytes open in Tx buffer */

if{{numopen = tail - head - 1) < 0)
numopen += TXB_SIZE;

iffnumaopen = cnt)
numopen = cnt;

iffnumopen == 0)

* while the two tail reads differ */

/* read tail */
/* read tail again */

f* adjust for g wrap %/

/* don't move more than are incoming */

returmi0); /* no room in Tx buffer */
i = numopen - (TXB_SIZE - head); * i = what’s lefl after wrap around */
if (i = (1)

i=0y
/* Copy to end of Tx buffer #/

BCOPY(sbuflt_p->Txq_sys + head,numopen - i);
/* Point to beginning of buffer if already at end of it */
head = (head + (numopen - 1)) % TXB_SIZE;
/* Copy the rest of the buffer, if any left */
i (i l=)
{
BCOPY (sbuf + (numopen - i),t_p->Txq_sys.i);
head = ;
I
/* Update Tx hufTer head */
It_p->Txq_head = head;
returnnumopen ;

Developer's Toolkit Sample Programs 2.17

HITERM.C

Returns the number of bytes written (0 - 'ent"),

2.6. HITERM.C

The HITERM program runs on the system and emulates a terminal.
This DOS program works with the control program.

2.6.1. Invoking HITERM

Hﬁc use the executable file HITERM EXE with CPC.BIN, follow these
stepa:

1. Set the Hostess ¢ controller for I/0 address 218h.

2. Check that no other device occupies the D000 base memory address.

The program uses 64K starting at D000:0,
3. Install the controller in the system,

4. Connect a non-intelligent ASCII terminal to the port on the
Hostess i controller that you want to use. Set the terminal to:

= 89600 baud
* Bdata hits
= 1 stop bit
* No parity
* No flow control
4. Start-up DOS.
6. Execute DPLOADER.EXE.

DPLOADER prompts you for values it needs to download the control
Program.

7. Execute HITERM.EXE.

The HITERM application sends and receives any charaeters you
type on either keyhoard.

Pressing the <F10> key terminates the transmittal,

2-18 Developer's Toolkit Sample Programs

n
(1

4

mnmm
LTI VI ¥

m
L

ranmmm

i

k|

-

m
oW W woWw oW W oW oW W oW oW w

LW |

Compiling the Sample Programs Using the Borland Make E._nEE___

2.7. Compiling the Sample Programs Using the
Borland Make Utility

Included on the Developer’s Toolkit diskette is a file called MAKEFILE.

This file builds the executable programs, using the Borland make
utility:

This is the make fle for the Hostess i,

CPC_RELOC _SEG =cl) # CPC relocation address sepment

CC = hee

MEKF = makefile

STARTUP = cpestart

CTLTYPE = HOSTESSi # Must define one of SMARTH, HOSTESSi, or HOSTESS 186

#¥Iust define both of the following to represent the same contral program model

CPMODEL =1 # choose sismall),m(mediom),c(compact), or I{large)
CP_MODEL = MLARGE # choose MSMALL MMEDIUM,MCOMPACT or
MLARGE

CPCLIB = \be31\ib\e$(CPMODEL)lib # library for Borland C4
all: epe.hin hiterm.exe dploader.exe

fe=e® one control PrOErim **EEssshunsssessasrstnn
cpebin: S(STARTUP).ohj cpe.ohj $(MEKF)
tlink /s fc fv @ & &!
SSTARTUP).0hj $*.0hj
$*exe
$*. map
$(CPCLIB)
1

clocate $*.exe $*.bin ${CPC_RELOC_SEG)
ldstrip -5 cpr.exe
del cpe.exe

epe.obj: epe.e cpeh dpram.h firmuser,h $(MEF)
$(CC) -c -m$(CPMODEL) -v -DECTLTYPE) 5*.c

SISTARTUP).obj: $(STARTUP).asm firmuser.equ ${MEF)
tasm /1 /i fmx Ad$(CTLTYPE) /d${CP_MODEL) /dSTACK_SIZE=2048 $*.asm

t_!fll .—.-:.ﬂa.ﬁﬂﬁ ELE R LA L PR R Y T T STl
hiterm.exe: hiterm.c hilib.c dpram.h $(MKF)
$CC) -ml - -DS{CTLTYPE) $*.c hilib.c
.__u_iill. ﬁﬁwﬁﬂﬂﬂﬂ.-—lﬂﬁ Rt b L L LR 2 2 o b f f T e e e
dploader.exe: dplnader.c dpram.h firmuser.h $(MEF)
S{CC) -+ -DYCILTYPE) $*.c

Developer's Toolkit Sample Programs 219

.
u

Using the MAKEFILE

2.7.1. Using the MAKEFILE

To use MAKEFILE:

L

Edit the MAKEFILE file and define the Comtrol controller type. The
MAKEFILE entry must match your controller type:

CTLTYPE = HOSTESS.# Must define one of SMA RTH, HOSTESSI, or
HOSTESS186

Define the appropriate memory model for your system. The

MAKEFILE entries must specify the same memory maodel,

#Must define both of the following to represent the same control

program model

CPMODEL = I.........# choose sismall),m(medium),c(compact), or
I{large)

CP_MODEL = MLARGE...... «..# choose MSMALL,MMEDI-

UM,MCOMPACT or MLARGE
Save your changes to MAKEFILE.
Enter make at the DOS prompt.

make

2.7.2. Building the Sample Program

To
1.

build the sample programs, make performs the following steps:
Compile DPLOADER.EXE from the source files DPLOADER.C,
DPRAM.H, and FIRMUSER H. The MAKEFILE entry includes a
macro named CTLTYPE. The macro sets the controller type.
dploader.exe: dploader.c dpram.h firmuser.h $(MKF)
$(CC) -v -DSH{CTLTYPE) $*.c
Compile HITERM.EXE from the source files HITERM.C HILIB.C, and
DPRAM.H. The MAKEFILE entry also includes the CTLTYPE macro
that sets the controller type.
hiterm.exe: hiterm.c hilib.c dpram.h $(MKF)
S(CC) -ml -v -DH(CTLTYPE) $*.c hilib.c
#Assemble CPCSTART.OBJ from the assembly files CPSTART.ASM
and FIRMUSER.EQU. The MAKEFILE entry includes the macros
STARTUP, CTLTYPE, CP_MODEL, and STACK_SIZE,
MSTARTUP).ohj: S(STARTUP).asm firmuser.equ $(MKF)
tasm A /zi /mx MdS(CTLTYPE) A$(CP_MODEL) /
ASTACK_SIZE=2(48 5*.asm
Where:

STARTUP is the name of the startup control module CPSTART.
CTLTYPE sets the controller type.

Developer's Toolkit Sample Programs

rrmemmmmmANALLN

LLAAAAN

Building the Sample Program

CP_MODEL sets the memory model.
STACK_SIZE sets the size of the control program’s stack.

4. Compile CPC.OBJ from the source files CPC.C, DPRAM.H, and

= +]

FIRMUSER.H.
The MAKEFILE entry also includes the CPMODEL and CTLTYPE
macros that set the memory model and controller type.
cpe.ohj: epe.e cpe.h dpram.h firmuser.h $(MEKF)
H(CC) -c -mB(CPMODEL) -v -D$(CTLTYPE) $*.c
Compile CPC.BIN from the object files CPCSTART.OBJ and
CPC.OBJ. Link the output with the appropriate libraries to form to
form CPC.BIN. The MAKEFILE entry includes the STARTUP and
CPCLIB maeros:
Where:
STARTUP is the name of the startup control module CPSTART.
CPCLIB is the path to the Borland C language library for the
memory model compiled for the control program.
cpe.bin: $(STARTUP).obj cpe.abj $(MKF)
tink /s fe iv @ & &:!
$(STARTUP).ohj $*.abj
5*.exe
H*.map
$(CPCLIB)
In this example, CPCLIB is set to the \cX.lib parth:
Where:
A is the memory model (s for small, m for medium, ¢ for
compact, or 1 for large).
path is the DOS path to the Borland C runtime library files.
When you compile and link programs to run on the system
processor under DOS, also link the c0X.lib library. This library
contains the C startup code for DOS. Since the control program does
not run under DOS, the CPCSTART module replaces c0X.lib.
Relocate CPC.BIN to the entry point address to create CPC.BIN. The
MAKEFILE entry creates the downloadable binary image CPC.BIN.
CLOCATE.EXE is a utility that performs the relocation. The .
CPC_RELOC_SEG macro sets the entry point segment address (in
this case, COh). This is the same address where DPLOADER.EXE
downloads the control program.
cloeate $*.exe $*.bin $(CPC_RELOC_SEG)

Developer's Toolkit Sample Programs 2.21

JJ-.IJLI.I'iI.LIJLl;llJLI.'Ll'Ll‘LI.'tlJLIJijJilJLHJLIJLl'LlJﬁJ.lJ;lrlllLlJLl'I

Building the Sample Program

i “m.wlw the symbol table information from CPC.BIN. Place this
information in CPC.TDS. The MAKEFILE entry removes the symhbol
table information and places this information in the CPC.TDS file.
Turbo Debugger uses the symbol table information to find
addresses for variables and other data structures.

tdstrip -5 cpeexe

2-8% Developer's Toollbt Sam pla E.nr_.ﬂm._um.

LI

-

B =

sl

e —

..TL ..FL 4&]. .@L
W W W W W W W

Section 3. System I/0O Addresses

3.1. Overview

This section discusses the following issues:

* Setting system /O addresses

* Heading the controller identification byte
* Hesetting and initializing the controller

* Initializing control registers
* Control register features

* Control register #1

* Control register #2

* Control register #3

L]

Control register #4
3.2. Setting System I/0 Addresses

The four-position DIP switch block on the controller sets the system
/0 addresses. The controller reserves four consecutive /O addresses,
starting with the address set by the switches. These addresses are
used to

* Heset and initialize the controller

* Initialize control registers

* Enable memory on the controller

The following subsections explain how these actions oecur.

Table 3-1 shows the possible /O addresses and their switch settings.

Syatem KO Addrosses 3-1

y

Setting Svetem U0 Addresses Reading the Controller Identification Byte

; ; The controller reserves four consecutive system IO addresses:
Table 3-1. Switch Settings

m. .m * /O_base+D
I'O Address | DIP Switch | /'O Address | DIP Switch) * 1O_base+l
Hange Settings Range Settings : = s 1O bases?
J !
y L * I/O_base+3
O ON m T
218- 21B hex 24 7 _ 618 - 61B hex _ _ 1 - Table 3-2 shows the 1/O map and refers you to the subsection where it
| |e)m|m mj|m|| m =5 15 discussed in more detail,
1284 1234 = Table 3-2. Input/Output Map
ONEB _I_J|_ ON _I IE m.m - 10 Address Description Detailed Discussion
210 - 21F hex _I_ i 61C - 61F hex _ O _base+() |Writes to control registers Subsection 3.7.1
ﬂM _W M_ xﬁ 1 M M) mn - VO bases1 |Dnables/disables memory, Siibasetion 5.6
m = £ control register index)
oN[@[] ON' 1] I/O_base+2 |Interrupts controller Subsection 3.5
238 - 238 hex \‘, _:ﬁﬁ_ 638 - 63B hex H Umﬁ_‘w_ m |@ 1/0_base+3 |Resets controller Subsection 3.4
[5] L) |
e rEo4 = = 3.3. Reading the Controller Identification Byte
l) = ON@|@| |m -
23C - 23F hex b _I_ 63C - 63F hex % _ !._ m | Reading (byte read) from address VO _base + 2 gets the controller
_ =l |m ¥ e _ ’ identification byte. This byte can be used to identify the tvpe of
1234 1234 = = Comtrol controller installed. This value is 01h for the controller. The
' “Ebusn:mw E.mnmmnmmaurwmmm is m__.wmﬂ_umﬂmm only on the mm&mmmu__w fand
E . ater) controllers. See the Before You Begin discussion to find the
ON| || e _l ON| || == m = version level of your controlier.
318 - 31B hex n_m_ g [| 718 - 71B hex _.__h_
1234 | S E & 3.4 Resetting and Initializing the Controller
oNa|[&l OZ.N_I_N,H m £ Writing to the address ¥O_base+3 resets the controller, then it
< _I_ . initializes the controller by causing the firmware start-up code to
31C-31F hex | 4 71C - 71F hex . : "
ml = |l = = execute. Write the value 00h, delay one-tenth of a second, then write
1234 1234 1 the value 0FFh. The controller's memory comes up as disabled after
i the controller is reset. System reads or writes to dual-port RAM are
i e A ol Nm_ﬂ_ m“ = not allowed between these two /O writes. (For device drivers for the
| ! . e UNIX® operating system, you can protect these two /0 writes using
438 - uwmm Hu.m._uh M E:Dﬁ __.__.mm_ - T73B hex _lm h M.._ m an m.m-_ 7 Q .__ﬂm._wﬁ-m..._. ﬂm.HH.w
1234 18 8 4 E & _.H._Ew. example shows how to reset a controller whose /0 base address is
! 1 218h;
ONo|[=|(m 1 OoN m|[mm =u.—:.—...—. _“H-ﬂ.N“_.mqugu.u ___..I wﬂ._” the reset !____
33C - 33F hex 2._] _.l_. 73C - 73F hex _ _ _ m = delay(HZ/10); /* Delay 1/10 second */
_l L = \ﬁ] outp (0x21h,0xfT); /* Remove the reset */
1234 _— 1234 = After removing the reset, you must wait between approximately five
seconds (for the 128 Kbytes of memory) to 25 seconds (for 2 MB) to allow
m & the reset diagnostics to complete.
&3

3-2 System /0 Addresses m = System IO Addresses 8-
—a

Interrupting the Controller

3.5. Interrupting the Controller

Use I/O_base+2 to interrupt the controller. Writing any byte value
generates an mterrupt to the controller. It is the controller's
responsibility to service this interrupt. This example shows how to
interrupt a controller whose I/0 base address is 218h:

outp (x21a,0);

3.6. Enabling and Disabling Dual-Port Memory

Usze I/0_base+1 to enable or disable memory and as an index register
when writing to the control registers. A write of value 1 to bit 2
disables the memory. A write of value 0 to bit 2 enables the memory,
This example shows how to disable and then enable the memory,
using the Y0 base address 218h:

outp (0x21%.4); /* OFF */

outp (0x219,0); M ON %

See Subsection 3.7.1 for information on indexing the control registers.

3.7. Control Register Overview

There are four control registers on the controller.
registers

= Control the memory addressing

* Select the memory window size, interrupts, and mode of operation
[either PC (8-bit) or AT (16-bit)),

You access the control registers by writing an index value to the

VO _base + 1 address, then the register contents to the VO_base + 0

address (see Subsection 3.7.1). The four-position DIP switch SW1

selects the IO base address (see Subsection 3.2).

Overall, the registers function in this manner:

* Control register #1 selects the “above one megabyte” system
addreas.

® Control register #2 selects the “below one Emm&uﬁa: gystem
address.

* Control register #3 selects the “sliding window” of dual-port
memory.

* Control register #4 selects the interrupt request (IRQ).

These write-only

3-4 System 10 Addresses

mmmMmAAMANAM

W W W W W m E W

W W

L

Ki
|

)

AMILTT T

U W W W W W

Writing Control Registers

3.7.1. Writing Control Registers

The control registers are written through a two-step process:
» First an index value is written out to /O_base+1 to select the control
register:

Table 3-3. Writing to Control Registers

Control Index with Index with
Register | RAM Disabled | RAM Enabled
1 05h 01h
2 06h 02h
5 0Ch 08h
4 14h 10h

* Then the register contents are written out to I'0_base+0). The index
will remain fixed until an YO_base+1 is written again. Subsequent
writes to the same control register are permitted without
intervening index writes (this is useful for applications that use a
sliding window into dual-port RAM).

Initialize all control registers before enabling the controller's memory.

This means that the data bit D2 must be set to a 1 whenever you write

out to O _base+1 (see Subsection 3.2},

For example:

outp (I/0_base+1, 15h);
outp (0_base+l, <value>}

outp (I/0_base+1, 06h);
outp (I/0_base+, <value>)

outp (/0_base+1, 0Ch);
outp (K0 _base+, <value>)

Setup for Control Register #1
Setup for Control Register #2
Setup for Control Register #3

outp (I/0_base+1, 1dh); Setup for Control Register #4

outp (0 _base+0, <value>)
After initializing the control registers, enable memory by executing the
following:

outp (0 _base+1, 00h)
Once the control registers are initialized, you access the registers with
new addresses using the Index with RAM Enabled values in Table 3-3.

Syatem /0 Addresses -6

Control Register #1

3.7.2. Control Register #1

This write-only register selects the system memory address above one

megabyte for the controller,

* Ifyouwant to address the controller above one megabyte, write 00k
to control register #2, and write the value to select the desired
address to control register #1, as determined by Table 3-6. Control
register #1, bit D7 must be set to one (1).

* Ifyou want to address the controller below one megabyte, write
zeros to bits D6 to DO.

Table 3-4 illustrates the format of control register #1. Writing a value
to data bits DO to D6 sets the address: writing a value to data hit D7
determines the mode of data transfer between the controller and the
aystem:

Table 3-4. Control Register #1 Format

Data Bit | Field
o7 AT/PC mode
06 8A23
D5 SA22
D4 SA21
D3 8A20
D2 5A19
D1 SAL1E
D0 | 8A17

Note: When AT/PC MODE is equal to 1, 16-bit memory transfer is set.
When AT/PC MODE is equal to 0, 8-bit memory transfer ts sef,

Bit D7 of control register #1 determines if the syatem accesses the dual-
port memory using 8-bit or 16-bit transfors,

If the dual-port memory is mapped above 1 megabyte, always set D7 to
1 (16-bit mode),

If the memory is mapped below 1 megabyte, you must set D7 to 0 (B-hit
mode) unless you have another 16-bit peripheral addressed in the same
128K block of system memory as the controller. The 128K block begins
on an even 128K boundary. Table 3-5 summarizes this information,

Table 3-5. Control Register #1 (Bit D7)
System Memory _ Other Peripherals in |

D7 Value

Address the Same 128K Block |
Above 1 megabyte Not applicable 1 {16 bit)
Below 1 megabyte 8 bit 0 (8 bit)

-6 System U0 Addrosaes

mhmhm.@;
mmmmwmwmwwwwwmmwmmmwalwam

A

naammEmARAAM AN NN

&

Control Register

#1

Table 3-5. Control Register #1 (Bit D7) (Continued)

System Memory | Other Peripherals in
Address the Same 128K Block

Below 1 megabyte 16 bit

The following example selects the above one megabyte base address
FAQOOOh, using the 1/0 base 218h:

D7 Value

1 (16 bit}

outp (21%h,05h); *Access CR#T %/

outp (218h,0FDh); ™ Set address, AT mode */
outp {219h,06h); * Access CR#2 */

outp {218h,00h); /* Zero out *#/

outp (219h,0Ch): ™ Access CR#3 */

outp (218h,00h); * Fero out */

outp (21%h,00h); /* Enable DPRAM */

Table 3-6 defines all the memory base locations for controllers
addressed above one megabyte:

Table 3-6. Memory Above One Megabyte

Address | Value for Control Register #1**
FCo000h OFEh
FAD000R OFDh
F80000h 0FCh
F&0000R OFEh
F40000h 0FAh
F20000h 0FSh
FO0000h O0FBh
EEOOO0H 0F7h
ECO000h OF6h
EA0000h 0F5h
E80000h 0F4h
E&0000h 0F3h
E40000h 0F2h
E20000h 0F1h
E00000h 0F0h
DEODOOH 0EFh
DCO000H OEEh

System /0 Addresses

3-7

Control Register #2

Table 3-6. Memory Above One Megabyte (Continued)
Address | Value for Control Register #1°*

DADDOOK OEDh
DE0000L 0ECh
DB0D00K OEBh
D40000k 0EAQ
DZ0000h OESh

DO0000K

lese values assunme
data transfers

UE8h
ol you are using Io-O60

| 3.7.3.Control Register #2

This write-only register selects the system memory address below one
megabyte for the controller.) e

* Ifyou want to address the controller above one megabyte, write (0h
to control register #2.

* If you want to addreas the controller below one megabyte
- Write 00h to D8 through DO of control register #1

- Write either 0 or 1 to bit D7 on control register #1 to choose 8-
or 16-bit mode (see Table 3-5)

- Write the value to select the desired address to control register
#2, as determined by Table 3-8.

Table 3-7 illustrates the format of control register #2. W iting a val
to data bits DO through D5 sets the nnﬁﬁmmm,ﬁ riting a value

Table 3-7. Control Register #2 Format

Data Bit Field

D7 Not used

. Deé Not used
Da SA19
D4 SA18
D3 SA17
D2 SA16
D1 SA15
Do SA14

a8 System [0 Addreases

MM
—
=p
&= =
==
&= =
E- =
= =
£ =
g~ =
= =
E- =

g
£ 3
£ 2
£ =
E s
E 3
m.._w
.
& 2
=k
=3
% |

Control Register #2

This example selects the below one megabyte base address D000:0h,
using the I/O base 218h, with a 64K window:

outp (219h,05h); 1* Access CR#1, */

outp (218h,00h); * Zero out, PC mode */

outp (21%h,06h); * Access CR#2 */

outp (218h,34h); /* Below 1 MB RAM address */
outp (219h,0Ch); /* Access CR#3 %/

outp (218h,24h); #* Set 64K upper window */
outp {219h,Hh); /* Enable DPRAM */

Table 3-8 defines all the memory base locations for controllers
addressed under one megabyte. The addresses and offsets displayed in
the table are valid for both the PC and AT mode of operation {see
Subsection 3.7.4),

Table 3-8. Below One Megabyte Addressing

Memory | Control Control |Valid System Window
Address | Register #2 | Register #1 Sizes (Control
and Offset | (D5 to DO) (D6 to DO) Register #3)
8000:0000 20h 00h 16K, 32K, 64K
8000:4000 21h 00h 16K
8000:8000 22h 00h 16K, 32K
8000:C000 23h 00h 16K
9000:0000 24h 00h 16K, 32K, 64K
9000:4000 25h 00h 16K
9000:8000 26h 00h 16K, 32K
9000:C000 27h 00h 16K
A000;0000 28h 00h 16K, 32K, 64K
A000:4000 29h 00h 16K
A000:8000 2Ah _ 00h 16K, 32K
A00D:CO00 2Bh 00h 16K
B000:0000 2Ch 00h 16K, 32K, 64K
B000:4000 2Dh 00h 16K -
B000:8000 2Eh 00h 16K, 32K
B000:C000 2Fh 00h 16K

C000:0000 30h 00h 16K, 32K, 64K

- C000:4000 31h 00h _ 16K

System LD Addresses 3.9

Control Register #3

Table 3-8. Below One Megabyte Addressing (Continued)

Memory | Control Control |Valid System Window
Address | Register #2 | Register #1 Sizes (Control
and Offset | (D5 to D0) (D6 to DO) Register #3)
C000:8000 32h 00h 16K, 32K
C000:C000 33h _ 00h 16K
DO00:0000 34h 00h 16K, 32K, 64K
DO00:4000 35h 00h 16K
DO000:8000 36h 00h 16K, 32K
D000:C000 37h 00h 16K i
E000:0000 38h 00h 16K, 32K, 64K
E000:4000 39h 00h 16K
E000:8000 3Ah 00h 16K, 32K
“E000:C000 3Bh 00h 16K

Note: When using under one megabyte addresses, choosing the AT or
PC mode depends on whether other boards are addressed in the
same 128K black of system memory space. All boards within a
128K black that begins on a 128K boundary must use the same
mode of operation.

3.7.4. Control Register #3

This write-only register selects and controls the dual-port memory
window size and offset. This “window” is the portion of the dual-port
memory the system processor sees at any one time. Table 3.9
illustrates the format of control register #3.

Table 3-9. Control Register #3 Format

Data Bit Field
D7 WAI18
D6 WALT7
D5 ENBLSALS
T ENBLSA15
D3 ENBLSA14
D2 WAL6
D1 WA15
Do WA14
3-10 System U0 Addreascs

WO oW oW W W oW W o W W oW W W W W oW W W oW oW m @

Control Register #3

Data bits D0, D1, D2, D6, and D7 control the window's offset from the

beginning of the 512K block of dual-port memory. (Bits D6 and D7 are
set to zero (0) when only 128K of DRAM is %H.mmmnn. This i8 the default
case, when no additional SIMMs are added.)

Table 3-10 illustrates the format of the control register #3 window
offset (bits DO through D2, D6, and D7).

Table 3-10. Control Register #3 Window Offset
Data Bits | 16K _ 32K 64K 128K

Window | Window | Window | Sliding
D7|D6 D2 | D1/ D0| Offset Offset Offset |Window
|0 |0|0]|D +0 + 0 +0 + 0)
clololo[1] +I16K +0 +0 +0
0O |lo|0|l1]0 + 32K + 32K +0 + 0
|00 (1 1 + 48K + 32K 4+ 0 +10
0[0]|1]0]0] +64K | +64K | +64K | +0
0|0 [1[0][1] +8K | +64K | +64K +0
O (0113110 + 96K + 96K + 64K +0
001|111 +112K | +96K | +64K +0
O |1(0|0|0]| +128K | +128K | + 128K | + 128K
0O(1]0]@¢]1 + 144K + 128K | + 128K | + 128K
0O [1[0]1]|0] +160K | +160K | + 128K | + 128K
0 |1[0|1]1] +176K | + 160K | + 128K | + 128K
01 /1]00]| +192K | +192K | +192K | + 128K
0 1 (101 + 208K + 192K + 192K | + 128K
0 [1]1|1]0] +224K | +224K | + 192K | + 128K
0|1 [1]1]1]| +240K | +224K | + 192K | + 128K
1|0|0]|0]|0]| +256K | +256K | +256K | + 256K
10001 +272K | +256K | + 256K | + 256K
1 [0]0|1|0]| +28K | +288K | +256K | + 256K
1|0[0] 11| +304K | +288K | + 256K | + 256K
1|10 1]0]|0] +320K | +320K | +320K | + 256K
110|101 +33K | +320K | +320K | + 266K
1 |[0|1]1]0][+852K | +852K | +320K | + 256K
110 |[1]1]1][+368K | +352K | + 320K | + 256K
1 [1]0 |00 +384K | +384K | + 384K | + 384K
Syetem 'O Addresses a-11

E‘PLLThTa—-T*—nTLT*—'T‘-—*T‘—*“—"“ neRARERRARAMANAMM I!

Control Register #3

Table 3-10. Control Register #3 Window Offset (Continued)

Data Bits 16K 32K 64K 128K
D7|D6[D2[D1] Do "ot | Ofaet | Ofsar Wieang
1100 1] +400K | +384K | + 384K | + 384K
11010 +416K | +416K | +384K | + 384K
1101 1] +432K | + 416K | + 384K | + 884K
1[1][1[0]0] +448K | +448K | + 448K | + 384K
11 1[0 1 +464K | +448K | + 448K | + 384K
11110 +480K | +480K | + 448K | + 384K
1| 1[1]0]0] +496K | +480K | +448K | + 384K

Note: mn,.ww& D3 through D5 define the size of the system processor's
windouw.

Data bits D3 through D5 control the size of the system's window into
dual-port memaory. Table 3-11 illustrates the window size format of
control register #3.

Table 3-11. Control Register #3 Sliding Window Sizes
Data Bits Window
D5 | D4 | D3 | Size
0 128K

a0
¥ Jil] ML 64K
1
1

8] J2K
_ 1 | 18K
The following example selects the below one megabyte base addreas

D000:0h, using the 'O base 218h, and sets a 684K shiding window with a
64K offset:

outp (219h,05h}; * Access CR#1, */

outp (218h,00h); /* Zero out, PC mode */

outp (219h,06h); 1* Access CR#2 #/

outp (218h,34h); f* Below 1 MB RAM address */
outp (219h,0Ch); * Access CR#3 *f

outp (218h,24h); /* Set 64K upper window + offset #/
outp (219h,00h); f# Enahle DPRAM */

Setting the sliding window size determines how much of the dual-port
RAM the system may accesas at one time. A 16K window allows four
controllers to be configured under one megabyte within 64K of system
memory as shown in Figure 3-1.

WOWOW W W W W W W oW W W W W

Control Register #4

/ 16K 16K
/ i L 512k of
= 16K 0
100000 w 18K 16K Dual-Pon
E0000 |ROM BIOS /| S 16K En:_cww_,
D000 | Conwolier#d | —— [~ | Coeotie
4000 MQ::.D"“E.HM._M.\ | 16K
RO ontroller #d-=._
DC000| Controller #1 ,| [16K |
: o 16K |
AQDOR /f = 16K
14 16K 16k
System RAM | 6K 16K |
DO by 16K 16K |
./ 16K
,._._.._ 16K 16K
| 16K
16E

Figure 3-1. Four Controllers Addressed Under One Megabyte

The 512K of dual-port RAM in Figure 3-1 is with the optional SIMMS
memory installed. Without SIMMSE, only 128K of dual-port RAM 1s

available.

3.7.5.Control Register #4

This write-only register selects the IRQ used to interrupt the system.
Open-collector outputs allow more than one controller to share the
same IRGQ. (The open-collector output is a feature not used by
Comtrol™ device drivera.)

The appropriate value for each IRQ appears in Table 3-12,
Table 3-12. Control Register #4 Interrupt Values

3-12 System /'O Addreases

ntPMTLLTATLTLEL_T}_LTL.T; .@;_mx_gf_ _TL .F!L ‘Ti

A W W

Interrupt | Control Register #4
IRQ3 08h
IRG4 08h
IRGQS OAR
IRGD 0Bh
IRQ10 0Ch
Syetem 1/0 Addresses 3-13

Control Register #4 l -

Table 3-12. i . . .
e Control Register #4 Interrupt Values (Continued) m m mmﬂﬁﬂ_ﬁwu ‘ﬂu- QQHH&H-AU—..—QH- HL____O

Interrupt | Control Register #4 4
T 5 S Addresses
IRQ12 0OEh -
IRQ15 OFh &= =
Disabled 00h m - 4.1. Overview
The following example selects the below one megabyte base address] This section discusses the following issues:

DOGD:0h, using the /0 base 218h, with a 64K window and a 84K offset, m.\n. m

and selects TRQ11: » Controller internal YO addresses

outp (219h.05h); /* Access CRE#L, */ m_n = * (Configuration control register
outp (218h,00h); *Zero out, PC mode */ ‘ - Transmit clock source
outp (219h,06h); /* Access CR#2 */ =g - RS-232 and RS-422 synchronous support
outp (218h,34h); ™ Below 1 MB RAM address */ m.__ . - DTR source
outp (21%h,0Ch); I* Access CR#3 #/ ki FROM bl
outp (218h,24h); 1* Set 64K upper window + offset */ == s iy s s
outp (219h,14h); /* Access CRE4 %/ ¢ Configuration control register interrupts
ouip (218h,0Dh}; /* Set TRO11 */ m.h | - Int 24h — control register read
outp (219h,00h); /* Enable DPRAM */ : - Int 25h — control register write
=~ =
' 4.2, Controller Internal I/0 Addresses
| E
Tahble 4-1 shows the internal VO addresses for controller’s devices.
= = Table 4-1. Internal VO Addresses
mh.. = Device /0 Address
* DMA Registers:
Ex = DICM 9060h
: DCH 9061h
| T DBC/DCC (Low-order byte) 9062h
_m_u =, DBC/DCC (High-order byte} 9063h
l._ DBA/DCA (Low-order byte) 9064h
Ex = DBA/DCA (Middle-order hyte) 9065h
-,L & DPADCA(Highorder byto 9066h
Heserved 067h
h = DDC (Low-order byte) 9068h
S| DDC (High-order byte) 9069h
| | DMD 906Ah
h w DST 906Bh
3-14 System /O Addresses m M Controller 0 Addresses 4-1

Controller Internal IO Addresses

Table 4-1. Internal I'O Addresses (Continued)

Device 1'0 Address
Reserved 806Ch
Reserved 806Dh
Reserved 906Eh
DME S06Fh
Interrupt control register 9071h
Timer 0 count register 9074h
Timer 1 count register q075h
Timer 2 count register 9076h
Timer control word 9077h
S8CC Port 1 (controller Port 2) command register E1F0h
BCC Port 1 (controller Port 2) data register E1F2h
SCC Port 0 {controller Port 1) command register E1F4h
SCC Port 0 {controller Port 1) data register E1F6h
SCC Port 3 (controller Port 4) command register E3F0h
BCC Port 3 (controller Port 4) data register E3F2h
8CC Port 2 (controller Port 3) command register E3F4h
SCC Port 2 (controller Port 3) data register E3F6h
8CC Port 5 {controller Port 6) command register ESF0h
3CC Port & (controller Port 6) data register E5F2h
SCC Port 4 (controller Port 5) command register EsF4h
S0C Port 4 (controller Port 5) data register E5F6h
SCC Port 7 {controller Port 8) command register ETF0h
SCC Port 7 {controller Port 8) data register E7F2h
500 Port 6 (controller Port 7) command register E7F4h
SCC Port 6 (controller Port 7) data register ETF&h
SCC Port 9 (controller Port 10) command register EaFoh
SCC Port 9 (controller Port 10) data register E9F2h
'8CC Port 8 (controller Port 9) command register E9F4h
SCC Port 8 (controller Port 9) data register E9F6h
SCC Port 11 {eontroller Port 12) command register EBFOh
S0C Port 11 (controller Port 12) data register EBF2h
4.2 Controller /0 Addreases

W G W W el s s

E "

[

L)
M

Canfiguration Control Register

Table 4-1. Internal /O Addresses {Continued)

Device /O Address
SCC Port 10 (controller Port 11) command register EBF4h
SCC Port 10 (controller Port 11) data register EBF6h
SCC Port 13 (controller Port 14) command register EDFOh
SO0 Port 13 (controller Port 14) data register EDFzh
SCC Port 12 (controller Port 13) command register EDF4h
SCC Port 12 (controller Port 13) data register EDFGh
Security GAL EETEhR
SCC Port 16 (controller Port 16) command register EFFOh
SCC Port 15 (controller Port 16) data register EFF2h
SCC Port 14 (controller Port 15) command register EFF4h
SCC Port 14 (controller Port 15) data register mm.w.,mw

Configuration Control register

4.3. Configuration Control Register

This 16-bit register is accessible at the E&mwumh o mm&mmm.mmmmr (Bee
Qubsection 4.3.4), It defines the configuration of the following
programmable functions:

e RS.232 and RS-422 synchronous support

* DTR source

¢ EPROM enable

Table 4-2 defines the register bits.

4.3.1.RS-232 and RS-422 Synchronous Support

tting the controller for RS-422 synchronous oa_uquEnmn_,am requires
m.,ﬂnEm & value of 1 to Bit D11 of the configuration control ﬂmmpmﬂﬂ
(The default value of 0 sets the register for RS-232 synchronous. aum
RS-232 synchronous mode, TxClk is always an input. In RS-422 mode,

Tx(Clk is always an output.

Controller IO Addresses

TR Souree

4.3.2.DTR Source

When Ports 1 or 2 are used in the full-duplex DMA mode, DTR modem
control is unavailable as an SCC output. Bits D1 and D5 provide two
choices for the DTR source for Ports 1 and 2. Clearing these bits to 0
allows the SCC Write Register to control DTR. Setting hits D1 or D5 to
1 allows bits D2 and D6 to control DTR for Ports 1 and 2.

Note: The default source is the SCC DTR output.

4.3.3. EPROM Enable

The 64K memory segment beginning at FO000h is reserved for EPROM.
With two megabytes of DRAM installed on the controller, the 84K of
DRAM at this location is not accessible. Disabling EPROM allows this
64K of DRAM to be accessed. Clearing bit D8 to 0 enables the EPROM,
this is the default state. Setting bit D8 to 1 disables the EPROM and
enables the DRAM from FO000h to FFFFFh.

Table 4-2. Configuration Control Register Bits

Register Value
Bits 0 1

Di& Reserved

D14 Reserved

M3 Heserved
D12 [Reserved

D11 |[RS-232 synchronous
D10 |Reserved

Dy Reserved

s EPROM enabled

R5-422 saynchronous

EFROM dizabled

o7 Reserved

D& Port 2 alternate DTR active
Da Port 2 DTR SCC source

D4 Reserved

D3 Heserved

D2 Port 1 alternate DTR active

m Port 1 DTR 5CC source

Reserved

Port 2 alternate DTR inactive
Port 2 alternate DTR source
Reserved

Reserved

Port 1 alternate DTR inactive

Port 1 DTR alternate DTR
SOuUrce

Reserved

Do Reserved

Note: Always use int 24k and int 250 to communicate with this
register. See Subsection 4.3.4 for guidelines for this register.

44 Controller IO Addreases

W0,
Nowowow W W W W

T;_T,_T

T. fﬂ’!
el RA LR L) i

I‘H.T.i.-.T

in

Confipuration Control Register Interrupts

4.3.4. Configuration Control Register Interrupts

The firmware contains two interrupts to read and write the
configuration control register. These interrupts are:
Interrupt | Function
int 24h | Control register read
int 26h |Control register write

Always read the configuration control register first with Int 24h, set or
clear the desired bits in the AX register, and then write the
configuration control register with Int 25h. Do not modify any reserved

bits.

4.3.4.1. Int 24h — Configuration Control Register
Read

This interrupt reads the configuration control register. The value
stored in the AX register is the value read from the configuration
control register.

This example sets up Port 1 to use alternate DTR:

int 24h : Read register
or AX, (H0Zh ; Set bit one
int 25h : Write value to register

4.3.4.2. Int 25h — Configuration Control Register
Write

This interrupt writes the configuration control register. The value
stored in the AX register is the value written to the configuration

control register.
The following example disables EPROM:

int 24h : Read register
or AX, 0100h ; Disable EPROM
int 25h; : Write value to register

Controller I'0 Addresaes

Int 26h — Configuration Control Register Write

46

Controller /0 Addresses

|
B =
E =
= s
e =
E- a
= =
=
E-
&= 3
E-
-
E- =
E- =
E- =
== =
= =
- =
= =
=

Section 5. Dual-Port Memory

5.1. Overview

As discussed in the previous section, writing to the control registers
sets the dual-port memory addresses in the system's addreas space.
The controller reserves a 16K, 32K, 84K, or 128K block of system
memory space, which begins at the base address set by control
registers #1 and #2,

System base addresses can range from 13MB to 16MB (D00000 to
FEDDDCh), and under 1MB (080000 to 0FC000h). Refer to Tables 3-6 and
3-8 for the possible memory addresses found above and below one
megabyte of memory.

5.2. Dual-Port Memory Map

Of the 128K of dual-port memory in a base configuration of the
controller, 125K is available for control programs. Expanding local
RAM does not change the basic mapping of dual-port memory (see
Table 5-1},

Table 5-1. Dual-Port Memory Map

B v | Mo T os| Description | Length
Base + CO0h 00C0O0h Unused 1F400h
Base + B8Oh 00B8Oh Firmwetetser) g
Base + 400h 00400k thﬂwwwwm 780h

Base® 4 0 00000k Wi | 400

* Base memory address using a 128K window.

The lower 400h bytes are reserved for the interrupt vector table. The
firmware uses 400h to B80h for miscellaneous work space.

The 80h bytes from 00B80h to 00C00h are called the firmware user
area. The firmware stores information about the controller in this area.
The rest of the unused memory is available for eontrol programs to use.

Dual-Port Memory 5-1

Dual-Port Memory Map Firmware User Area Map

Figure 5-1 illustrates a controller installed above the first megabyte at 5.3. Firmware User Area Map

the F00000 system base memory address.

The firmware user area, located at the B&0h controller memory
address, is 80h bytes long. As the firmware executes, the user area

mmmmmmm

=
y
o
\Eqﬁw i 5| : . ong. As th
m.ccn__un_ 4 fills with the information listed in Table 5-2,
)4 & = Table 5-2. Firmware User Area Map
100000 4 Unused ¥ i Offset Description | Length
ROM - 1 3
BIDS nteraction fla
H EDQ00 | FO0CO0 e T Ok 55AAh = Sugﬂmu active Shbytas
m Tghiiaiia Firmware || - Boot fla
Coooo | PR rooBsg| User Area = 5 2h 0000h = hard boot 2h bytes
=2 vid) ! FFFFh = soft boot
Buffers ﬂﬁﬁﬂmﬂd E
AGDOD ork opace . 01d confipuration map
F00400 Tite) 4h 0000h = not currently used 2h bytes
- #0000 | Vector TAb w\ 1 E 2 6h Firmware release number 8h bytes
RAM
: Open for control program release
& 00600 = = Eh Hotar 8h bytes
Figure 5-1. System View of the Controller’s Dual-Port RAM = = s i &k bytes
Figure 5-2 illustrates the arrangement of RAM on the controller. _m T 1Ah WMM@%WM%M Hﬁw_umwﬂmm normal mode, Z2h bytes
H " Firmware EPROM | FFFFF 2FFFFFT A & = 1Ch wnmﬂpwwwm _..._u%ﬂm.mmmm sxtoncedmode,: | on bytaa
FO000 7
_ m | lm 1Eh wnmhmp %E.n map, one bit set per port 4h bytes
w) 7= Identification number
34 TFFEF m = 22h | 50081048k = Hostess i 4h bytes
o n E = 26h Invalid interrupt field 4h bytes
3 | Firmware User Area | 00B80 7 . 2Ah Heartbeat counter 4h bytes
_ Firmware Workspace m _a e e
w v Internal Vector Table | poooo 100000 & R 2Eh Firmware utility command 1h byte
Normal Addressing Extended Addressing m.) 2Fh Firmware utility status 1h byte
Figure 5-2. Controller’s View of Its RAM - 30h Firmware utility message buffer 10h bytes
= 40h | Reserved for future use 40h bytes
= =
= o1
|
=
;|
5.2 Dual-Port Memaory Dual-Port Memory 5-3

!

Firmware User Area Map

The following list describes the information found in Table 5-2:

Oh Offset

The interaction flag equals 55A4Ah when the controller is
functioning properly.

Zh Offset

The boot flag equals 0000h when the system powers up. It changes
to FFFFh when the controller is reset by the software.

4h Offset

The two-byte old config map is not used, but space is allocated so
the firmware user area is compatible with the firmware user area
of other controllers,

6h Offset

The firmware release number is an ASCII string.

Eh Offset

Eight bytes are open for an ASCII string that identifies the control
program release.

1Ah Offset

The loeal RAM map, normal mode is a word (16 hits) that has one
bit set for every 64K block of memory found on the controller in the

normal address mode (Oh to FFFFFh range). This starts with the
lowest memory block in the low-order bit.

1Ch Offset

The local RAM map, extended mode i= 5 word (16 bits) that has one
bit set for every 512K block of memory found on the controller in the

extended address mode (100000h to 7FFFFFh range). This starts
with the 512K block at the 100000h address in the low-order bit.

1Eh Offset

The SCC port map is a double word (32 bits) that has one bit set for
each 5CC channel that passes the SCC internal diagnostic test (see
Table 5-3). This starts with the lowest memory block in the low
order bit. A value of FFFFh in this map indicates that 16 channels
passed,

Table 5-3. SCC Port Map

Bit Dﬂ..wwn MMH_W Channel | Port
0 0001 1 A 1
1 0002 1 B 2
2 0004 2 A 3
3 0008 | 2 | B | 4

Dual-Port Memory

TARANMAANANAN

mm m
WO W

Firmware User Area Map

Table 5-3. SCC Port Map

Bk | JEE mmum. Channel | Port
4 0010 3 A 5

5 0020 3 B 6

8 0040 4 A 7

7 0080 4 B 8
8 0100 5 A 9

9 0200 5 B 10
10 0400 6 A 11
11 0800 6 B 12
12 1000 | 7 A 13
13 | 2000 7 B 14
14 | 4000 & A 15
15 8000 8 B 16

22h Offset
The identification number for the Hostess i is 00081048h.

26h Offset

The invalid interrupt field marks any spurious interrupts that
come into the interrupt controller. The firmware recovers from
spurious interrupts, so the control program does not have to handle
it.

2Ah Offset

The heartheat counter is a simple counter. The default is 00000000,
For example, the sample program’s timerl_isr routine (on the
Developer’s Toolkit diskette) increments this counter to record
interrupts generated by the local processor’s timer.

2FEh Offset

The firmware utility command executes upon interrupt. The utility
commands are listed in Table 5-4, See Subsection 11.2 for details
on using the firmware utilities.

Dual-Port Memory 5-5

Firmware User Area Map

Table 5-4, Utility Commands

Action

Command
0ih

A null command that iz set for status and return,

Executes a control program at a vector in the
message buffer:

30h = segment

32h = offset

When complete, it sets the command status to
finizhed (status=01),

A copy command that uses the following messa
buffer parameters:) e

30h = source segment

32h = source offset

34h = destination segment
d6h = destination offset,
38h = count (two hytes)

|When complete, it sets the command status to
finighed (status=01)

01h (default)

02Zh

03h through

FFh _mnmaj..mm, currently uses a null command,

2Fh Offset

The firmware utility status holds the status of the firmware utility
command. The values include:

00h default (command processing)
- 01h (command processing finished)

02h through FFh (reserved)
30h Offset
The firmware utility message buffer is a message buffer for
commands. This buffer is initialized before the controller is

“.uﬂn.m_._.:ﬁwmn_. The controller can also return information in this
Br.

MW%_H H.MHWMM.EHM 40h bytes in the firmware user area are reserved for

G-

Dual-Port Memory

n.
L

LM mT R

=T

WWFE’EEEWw&:m‘wﬂwwwwwm

'!‘_.

el

Firmware User Area Map

The following C data type, from the FIRMUSER.H file, defines the
firmware data area:

typedef struct

unsigned i_flag;

unsigned boot_flag;
unsigned cfg_map;

char f'w_release[8];

char sw_release[8];
unsigned long dram_mapl;
unsigned long dram_map2;
unsigned long scc_map;
unsigned long board_id;
char ii_fag;

char ii_type;

unsigned ii_cnt;

unsigned long heartheat;
char emd;

char status;

char msg[16];

char reserved1[0x40];

| FIRMUSER_T;
Example 5-1. Defining the Firmware Data Area

/* processor interaction flag */

/* hoot/activity Hag */

/* configuration map */

/* firmware release number */

{* control program release number */
/* DRAM map */

/* DRAM map */

/* SCC map */

/* board 1D */

/* invalid interrupt flag */

/* invalid interrupt type */

#* invalid interrupt count */

/* heartbeat counter */

[* firmware utility command */

f® firmware utility status */

f* firmware utility message buffer */
/#* reserved for future use */

Dual-Port Memory

Firmware User Area Map m |_.n

Section 6. Extended Addressing
o Mode

= Most of the information in this section originated in the V-Series
m“ = UPDVO236 (Va3 ™) Lser's Manual from NEC (July 1988),

= = 6.1. Overview

m“ | The controller can have up to BMB of local RAM. The lower megabyte is
o accessed by the V53 microprocessor in its normal addressing mode.
'.n - The upper megabytes of RAM can be accessed only by using the
.- extended addressing mode.
- - Extended addressing involves expanding the 20-bit physical addresses
m._ m generated by the processor’'s Effective Address Generator (EAG) to
24-bit addresses. This is done by relocating the addresses.
| R Expanding an address uses the processor’s address conversion table
. {see Table 6-1). The V53 microprocessor allocates 64 page registers
=« = (PGR1to PGR64) to this table.
.._ Neote: Extended addressing mode can not be used for 110, DMA, or
= = refresh cveles.

-3 6.2 Relocating Addresses

ML.. = Relocating addresses involves executing certain instructions to switch
' the addressing mode. Relocation ocecurs in 16K bytes-per-page units.

MM. r Memory space can be expanded up to 16MB (64 pages). Extended

" addresses are managed in 16K units because the 14 low-order address
J hits remain unchanged.

= w Figure 6-1 displays what happens when memory is expanded.

16MB

S

FFFFFFh
1MB

FFFFFh
16K

0h
MNormal

Extended
Figure 6-1. Expanding Memory

!—TA-:-T—T—TJ—-TL—T
W oW W W W

BB Dual-Port Memory Extended Addressing Mode o1

Page Regiatera

Flowchart 6-1 shows the method used to expand the processor's
addresses by relocation.

14 1413 0
20-Bit Ph

1.6 high-order bits from the 20-bit
physical address are placed in an
address conversion table.

e

|
6 Bits

|
\\m. The V53 selects one of the 64 m_m.m.y Decoder
| 14

registers (PGR1 to PGRG4) to
translate the 6 bits to 10 high 7

Bits

order bits. (These bits are the 10

| biteofdate DOtoDS, written | | O7Eon)
_ by the IN instruction.) a
_ -
10 Bits
__\x 3. 10 bits are combined with the 14 F. il

_ bits remaining from the 20-bit 23
physical address. This creates a
‘. 24-bit extended address.

1413

/| 24Bit

Flowchart 6-1. Relocating Addresses

Note: When the extended address mode is not specified, the 20-bit
,u__aﬂ.,mmnnh address is output directly, and 0 (zero) is output to the
4 high-order bits (A20 to A23),

Although address expansion is transparent to executing code, the
hardware does see the extended address mode.

If you use this mode of addressing, there is a performance penalty.
Extended addressing requires one bus cycle to generate the extended
address. This results in a 10 to 20 percent decrease in performance, as
compared to a normal addressing mode.

6.2.1. Page Registers

Each of the 64 page registers are 16 bits wide. The page registers are
placed at the FFOOh to FF7Eh IO addresses. The OUT instruction
writes, and the IN instruction reads these 16-bit registers.

The effective bits of the page registers are the 10 low-order bits (D to
D0). The ineffective bits are the 6 high-order bits (D15 to D10). These 6
bits are seen as () (zero) during a read operation, and are ignored during
a write operation. These bits are unaffected by reset input.

Note: The page registers should not be accessed while in extended
address maode.

6-2 Extended Addressing Mods

Taanmm

m m
e 2 Y

TTTRAME

a—Ts—T#T%—

ST

T

e . |
WO oW W W W W W W W W W W W W W W o W Wl

At

Page Regiaters

Table 6-1 lists page registers and I/0 addresses, along with
corresponding bit values.

Table 6-1. Address Conversion Table

Bit Faig =
A19 | A18 | A17| Ale| A15| A14| Begister | Address
0| 0 0 0 0 0 PGR1 FFO0

0 0 0 0 0 1 PGR2 FFO2

0 0 0 0 1 0 PGR3 FF04 |
0 0 | © 0 1 1 PGR4 FF06
0 0 0 1 0 0 PGRS FFO8
0 | 0 0 1 | 0 1 PGRE FFOA
0 0 0 1 | 1 0 PGR7 FFOC
0 0 0 1 1 1 PGRS FFOE
0 0 1 0 0 0 PGRS FF10
0 0 1 1 0 1 PGR10 FF12
0 0 1 | o 1 0 PGRI1 | FFl4
0 0 1 0 1 1 PGR1Z | FFI6
0 0 1 1 0 0 PGR13 FF18
0 0 1 1 0 1 PGR14 FF1A
o | 0 | 1 | 1 | 1| 0o | PGRis FFIC
g 0 1 1 1 1 PGR16 FF1E
0 | 1 0 0 0 0 PGR17 FF20
0 1 0 0o | o 1 PGRI18 FF22
0 3 0 0 1 0 PGR19 FF24
0 1 0 0 1 1 PGR20 FF26
0 1 0 1 0 0 PGR21 FF28
0 1 0 1 0 1 PGR22 FF2A
0 1 0 1 1 0 PGR23 FF20
0 1] 1 1 1 PGR24 FF2E
0 | 1 | 1 | 0 | 0 | 0 | PGRES FF30

{Continued)
_
Extended Addressing Mode 53

Page Mn.._mu.mwm..m

Table 6-1. Address Conversion Table (Continued)

_

Bit Page vo
A19 | A18| A17| A18| A15| Ay4| Resister | Address

~o0 | 1 | 1] 0] 0] 1] Pors | rre:

0 | 1 1 | 0 | 1 | o | Pore FFa4

0 1 1 0 1 1 PGR28 FF36

8| F [r% | 1 0 | 0 | PGRog FF38

[} 1 1 1 0 1 PGR30 FF3A

0 | 1 1 1 | 1 | 0o | per: FF3C

0 | 1 1 1 1 | 1 | PGR32 FF3E

1 0 0 0 0 0 PGR33 FF4i1

1 0o | o | 0o | 0| 1 | PGRa FF42

1 4]] 0 1] PGE35 FF44

1 [o [0 | o | 1 1 | PGR36 FFA6

1 [o] o] 1] 0| o | roryw FF48

X | b | &8 [=] 0 1.9 PGRA8 FF4A

1 | 0o | o 1 1 | 0 | PcRsg FF4C

1 [o | 0| 1| 1] 1| PGRao FF4E

1 | o 1 | 0 | 0 | 0 | PGRa FF50

1 | 0o | 1] 0| o0 | 1 | rora FF52

1 [o | 1|0]| 1] o PGRA43 FF54

1| 6 | = | @ | £ | 1 PGRA4 FF56

1 | 0 1 1| 0 | o PGRA5 FFa8

1 0 1 1] 1 PGR4R FFEA

1| o 1 | 1 | 1 | 0 | PeRa FF50

1 | o | 1| 1| 1 | 1 | Poras FF5E

1 1 | 0o | 0o | o | o | poras FF60

t | £ |9 | a | @ | 3 PGR50 FF62

1 0 T - PGR51 FF64

(Continued)
-4 Extended Addressing Mode

il

T

m
i

—

M

" m

|

ﬂ..!_rﬂ__r!]_ _T 1 _T. T |
W oW W ow W W wow oW W oW ow W ow oW w

Initializing the Extended Addressing Mode

Table 6-1. Address Conversion Table (Continued)

Bit Page o

A19 | a18| a17| a16| Ais| a14| Register | Address
1 1 0 0 1 1 FF66
1 1 0 1 0 0 PGRS3 FF68
1 1 0 1 0 1 PGR54 FF6A
i 1 0 1 1 0 PGR55 FF6C
1 1 0 1 1 1 PGR56 FF6E
1 1 1 0 0 0 PGR5T FF70
1 1 1 0 0 1 PGR58 FF72
1 1 1 0 1 0 PGR59 FF74
1 1 1 0 1 1 PGRE0 FF76
1 1 1 1 0 0 PGRE1 FF78
1 1 1 1 0 1 PGR62 FF7A
1 1 1 1 1 0 PGR63 FF7C
1 1 1 1 1 1 PGR64 FF7E

6.3. Initializing the Extended Addressing Mode

The RESET signal sets the extended address mode flag to 0 (normal
address mode). The address conversion table is set to the following:

= Power-on (undefined)
= Normal reset (hold its state before reset)

A power-on (hard-boot), or a software reset from an IO_base+3 write,

generates the RESET signal.

Extended Addressing Mode

fi-5

Setting and Clearing the Extended Addressing Mode

6.4. Hmﬂmnmu.ﬁm and Clearing the Extended Addressing
ode

Before m__m_“zﬂm._uu elearing the extended address mode, determine its
status by reading the extended address mode register, This register is
located at FF80h, bit 0 (extended address mode flag).

Nete: The extended address mode flag can anly be read by an IN byte
type instriction,

The flag status includes:

* 0 (normal addressing mode)

* 1{extended addressing mode)

The RESET signal clears the flag to 0 (the normal address mode).

The extended address mode is set and clearad by the following
instructions:

® BREKXAn (sets the extended address mode)
Reads vector n and hranches to ISR (flag is set to 1)
* RETXAn (clears the extended address mode)
Reads vector n and branches to ISR (flag is cleared to 0)

Note: The BREXA and RETXA instructions execute from the branch
destination feteh evele.

The firmware defines interrupt vector 26h to use with both the BRKXA

and RETXA instructions. This ISR consists of one IRET instruction that

causes the V53 processor to execute the instruction that follows BREKXA

or RETXA.

Example 6-1 shows how to set and clear the extended addressing mode
for the V53 microprocessor.

6-6 Extended Addresaing Mode

W L

§ |
i
UVOWoWow oW owow owow ow oW W

: B

(194 {0

Setting and Clearing the Extended Addressing Mode

i This macro implements the V53 BREXA instruction, which puts the processor

iin extended addressing mode
brkxa MACRD
dw Oeldth ;opcode for BREXA instruction
db 26h 3 interrupt vector type thal BREXA uses for

3 return. Interrupt service routine
3 is in the firmware

ENDM
iThis macro implements the V53 RETXA instruction, which puts the processor
jin normal addressing mode
retxn MACRO
dw (M0 ; epeode for RETXA instruction
db 26h ; interrupt vector that RETXA uses for
i return. Interrupt serviee routine
4 is in the Armware
ENDM

i This code fragment shows how Lo enter and exit extended addressing mode,
;Page registers PGRY through PGR12 are used to translate addresses in the
srange 20000h - 2iTMTh to addresses in the range 200000h - 20{7fTh

PGRY equ 010k i pape register 9 address
EXT_ADDR equ 0080h ; page reg contents for absolute address 200000k
NORM_ADDRequ 2000h ; segment 1o reach PGRY-12 when in extended mode
mov x4
moy dx,PGRY ; start with PGRY
moy axEXT ADDR 3 hits 23-14 of extended address
ext_10:
out dx.ax ; bul to page register
inc ax : extended address
add dx2 ; mext page register
loop ext_10
moyY AxX,NORM_ADDR ;sct ES sepmenl Lo use PGRS-12
moy esax
pushf 3 5et up stack for simulated int return
push cs 3 sepment of address to return to
mov ax,offset ext 20 ; offset of address to return to
push ax
brkza 3 enable extended mode
ext_20:

iCode Lo access extended mode memory using segment in ES poes here
1Sets V33 back to normal mode when finished with extended mode

pushl’ i set up stack for simulated int return
push cs ; sepment of address to return to
mov ax.offsel ext_ 90 ; offset of address o return to
push ax
retxa 4 disable extended mode

ext_90:

Example 6-1. Extended Addressing Mode

Extended Addrossing Mode 6-7

Setting and Clearing the Extended Addressing Mode 'ﬂ .m

— -

g = >Section 7. Direct Memory Access

= Most of the information in this section originated in the V-Series
e = UPD70236 (V53™) User's Manual from NEC (July 1989).

| 7.1. DMA Channels

The V53 microprocessor has four direct memory access (DMA) channels
that transmit and receive data on Ports 1 and 2. Each channel either

transmits or receives data on one port only. This allows for full-duplex
DMA on Ports 1 and 2.

Table 7-1 lists the DMA channel port functions.
Table 7-1. DMA Channels
DMA Channel | Function
[¥] Transmit Port 1
1 Receive Port 1
2 Transmit Port 2
3 Receive Port2
The DMA controller can access all RAM installed on the controller below
I Mbyte. It cannot access extended addressed memory (see Section 6).
Note: Theinformation in this section is based on the WPD71071 mode.

For information that describes how the Serial Communication
Controller (SCC) handles DMA requests, refer to documentation for the
8530 8CC. However, disregard any reference to a potential problem
when using DMA with an NMOS SCC. Hardware on the controller
prevents the referenced condition from occurring.

Note: When the DTRIREQ pin is used for DMA operation, the SCC pin
cannat be used to provide the DTR modem control signal for the
selected port,

neErEmmmmm

AL MMM

7.2. DMA Addressing

The V53 microprocessor’s DMA control unit (DMAU) has 24 registers.
Once a particular channel's register is preset by the channel register
(DCHJ, then the DMAU channel registers can be accessed.

-8 Extended Addreasing Moda Direct Memory Access 71

oW oW oW W oW o oo W W W ow W W W

DMA Addressing

The following is a list of the DMAU registers.

Channel register (DCH)

Device control register (DDC)
Status register (DST)

Mask register (DMEK)

Base address register * (DBA)
Current address register * (DCA)

DMA Addressing

Table 7-2 lists the addresses that access the DMAU registers.

Table 7-2. DMAU Register Addresses (WPD71071 Mode)

* Base count register * (DBC)
* Current count register * (DCC)
* Mode control register * (DMD)

Note: * One for each of the four DMA channels.

To access the DMAU registers, set the following:

* System control register's (SCTL's) DMAM hit
Set to 0 for uPD71071 mode

* On-chip peripheral selection register's (OPSEL's) DS hit
Set to 1 to enable DMAU operation

* High-order address (A15 to A8)

* Low-order address (A7 to A4)

* Address signal hits (A3 to AD)

The high and low-order addresses should be set to a 906xh value, see
Table 7-2,

nEARREMAAMN

nm

-4l

m e
Y 41

m
L ikl o

rs

Direct Memory Acceas

b ooy o _ Bits !
m 23 i g [
2 |88a Register Operation
.m_ mm wmn A3 | A2 | A1 | A0
» -
H7S 3% | I
1 1] DICM Write
0 0 DCH ReadWrite
DEC/DCC _
] [Low-order Read/Write
byte)
DBR/DCC
0 (High-order | Read/Write
byte)
DEADCA
] (Low-order HeadWrite
byte)
_ DBA/DCA _
= 0 (High-order | Read/Write
2 &)
=4 s DEA/DCA
= S |o (Upper- Read/Write
b= = Lu
m m_ order byte)
=) Regerved
Do (Low- -
1 arder byts) HeadWrite
DDC (High- ;
1] 0 order byte) ReadWrite
1 ! 1 i DMD BeadWrite
i o 1 1 DST Read
1 1 [}] Reserved
1 1 0 1 Reserved
1 1 1 0 Heserved
7 - A 1 Ol B 1 DMK Head/Write

nETTMm™mmm

Note: The I0GA (Internal IO Address) value in the SCTL register does

not affect registers set for pyPD71071 mode.

——

L

Direct Memory Accosa 73

W wwwwmwwn oW w wwme wwwowewoew e o

4

DIIMA Addressing

DICM (Initialize Command Register)

As shown in the previous table, A3 to A0 selects the mode commands

that Hmm.m or write DMAU re
instructions for the addres

gisters. These commands are issued by /0
ses set at the system /O area.

Table 7-3 displays the addresses (A3 to A0) that aceess the UPD71071

mode commands.

Table 7-3. Accessing pPD71071 Mode Commands

Address | Command Operation

Oh Initialize (DICM} * Write

ik Channel register (DCH) * Read

Channel register (DCH) * Write
Count register (DBC/DOC) :
2h Low-order hyte Read/Write
Count register (DBC/DOC) :
3h High-order hyte Read/Write
Address register (DBA/DCA) .
4h Low-order byte Read/Write
Address register (DBA/DCA) :
5h High-order byte Read/Write
Address register (DBA/DCA) :
6h Upper-order byte * Read/Write

Th Reserved

Device control register ;
£ (DDC) Low-order byte Read/Write
Device control register .

h (DDC) High-order byte Read/Write
0AhR Mode control register (DMD) | * Read/Write
0Bh Status register (DST) * Read

(Ch-0Eh | Reserved
0Fh | Mask register (DMK) | * Read/Write

* Carried out by the byte IN/OUT instructions.

Note: Only the address and operation combinations listed in thie
table are permitted; all others are prohibited,

The following subsections deseribe the DMAU

mode commands).

registers (WPDTI1071

Direct Memory Access

7.2.1. DICM (Initialize Command Register)

The hardware and software initializes the DMAU with the DMA
initialize command register’s (DICM’s) RESET signal.

Using the byte OUT instruction for address Oh, the 0 bit (RES bit) is
either cleared or initialized with the following values:

®* 0 - cleared (no operation)
* 1 -initialized (set)
Byte

1 0
| [mes| our

bnmhmmmqmmawm

on [[T [T 7

0 = No operation
1 =DMAU reset

Figure 7-1. DICM Register
At the end of initialization, the RES bit is automatically cleared.
Table 7-4 displays the changes that occur to the DMAU registers when
they are initialized.

Table 7-4. DMAU Register Initialization Changes

Register Name _ Changes
Address register No change
Count register No change

(CHO selection)

TE543 210

Channel register

Mode control register All bits clear
Device control register All bits clear
Status register All bits clear
. . All bits set (all channels
Mask register | masked)

Direct Memory Access 7-6

DCH (Channel Rogistar)

7.2.2. DCH (Channel Register)

The DMA channel register (DCH) responds to both read and write
operations. Set this register for a particular channel hefore setting the
address, count, and mode control registers for that channel. The
format for the DCH register differs for read and write operations.

7.2.2.1. DCH Read

The DCH read command is performed by a hyte IN instruction at the
1h address, using 5 of the 8 bits.

Figure 7-2 shows the four SEL bits (SELO to SEL3) that digplay the
current channel,

Address Byte
T G 5 4 a3 2 1]
th [[| [BasHsELs|sErgsELSELY IN
Y]
Z //,,, |
0 = Read (Current only) 3

Write (Base & Current) 0001 = Channel 0

1 = Read/Write (Base only) Mﬁw 3, mww.-hw”“m

1000 = Channel 3

Figure 7-2. DCH Register (Read)
A BASE bit (bit 4) shows the current read/write access conditions for
both the count and address registers (register access mode),
When the BASE bit is equal to 1 (set), the base registers (DBC and DBA)
have both read and write access. When this bit is equal to 0 (cleared),
the current registers (DCC and DCA) have read access, and the base and
current registers (DBC/DCC and DBA/DCA) have write aceess,

7.2.2.2, DCH Write

The DCH write command is performed by a byte OUT instruction at
the 1h address, using 3 of the 8 bits.

Figure 7-3 shows the two SELCH bits (bits 0 and 1) that select one of
the four DMA channels for CPU programming.

7-6 Direct Memaory Accoss

E- =
B =
= =
B =
-
B =
B
B =
=
B
E o=
==
B
= =
oo
e
= =
- =
B

W W

LALLM
N

=
i

DBC/DCC (Base/Current Count Register)

Addre B
o 8 5 4 i e

7 3 2
[] _ _ _ [BASE| SELCH | OUT

=

0 = Read (Current only) 00 = Channel 0
Write (Bose & Current) 01 = Channel 1

1 = Read/Write (Bage only) 10 = Channel 2
11 = Channel

Figure 7-3. DCH Register (Write)
The BASE bit (bit 2) specifies the read/write access conditions for both
the count and address registers (register access mode).
When the BASE bit is equal to 1 (set), the base registers (DBC and DBA)
have both read and write access. When this bit 15 equal to 0 (cleared),
the current registers (DCC and DCA) have read access, and the base and
current registers (DBC/DCC and DBA/DCA) have write access,

7.2.3. DBC/DCC (Base/Current Count Register)

The DBC/DCC count register consists of the following 16-bit registers
for each of the four DMA channels:

* DBC (DMA base count register)
®* DCC{DMA current count register)

The DBC and the DCC both have the following addresses:

* 2h (low-order byte)

* 3h (high-order byte)

The DCH (DMA channel register) selects the read/write access
conditions for the DBC and DCC.

The DBC holds a count value until a new count is set, This value
transfers to the DCC during autoinitialization when a terminal count
or END condition occurs.

Figure 7-4 shows the DBC/DCC format.

Address Byte
Zh |C7|ce| csl c4| s3] cz] c1fco| mvour
7 0
8h |C15C14|c13c12{c1iC10] co] c8 | moUT
7 0

Figure 7-4. DBC/DCC Read/Write Command Register
Note: The word IN/OUT instruction reads or writes this register.

Direet Memeory Accens T-7

DEA/DCA (Base/Current Address Register)

7.2.4. DBA/DCA (Base/Current Address Register)

The DBA/DCA address register consists of the followin g 24-hit registers
for each of the four DMA channels:

* DBA (DMA base address register)
* DCA (DMA current address register)

The DBA and the DCA both have the following addresses:

* 4h (low-order byte)

* 5h (middle-order byte)

* 6h (high-order byte)

The DCH (DMA channel register) selects the read/write access
conditions for the DBA and DCA.

The DBA holds an address value until a new address is set. This value
transfers to the DCA register during autoinitialization.

During each DMA transfer, the DCA is updated by the following values:
* 2 (during word transfers)

* 1 (during byte transfers)

Figure 7-5 shows the DBA/DCA format.

Address Byte
dh [A7]A6] As[A4] As[A2] A1]A0 | IvOUT
T 0
5h |A15/A14] A1dA12] A1/ A10] A9 AR | INOUT
T 0

6h |A23/A22]A21] Azd]A19]A18[A17]A16 INOUT
7 0

Figure 7-5. DBA/DCA Read/Write Command Format

Note: Either the word or byte IN/OUT instructions read and write the
?E,‘uﬂnﬂm___. and high-order bytes (addresses 4h and 5h) of this
register,

Only the byte IN/OUT instruction reads and writes the
upper-order byte (address 6h) of this register.

The DBA/DCA address register defines the physical memory address.

This register does not use the extended addressing mode that {s
described in a previous section.

7-8 Direct Momory Access

DDC {Device Control Regiater}

7.2.5. DDC (Device Control Register)

The DMA device control register (DDC) programs the DMA operations
for all channels. It is a 16-bit register located at 8h and 8h, and it is
accessed by word IN/OUT instructions.

Figure 7-6 shows the bits used at 8h and 9h.
idees o 3 & 4 B

o [o [mor|
-

2 1
pow__|
4 R
2 N\

0 = Fixed Channel Priority ‘ 0 = Enable DMA Operation

Word

_ N/OUT

0

1 = Rotating Channel Priority | | 1 = Disable DMA Operation
Address - & 5 4 a 5 1 0 Word
9h | _ _ __ _ | | WEV [BHLD| INOUT
—
o
S

0 = Disable Wait at Verify
1 = Enable Wait at Verify

Figure 7-6. DDC Register

The following list describes the bits located at 8h:
* DDMA (bit 2)

This bit enables or disables the DMAU. Setting the DDMA bit

temporarily stops DMA operation. When DOMA is set to:

- D, the DMA is enabled, and operation resumes in the same state
before it was disabled.

- 1, the DMA is disabled.

= ROT (bit 4)

This bit selects the channel priority. When ROT is set to:

- 0, afixed priority is set. With a fixed priority, Channel 0 always
has the highest priority, and channel 3 always has the lowest
priority.

- L arotating priority is set. With a rotating priority, the channel
last served becomes the lowest priority. This insures service to
the low-priority channels, as well as to the high-priority
channels,

Direct Memory Access 79

E =
E =
E =
E =
E =
& =
E =
E =
E o=
E o=
B =
o
E =
E s
E s
e oH
E- =
o
E =
B =
B a3
mk_.uw

DM} {Mode Control Register)

* EXW (bit 5)
This bit sets the write timing, and is always set to 0 (normal
timing).

The following list describes the bits located at 9h:

* BHLD (bit 0)
The BHLD bit sets the DMA transfer bus mode, and is always set to
0 (bus release mode).

In the bus release mode, the right to use the bus returns to the CPU
at the end of each service, When multiple DMA requests ocour
simultaneously, another bus cycle can intervene between these
requests; the response to DMA requests is slow.

* WEV(bit 1)
The WEV bit enables and disables wait state insertion by the
external READY signal and programmable wait-at-verify transfer.
This bit is set to 1 (enable wait at verify),

7.2.6. DMD (Mode Control Register)

The DMA mode control register (DMD) sets the operation mode for
each channel. It is located at 0Ah and is accessed by byte IN/OUT
instructions,

The DMD register uses the following 7 bits of this 8 bit register:

Addr
9 6 5 4 3 2 1 p D
0Ah | TMODE [ADIR[AUTI] TDIR | | WB | miouT
_ _ _
. _ _
00 = Demand Mode 0 = Byte Transfer
01 = Bingle Mode 1=Do Not Use |
10 = Block Mode
11 = Do Not Use
|
0 = Address Increment 00 = Do Not Lise
1 = Address Decrement 01 =10 to Memory
10 = Memory to /0
0 = Disable Auto Initialize |

_ ﬁuﬁczaﬁd_a
\ 1 = Enable Auto Hum&h._.mulml_

Figure 7-7. DMD Register

7-10 Direct Memory Access

DMD (Mode Control Register)

TMODE (bits 6 and 7)

These bits select the transfer direction for each channel, activating

an appropriate control signal. This occurs during memory-to-I/0

transfer.

These bits should always be set to single mode (01), where a

channel transfers a single byte or word and then the DMAU enters

an idle state,

ADIR (bit 5)

This bit specifies the direction of the current address register

update. When ADIR is set to:

- 0, the address increments by 1.

- 1, the address decrements by 1.

AUTI (bit 4)

This bit disables (0) or enables (1} the autoinitialization function,

The autoinitialization function automatically initializes the

address and count registers when a terminal count (%) or END is

generated,

In this situation, the following occurs:

- The contents of the base address register transfer to the
current address register,

- The contents of the base count register transfer to the current
count register.

- The applicable bit of the mask register clears.

TDIR (bits 2 and 3)

These bits specify the direction of the memory and I'O transfer.

When TDIR is set to:

- 00, a verify occurs (a transfer does not take place-do not use).

- ﬁm:., a wrile oceurs from IO to memory (use for Channels 1 and
)

- 10, aread occurs from memory to IO (use for Channels 0 and 2).

- 11 a transfer is not allowed (do not use).

W/B (bit 0)

This bit specifies a byte or word transfer. When W/B is set to:

- D, a byte is transferred.

- L aword is transferred (do not use).

During byte transfers, address registers are updated by +/-1 and

count registers are updated by -1.

Direct Momory Accoss

-1
—

DST (Status Register)

7.2.7. DST (Status Register)

The DMA status register (DST) holds the status information for each
channel. The byte IN instruction reads this & bit register, located at
OBh (see Figure 7-8).

At B
¢ & 5 4 3 3 1 o DByte

0Bh | RQ3| RQz| mﬁ_ RQo| TC3 | TC2 [TC1 _.unn | IN

&
0 = No DMA Request
1 =DMA Request (Pending) “

=n2nﬂﬂmﬂﬂwnn._am
1 =END or TC Generated

Figure 7-8. DST Register
DST contains the following bits:
* TCO-TC3 (hits 0-3)
These bits determine if termination has oceurred, If TCh is set to-
- 0, the service has not ended (for each read).
- 1, service has ended with a terminal count (TC) or an BN,
* RQO-RQ3 (hits 4-7)
These bits determine if a DMA service request exists. If RQr is set
to:
0, an active DMA service request does not exist.
1, an active DMA service request exists.

7.2.8. DMK (Mask Register)

The DMA mask register (DMK) disables or enables masking for DMA
channels. The byte IN/OUT instruction accesses this 8 bit register,
located at 0Fh (see Figure 7-9),

Address . a 5 i q o 3 a Byte
EQE I ET R
|
N

0 = Do Not Mask DMARQ
1 = Mask DMARG

Figure 7-9. DMK Register

Y I —

T-12 Direct Memory Acceas

mom o m
W W W

0L

Al 31 4L M) B} M} L

m m ! f!’ll_f_l'.

R R

m
=

LT

T

i
W WO W W W W Wl Wl W W

4

iy

DMK (Mask Register)

When DME (M0-M3) is set to:

* {, the channel is not masked.

= 1 the channel is masked.

The mask bit is not set for a channel that was autoinitialized.

Direct Memory Access

DME (Mask Register)

T-14

Direct Memory Access

| ™

i)

:;r!l__xj

mom m m
oW W oW W oW W oW W oW W oW ow W w

DT

m
Ll

TMTJ-—T—T—T_T

WO oW oW oW W W W W

Section 8. Interrupts

8.1. Interrupting the System Processor

The controller uses IRQs 3-5, 9-12, or 15. A system write to control
register #4 sets the IRQ that the controller uses to interrupt the
system processor,

The control program interrupts the system processor on the IRQ line by
writing 0008h to the EF60h /O address. After a two-microsecond delay,
clear the interrupt by writing 0000h to EF60h. (The delay is executed
with three consecutive jmp short $+2 statements.)

Example 8-1 sets and clears an interrupt to the system processor.

moy dx,ef60h ; dx = interrupt address
mov ax,0008h ; ax = value to set interrupt low
out dx.ax ; set the interrupt
jmp short $+2 ; delay
jmp short $+2 : delay
jmp short $+2 ; delay
mov ax,0000h ; ax = value to clear interrupt high
out dx.ax ; clear the interrupt
Example B-1. Setting and Clearing a System Processor
Interrupt

Multiple controllers can share the same IRG line. To share an IRQ, the
Interrupt Service Routine (ISR) on the system computer must include
code that identifies the controller generating the interrupt.

8.2. Interrupting the Controller

Writing to the /O base+2 address causes the system processor to
interrupt the controller on the V53 microprocessor's interrupt line 3:

outp((x218+2,0); * write anything to io_base+2 */
This generates an interrupt vector type 33h.

Interrupts T A

LV

Internal Interrupt Service Routine

The control program’s ISR must clear the interrupt after processing it.
The interrupt is cleared by writing 20h to the interrupt control re plater
at address 3070h:

moy dx, 0907 0h i dx = interrupt control register
maoy al,20h 5 al = 20h to clear the interrupt
out dx,al : clear the interrupt

iret ; return from interrupt

Example 8-2. Clearing a Controller Interrupt
Note: The firmware uses this interrupt to invoke the firmware utility
commands. The control program must change the 33h interrupt
vector table entry to the system ISR vector before using this
interrupt.

8.3. Internal Interrupt Service Routine

M

m m

The control program must have interrupt service routines (ISRs) for
all interrupts it uses. The interrupt vector table stores the address of
the ISR, so when the interrupt comes in, execution immediately jumps
to the correct ISR,

The ISR processes and clears the interrupt, and executes the iret
instruetion to return from the interrupt. The processing of the

En,mﬂﬁﬁﬂm mwm&.mn &nﬁ_mnnﬁﬂu&wﬂam.me.ﬂnnHmmH?f:EwEﬁ_y
write 20h to the interrupt control register at address 9070h.

.H_n. not disable or enable other mugﬁaﬁ%pm with the cli and sti
instructions while in an ISR, as it would let another interrupt come in
before the current interrupt clears.

Example 8-3 shows a sample timer 1SR,
timer_isr proc

push ax : save registers
push dx

i do internal processing

moy dx,09070h ; dx = interrupt control register

mov al,20h ; al = value to clear interrupt

out dx.al ; clear the interrupt

pop dx ; restore registers

pop ax

iret ; return from the interrupt routine

timer_isr endp
Example B-3. Timer ISR

82 Interrupta

b al B

— %t :‘l

i

—_—

mmmmm

!

WO oW W W W W W W W W W W R

— W Rl

i

N
.

mmmnmmemm

T

YW
W W W

LI

Interrupt Vectors

8.4. Interrupt Vectors

Each interrupt has a vector type number. The address of the ISR
requires four bytes and is placed in the interrupt vector table at
vector_type * 4. The two-byte offset address is the first to be stored in
the interrupt vector table, followed by the two-byte segment address.

muﬂ.ﬁﬁmm 8-4 stores the system ISR address in the interrupt vector
table,

Xor axax } 7ETO ax

mov e5,8x ; segment of vector table =10
mov bx33h*4 ; get vector table location
moy ax,offset system_isr ; offset of isr

mov es:[bx],ax ; store in vector table

movy axcs : segment of isr routine

mov es:[bx42]ax : store in vector table
Example B-4. Storing the System ISR Address

Table 8-1 lists the interrupts the controller can use, along with the
interrupt vector types.

Table 8-1. Interrupt Vectors

TN 1

55 5% Zf3 T

Interrupt Uz TR T BE ..W & m

So s o nm %M rM H

£ 2 s | Z9d

NMI 2h fh No HW

DEBUGGER 20h | 80h No SW

RAM_QUERY 21h | 84h No SW
DEBUG_PORT 22h | 88h No sW

CONFIG_QUERY 23h | 8Ch No SW

CONTROL REGISTER, READ 24h | 90h Na G

CONTROL REGISTER WRITE 25h | 94h No cdid

ENTER/EXIT_EXTENDED MODE | 26h | 98h | Yes SW

TURBO_DEBUGGER REMOTE 27h | 8Ch No SW

1Gﬁnﬁnumm in cascade mode, so if does not use this vector table entry.
*% Cenerated by the system to the controller.

Interrupts B3

Interrupt Vectors

Table 8-1. Interrupt Vectors (Continued)

| g
1=
v 2 o o
= P — =
«3 | +3 (383 | B3
- - L g
Interrupt oz] = = B 4 M B
T a U_.m =]
= V.M CH =] S5
8| = = | m9d
& =
DMA termingl count 30k Cih Yes HwW
8530 bank 1 | 3in | No HW
8530 hank 2 32h * Nao HW
SYSTEM** (I/O + 2 write) 33h CCh Yes HW
 TIMER 0 34h Dok Yen W
TIMER 1 aah Db Yes HW
TIMER 2 36h D8h Yes HW
IRGQ7T (Catches invalid :
interrupts) a7h DCh No HW
SCC_hase | 80h 200h | Yes HWw

* .
Operates in cascade mode, so it does not use this vector table eniry,
** Generated by the system to the controller.

The firmware sets up eighteen interrupt vectors, eleven of which
should not be changed and seven that can be modified by the control
program.,

The following list describes each of the interrupts listed in Table 8-1:

NMI interrupt (Non-Maskable Interrupt, type 2h)

This external interrupt occurs only on a controller that is set up for
development, which has reset and debug switches. The debug
switch triggers an NMI, which invokes the debugger.

DEBUGGER interrupt (tvpe 20h)

This software interrupt invokes the firmware debugger,
RAM_QUERY interrupt (type 21h)

This software interrupt returns the first segment that is open for
control program use in the AX register. It can be used to determine
where to load the control program.

DEBUG_PORT interrupt (type 22h)

This software interrupt changes the firmware's debugging port
(the first serial port) to the one specified in the AL register,

Bed

Interrupts

-.ml_ m .gj.
W &

mmm
W OW W

—T—T Y

il_l

——

mowomom

mm!

Ta—r!;_ 3!

LLELTET |
\ Y W OW W W W W W W W W W W W W

Interrupt ﬂmn.g_w.m

CONFIG_QUERY interrupt (type 23h)

This software interrupt returns information in the firmware data

area about the number of ports and amount of dual-ported RAM on

the controller. It is dependent on the AL register’s on entry value:

- Ifthe AL register = 0 on entry, the old config map is returned in
the AX register.

- If the AL register = 1 on entry, the dual-ported RAM map 8
returned, The low word is in the AX register, and the high word
iz in the BX register,

- Ifthe AL register = 2 on entry, the 5CC port map is returned.
The low word is in the AX register, and the high word is in the

BX register.
CONFIGURATION_CONTROL_REGISTER_READ interrupt (type 24h)
This software interrupt reads the configuration control register
value and stores it in the AX register.
CONFIGURATION_CONTROL_REGISTER_WRITE interrupt (type
25h)

This software interrupt writes the value specified in the AX register
to the configuration control register.
ENTER/EXIT_EXTENDED_MODE interrupt (type 26h)

This interrupt is used to set the V53 into or out of extended
addressing mode.

TURBO_DEBUGGER_REMOTE interrupt (type 27h)

This interrupt is used to invoke the remote Borland Turbo
Debugger kernel on the controller.

DMA terminal eount interrupt (type 30h)

This interrupt is used by the DMA controller to indicate that the
DMA transfer is complete.

8530 interrupt (type 31h and type 32h)

These interrupts are cascaded from the SCC interrupt. They should
not be used or modified. They do not use the controller's vector
table entries. For more information on SCC interrupt types, see
Subsection 8.6,

SYSTEM interrupt (type 33h)

This interrupt is generated when the system processor writes to
the I/0 base+2 address to interrupt the controller. This vector
should be replaced with the control program's vector to process
system interrupts.

TIMER 0 interrupt (type 34h)

This interrupt is generated by timer 0. This vector should be
replaced with the control program’s vector if the control program
uses timer (0.

Interrupta 8-5

5_.

Interrupt Mask Begister (IMR)

* TIMER 1 interrupt (type 35h)
This interrupt is generated by timer 1. This vector should be
replaced with the control program’s vector if the control program
uses timer 1.

* TIMER 2 interrupt (type 36h)
This interrupt is generated by timer 2. This vector should be

replaced with the control program's vector if the control program
uses timer 2,

* IRQ7 interrupt (type 37h)
This interrupt collects all invalid interrupts.

® S5CC_base interrupt
These interrupts are placed every eight bytes (for every two type
numbers) in the interrupt vector table, beginning with type 80h,

The control program must initialize the SCC interrupts, because
the firmware does not initialize them.

8.5. Interrupt Mask Register (IMR)

The V53 has an interrupt mask register (IMR), located at 8071h, that
1s functionally equivalent to the Intel 8259 mask register. Use this
register to individually mask a hardware interrupt request:

® 0 resets the interrupt channel,
® 1sets the mask for an interrupt channel (INTO through INTT).,

If you mask an interrupt channel, it does not affect the operation of
other channels.

Table 8-2 lists hardware interrupts and the corresponding IMR bits.
Table 8-2. Hardware Interrupt IMR Bits

Hardware Interrupt _ IMR Bit
DMA terminal count INTO
8530 bank 1 INT1
8530 bank 2 INT2
SYSTEM (I/'O + 2 write) INT3
TIMER 0 INT4
TIMER 1 INTH
TIMER 2 INTS
M.MMMn:mm invalid interrupts) LY
A6 Interrupts

SCC Interrupt Vector Types

8.6. SCC Interrupt Vector Types

Each Serial Communications Controller (SCC) port generates the
following four types of interrupts, which are daisy-chained:

* Transmit buffer empty

* Receive character available
* Receive special condition

* HExternal/status change

In write register 9 of the 5CC, set Vis=1, NV=0, and STATUS_HIGH/
STATUS_LOW=0. When the processor requests an interrupt vector, the
SCC places the interrupt vector specified in Write Register 2 on the bus.
This vector is modified to contain status information in Bits 1, 2, and 3
that shows the type of interrupt generated.

Table 8-3 displays SCC interrupt vector binary values,
Table B-3. S8CC Interrupt Vector Binary Values

Interrupt
Interrupt Type Vector
| (Binary)
Even Numbered Ports
Transmit Buffer Empty | xoox0000
External/Status Change xxxx0010
Receive Character Available | xoo0100
 Special Receive Condition 000110
~ 0Odd Numbered Ports
Transmit Buffer Empty oo 1000
External/Status Change xxxx 1010
Receive Character Available w00 1100
Special Receive Condition xxxx1110

The SCC interrupt vectors are placed at eight-byte increments in the
interrupt vector table.

Interrupta 8.7

SCC Interrupt Vector Types

Use the following steps to find the interrupt vector table location for a
receive character available interrupt on Port 5:

1. Combine the base vector's binary value with the interrupt vector's
binary value to arrive at the modified vector's value:

AOh (Base Vector) = 10100000(binary value)

wxxx110(interrupt veetor’s binary value
for the receive character
available interrupt on an odd

numbered port)
Modified Vector's
Binary Value 10101100= 0ACh (modified vector)
2. Multiply the modified vector by 4 to find the interrupt vector table
location.

0ACHh * 4 = 2B0h (interrupt vector
table location)

Table 8-4 lists the available interrupt vector table locations.

Fr o] =
sk | By | 338 | 3% | 322
Port mﬂm B B ﬂﬂm mmm m.m

sge | g2E | A& | B5F | agE

E | A Rt o

1 80h 220h 228h 230h 238h

2 80h 200h 208h 210h 218h
3 90h 260h 268h 270h 278h
4 90h 240h 248h 350h 258h
5 AOh ZA0h 2A8h 2B0h 2B8h
6 Alh 280h 288h 290h 208h
7 BoOh 2E0h 2E8h 2F0h 2F8h
= 8 BOh 2C0h 2C8h 2D0h 2D8h
9 Coh | B320h 328h 330h 338h
10 Coh 300k 308k 310h 318h
11 DOh 360h 368h 370h 378h
12 D0h 340h 348h 350h | 358h
13 E0Oh 3A0h | 3ABh 3B0h 3BEh
14 Elth 380h 388h 390h 398h
15 FOh 3E0h 3ESh 3F0h 3F8h
16 Foh 3C0h 3C8h 8D0h | 3Déh

B-B Interrupts

E-d

Imitializing SCC Interrupt Vectora

8.7. Initializing SCC Interrupt Vectors

The following sample, from the CPC.C sample file, initializes SCC
interrupt vectors. Bach vector requires 4 bytes, and every second
vector is not used,

The S8CC modifies Bits 3, 2, and 1 of the base vector type, but does not
modify Bit 0. The unused vectors are already initialized to point to an
invalid interrupt ISR by the firmware, so they are not altered.

void vector_init{void)

{

/* Table of SCC interrupt vectors */

static void interrupt far (*vectors|[NUMLINES][4])() =

{

{line01_TBE, line01_ESC, line01_RCA, line01_SRC},
{line00_TBE, lineD0_ESC, line0_RCA, line00_SRC},
{line03_TBE, line03_ESC, line03_RCA, line03_SRC},
{line02_TBE, line02_ESC, line02_RCA, line02_SRC},
{line05_TBE, line05_ESC, line05_RCA, line0)5_SRC},
{line04_TBE, lined4_ESC, line04_RCA, linedd_SRC]),
{line07_TBE, line07_ESC, line07_RCA, lineli7_SRC]},

#if defined HOSTESS186 || SMARTH

{line6_TBE, line06_ESC, linels_RCA, linel6_SRC}

#else if defined HOSTESSI

{lineD6_TBE, lineD6_ESC, line06_RCA, line06_SRC],
{linel®_TBE, linel¥_ESC, lineld_RCA, lined? SRC],
{line08_TBE, line08_ESC, line08_RCA, line08_SRC]).
{linell_TBE, linell_ESC, linell_RCA, linell_SRC},

{linel(_TBE, linel0_ESC, linel0_RCA, linel0_SRC},
{linel3_TBE, linel3_ESC, linel3_RCa, linel3_SRC},
{line12_TBE, line12_ESC, linel2_RCA, line12_SRC},
{linel5_TRE, linel5_ESC, linel5_RCA, lincl5_SRC),
{linel4_TBE, lineld_ESC, lincld_RCA, lineld_SRC}

#endif

L

int linenums; /* line number */

int i3

int vector_type; ™ interrupt vector type number */
set_vector(SYS_TYPE,system_isr)y™ initialize system ISR vector */

f* Initialize the vector table entries for each SCC */

vector_type = SCCBASE_TYPE;/* type for Ist SCC */
for(linenum = Bilinenum < NUMLINES;linenum++) /* for each line */

{

}
)

for(i = 0;i < 4;i++)/ there are 4 vectors for each line */
{
set_vector{vector_type,vectors[linenum][i]);
vector_type 4= 2;/* skip unused vector */

}

Interrupts 8-9

Initializing SCC Interrapt Vectors

B-10

Interrupts

Trnmmmem

W oW oW oW W W W W oW

.
W

Section 9. Timers

Most of the information in this section originated in the V-Series
WPD70236 (V53™) User’s Manual from NEC (July 1989).

9.1. TCU Operation Procedure

After the power is turned on, the state of the timer control unit (TCU)
is defined by the firmware. The TCU consists of three sets of 16-hit
timer/counters (TCT2-TCTO), which are initialized by the timer mode
register (TMD) and by the timer clock selection register (TCKS).

The timer mode register (TMD), which selects the operating mode for
each timer/counter, by default is set to the following:

* Count = binary count
* Count mode = mode 2
* Head/write mode = write lower byte then write high byte
The TMD also issues latch commands for the timerfcounters,

The timer clock selection register (TCKS), which selects the clock source
for the timer/counters, by default is set to the following:

s (Clock input = internal clock

* Divisar = 32

See the TMD (Subsection 9.2.1) and TCKS (Subsection 9.2.2)
descriptions for more details on these settings.

9.2. TCU Registers

TCU read/write operations and command issuing are performed by /0
instructions, Table 9-1 lists the TCU registerfcommand addresses,

Table 9-1. TCU Register/Command Addresses

Address %ﬂﬁ”ﬂwﬂlﬂ _ Operation
9074h CTO Fend rnite
9075h e Resd/ Y
9076h DA Reng W
Timers 9-1

ﬂ-._.

TMD (Timer Mode Register)

Table 9-1. TCU Register/Command Addresses

Register/ :
Address C c%mw_ﬂ. d Operation
9077h TMD Write
FFFOh TOKS Read/Write

Writing to the timer mode register (TMD) issues a Count Latch, or
Multiple Latch command (see Subsection 9.2.1). This sets the operation
maode (binary/BCD count mode, count mode, and read/write mode) and
latches the counter value of each counter in the TCU.

The timer/counter registers (TCT2-TCT0) write the number of counts to
each timer/counter and read the count data from each timer/counter.
Usually, a Count Latch or Multiple Latch command is issued, and the
count data is latehed before being read.

The timer status registers (TST2-TST0) read the counter status, The
status information 15 read after the counter status is latched by a
Multiple Latch command,

When both the status and count data for one counter are latched, the
Man read obtains the status, and the following read obtains the count
.

9.2.1. TMD (Timer Mode Register)

The TMD write register selects the operating mode, the Count Latch
command, and the Multiple Latch command for each timer/counter. To
initialize a timer/counter, write the mode word to TMD and set the
maode for each counter,

Figure 9-1 shows the bits for the TMD register.

...q f 5 4 3 2 1]
[s | ®mwmM | cmopE [BD |
_
00 = TCTO 7 0= Bi naﬂ.ﬂL
01 = TCT1 1 =BCD Count
10 =TCT2
11 = Multiple Latch -
Command 000 = Mode 0
001 = Mode 1
_ .u__,m . ﬁnﬁ 2
- ‘x11 = Mode 3
10 = High-Order Byte 1 st
11 = Low-Order Byte Followed
By the High-Order Byte
Figure 8-1. TMD Register
9-2 Timers

L}

mmmmm

m
WG W W R E R R E R R E E) @

mmEmMmm”MmmmMmmmMm

|

\&a

5]

=

IR

TCKS (Timer Clock Selection Rogister)

Note: Under CMODE, the x is arbitrary,

The following list describes the TMD bits:

®# SC (hits 6 and 7)
The SC bits specify the mode setting objective timer/ecounter
(TCT2-TCTO) or Multiple Latch command. When a timer/counter is
specified, setting the RWM, CMODE, and BD bits is only valid for
the specified timer/counter. When the Multiple Latch command is
specified, the meaning of bits 0-5 is different. See Figure 9-5 for a
description of these bits.

* RWM (bits 4 and 5)
The RWM bits specify the read/write mode which writes to the
timer/counter register and reads the count latch or specifies the
Count Latch command. For a deseription of the Count Latch
command, refer to Figure 9-3.

= CMODE (bits 1-3)
The CMODE bits specify the count mode (0 to 5). The default setting
is mode 2 (rate generator).

* BD (bit 0)
The BD specifies binary count or BCD count. When binary count is
specified, binary counting is performed and the number of counts
can be set from 0000h to FFFFh, When BCD count is specified,
decimal counting is performed and the number of counts can be set
from 0 to 99949,

9.2.2. TCKS (Timer Clock Selection Register)

TCKS selects the clock source and the clock prescaler divisor for the
timer/counters. The clock supplied to the three counters (TCT2-TCT0)
in the TCU ia selected from one of the following:

* Input from the external TCLK pin (4.9152 MHz)
* Created by the internal clock (24 MHz)

The TCKS address is fixed at FFFOh in the system /O area, which is
different from other TCU internal registers.

Figure 9-2 shows the TCKES register,

Timers 9.3

TCT (Timer/Counter Regiatera)

Address 7 g 5 4 3 2 1 ¢

FFFoH | |] _n\mn_nmu_am:__ P8 |

=1/
0 = Internal Clock| M.um =1/16
1=TCLKPin | 11=1/32

Figure 9-2. TCKS Register
The following list describes the TCKS bits:
= (52 (bit 4)
This bit sets the clock input to TCTZ.
* C51(hit 3)
This bit sets the clock input to TCT1.
= (50 (bit 2)
This bit sets the elock input to TOTD.
= PSi(bits 0 and 1)
These bits set the oscillation frequency division ratio.

9.2.3. TCT (Timer/Counter Registers)

There is one 16-bit timer/counter register for each channel. These
repisters are written and read in accordance with the read/write mode
set by the mode word.

When the low-order 1 byte and the high-order 1 byte are get, one
low-order byte and one high-order byte are each written by one write
operation. In this case, the remaining high-order and low-order bytes
become 00h,

The low-order byte is written by the first write, and the high-order hyte
18 written to the same address by the second write.

-1 Timers

WO oW oW oW oW oW w W

At R

« ML

-

TmmE MM TR MW

O W R
W oW

nery
W

| W

Count Latch Command

Table 9-2. TCT Registers

The low-order and high-order bytes are listed in Table 8-2,

Read/ Number of | High-Order | Low-Order
Write Mode Writes Byte Byte
Low-order 1 byte 00H xxH
High-order 1 byte axH 00H
Low-order, xxH xxH
high-order 2 bytes (2nd time) {1st time)

Reading from a timer/counter is basically the same as writing a
timer/counter. In the low-order, high-order (2 bytes mode), the low-
order byte is read by the first read. The high-order byte is read from the
same address by the second read. (See Table 9-1 for the TCT addresses.)
Timer/counter read procedures include the following:

* Direct read from a timer/feounter

* Read after a Count Latch command

* Read after a Multiple Latch command

Sinee direct read from a timer/counter reads the count latch in the
down counter tracking state, its value can change during the read
operation,

Reading should be performed after a Count Latch or Multiple Latch
command has been issued. (A Multiple Latch command latehes the
status as well az the count.)

9.3. Count Latch Command

The Count Latch command is issued by writing 0 (zero) to Bits 0-5 in
the TMD register. Bits 6 and 7 (SC) choose the timer/counter to be
latched (refer to Figure 9-3).

The latched count data is held until it is read or a new mode is set. The
Count Latch command reads the accurate count data at the time it is
issued, without affecting the counting operation.

If a timer/counter has an issued Count Latch command that has not
been read, any new Count Latch commands for that same timer/counter
are ignored. When the latched count data is read, the latch is cleared
and returned to its original down counter tracking state.

Timors 9.6

1

Multiple Latch Command

I

Figure 9-3 shows the format for the Count Latch command.

7 6 5 4 3 2 1 0

s ToJoJo o]]o]a]
rns_ra_....?nménuﬁs_.

00 = TCTo

01 =TCT1

10 =TCT2

Figure 9-3. Count Lateh Command Format
9.4. Multiple Latch Command

H
W

m
L“

|
W

:

i)
L

iy U

The Multiple Latch command is issued by writing 11 to bits 6 and 7 in
the TMD register. When a Multiple Latch command is issued, the count
data and status of the selected counters are latched, When a timer/
n.m,nbﬁm in the latched state is read, the counter operation is not
atiected,

Figure 9-4 displays the format for the Multiple Latch command,

7 6 5 4 3 2 1 0
[sc Teu[s.]crz[cmom] o |

| . F
Latch Ohjective Counter L /ﬂ\

11 = Multiple Latch Comman aubozﬂmnmmnﬂ&nﬂﬁ_
1 = Select TCTn _

0 = Latches Count Data
1 = Does Not Latch Count Data

1 = Does Not Latch Status

I

Figure 9-4, Multiple Latch Command Format

TuFSm.meE

m m
LNl JR)

- m
e

W oW W oW W

MTMTM
A . Ml B SN ML R
| VT VY VAT VIV Vi VA Vi VA TR VY'Y

Multiple Latch Command

The following is a list of the timer/counters that CT2 to CTO specify:
* (T2 gpecifies TCT2
* CT1 specifies TCT1
* CT0 specifies TCTO

The count data and status of multiple timer/counters can be latched
simultaneously. The status shows the operating status of the
timer/counter when the Multiple Latch command is issued.

Figure 9-5 shows the format for the timer status register (TST) latch
status format.

7 (5 i 4 3 2 1 1]

|OL [Nc | RwM | cmODE | BD |
///\.\..\\.
0 = TOUTn Low Level The current TCTn set state.
1 =TOUTN High Level Each bit is the sgame as in
: the TMD register.
0 = Transferred to the
Down Counter
1 = Not Transferred to the
Down Counter

Figure 9-5. TST Format

The OL bit shows the output state of the timer/counter when the
Multiple Latch command was issued.

The NC bit is the invalid count flag. It shows whether or not the newest
written number of counts has been transferred to the down counter.

Table 9-3 and Figure 9-6 describe when the NC flag is changed.
Table 9-3. NC Flag Change

Operation (to) Counter NC Flag
Writing of the mode word (to corresponding 1
ecounter)
* Writing of the number of counts to the]
count register
Transfer of the number of counts from the 0
count register to the down counter

* In the read [write 2 bytes mode, the flag becomes 1
when the second byte is written.

a-6 Timers

(9 0O W |

Timers) 9.7

il

State of Multiple Latch Commanda

Transfer Tranefer
\.J_______ _._.._.|__.____ o ._‘. B e s ____]_.J_ S
TOLE — -4 s ! d_..r |.____. .

Write t Grter Oni Ordor O ____
830 Mode Bytas . Bytas, | mﬁh._qjmmrm__.u
TCU Strobe | x1/ LT _J,_, \ X\ __
| .._L._ﬂ . __ kg __.L__a____ ____
. _ __
o D . -
. \H., 3| /
_ \
e B ! ___....

JH

After the 2nd
Byte is Written

Figure 9-6. NC Flag Change
9.4.1. State of Multiple Latch Commands

After being latched, the count and status latches ignore other Multiple
Latch commands until they are read, or until a new mode is set. Once
the count or status latch is read, it iz cleared.

The state of Multiple Latch commands is shown in Table 9-4.
Table 9-4. State of Multiple Latch Commands

TCTH TCT1 TCT2
[

caf| Count
1|| Count

1, Start

2. TCTo, Count
Latch

3. TCT1, Status
Latch
4. TCTO & TOT2

Count & Status L* L o4 L L
Latch _

C = Latch Clear State
L = Latched State
* = Command Ignored

o

Count
1 || Status
o | 0| Status
(] ﬁll Status

e
o]
0

=
0
L3]
=
]
[#]

=

9.8 Timers

_TL .@h .Ti ‘m

mm
W ow W w W w

m
W

mm T m
LAL oR) M) (R} B} @) W)

WoW oW oW oW oW W W W o W oW W W W W

.

n

Using Timers

Table 9-4. State of Multiple Latch Commands (Continued)

TCTO TCT1 TCT2
-t Rl e 1]
S8 5858
-] =] =]
& i3]] m L] m
6. TCTO, Count -
&StatusRead | © | © | € | L | L | L
6. TCTO & TCT1
Count & Status L L L L* L L
Latch
7. TCTO-TCT2
Count & Status | L™ | L* | L* | L* | 1.* | 1*
Latch

C = Latch Clear State
L = Latched State
* = Command Ignored

A Multiple Latch command always reads the status at the first read
operation, regardless of whether the count data or status was latched
first. The count data iz read at the next 1 or 2 reads (differs with the
read/write mode). When reading is continued, the tracking state count
value of the unlatched down counters is read.

9.5. Using Timers

Three general-purpose timers are available. The following steps
explain how to use the timers:

1. Clear/disable each timer first by writing the appropriate value out
to the timer control word at the 9077h /O address.

Table 9-5 lists the timer control word values,
Table 8-5. Timer Control Word Values
Timer Control Word Value
0 J4h
1 74h
2 B4dh

2. BSet up the desired frequency by writing to the appropriate timer
count register.

To do this, write the least significant byte (LSB) of the frequency,
followed by the most significant byte (MSB} of the frequency.

Table 9-6 lists the timer count register addresses.

Timer Frequencios

Table 9-6. Timer Count Register Addresses

Timer

Count Register
Address

]

2074h

1

90750

2 |

9076h

The following formula calculates the timer count register value (in
decimal) for a certain frequency. It is assumed that the firmware
set up the TCKS register for an internal clock and a divisor of 32,

Count Value = 760,000

Desired Frequency

Convert this value to hexadecimal before using it in code.

9.5.1. Timer Frequencies

n

.

m

L

mmmmn
._a}_l.__l.l il .k

Table 9-7 lists the possible timer frequencies.
Table 9-7. Timer Frequencies

Frequency Times Count Register
Per Second Hexadecimal Value
114 FFFF
20 9270
30 B1A8
o 40 493E
50 3A08
B0 2014
70 29DA
80 249F
g0 208D
100 1D4C
110 1AA2
120 1864
130 1689
5 140 14ED .
150 1388 .

8-10

Timers

mmnmemm

li_l'l_.l_'_tJ_if_l'_LEI.a_.._li_l.'_.lJ.

m

w oW oW W W W W ow W ww ow W w W

L

i

]

LT.,.TA_T;_ X

L

WoOW W oW W oW oW W

[haabling Timers

Table 8-7. Timer Frequencies (Continued)

Frequency Times Count Register
Per Second Hexadecimal Value
200 | OEAG

Example 9-1 sets timer 1 to a frequency of 20 times per second.

mov dx,M77h ; dx = timer control word
moy al,74h ; to clear timer 1

out dx,al ; clear timer 1

mov dx,%075h ; dx = timer 1 count register
mov al,7ch : 20 times per second - LSB
out dx,al : write LSB out

may al,92h ; 20 times per second - MSB
out dx,al ; write MSRB out

Example 9-1. Setting Timer 1
Example 9-2 sets timer 2 to a frequency of 120 times per second.
oy dx,9077h

mov al,0bdh
out dx,al

3 dx = timer control word
; to clear timer 2
; clear timer 2

mov dx,2076h

mov al,6ah

; dx = timer 2 count register
; 120 times per second - LSB

out dx,al : wrile LSB out
may al,18h 3 120 times per second - MSE
out dx.al 3 write MSB oul

Example 9-2, Setting Timer 2
9.5.2. Disabling Timers

The three general-purpose timers are disabled by writing the
appropriate value to the timer control word at the 9077h VO address.
See Table 9-5 for the timer control word values.

Example 9-3 clears Timer 1 and Timer 2.

mov dx,M77h ;3 dx = timer control word
mov al,7dh ; to disable (clear) timer 1
out dx.al ; disable timer 1

mov dx,9077h ; dx = timer control word
maovy al,0bdh ; to disable (clear) timer 2

out dx,al ; disable timer 2
Example 9-3. Clearing Timers 1 and 2

LT
\

Timera 8-11

Diaphling Timers m...l.“w

= .
- Section 10. SCC Port
m*m [] -
- Communications
==
==
o 10.1. Command and Data Register I/0 Addresses

] Each Serial Communications Controller (SCC) has two ports. Each
m_fw port has preassigned command and data register /O addresses, which
are accessible from the controller side only.

= = The command register sets up the communication parameters (baud
rate, parity, data bits, stop bits, flow control, and so forth.). The data
o= register transmits and receives data.

| Note: Refertothe 8530 technical manual for specifics on setting up the
SCC port.

Table 10-1 lists the command and data register /O addresses.
Table 10-1. 8CC 'O Addresses

Controller Command Data
Port SCCPort _ Register Register

1 0 E1F4h E1F6h
2 1 E1F0h E1Fz2h

-1 hi Ml

10.2. Writing a Value to Port 1

The following example writes a value (3) to Port 1's command register:

outp (0xE1F4, 4); /* Setup register 4 index on port 1 */
outp (0xE1F4, 3); /* Write value (3) to register 4 */

The following example writes a value (31h) to Port 1's data register:
outp (0xE1F6, 0x31); /* Write value (31h) to data register on port 1 %/

e mommommoemmom

m
l-..-..._.._i___L_;!. =

k1 |

WoWw oW oW oW oW oWl Wl W Ww W

!

L.l_

SCC Fort Communicationg 10-1

Ly
A

9.12 —

Writing & Value to Port 1

102

SCC Port Communications

E-=
E- =
==
==

a—

mmmm
MEV R

==
_ER |
E =
==
= =
E- =
==
o=
o=
m_.,__ =
==
e 2
=4
-
= 3
&=
=

Section 11. Downloading and
Executing a Control
Program

11.1. Overview

The concepts in this section are demonstrated in the sample program,

DPLOADER.C on the Developer's Toolkit diskette,

To download and execute a control program, use the following steps:

1. Write the control program’s executable code to dual-ported RAM,
starting at the controller memory address Co0h.

Use the copy firmware utility command (02h) to place the control

program at any controller memory address below 1MB.

Note: You can use the DPLOADER program, which is located on the
toalkit diskette, to download a control program, To execute
DPLOADER.EXE, enter dploader at the prompt. DPLOADER
prompts you for the information it needs to download the
control program,

DFLOADER, which is ¢ program for the MS-DOS operating
system, sets the 1/ 0 address at 218h and the memory address
at DAOO0R.
2. Compliment the two-byte interaction flag at the controller memory
address B8&0h from 55AAh to AAS5h.

3. Invoke the execute control program fGrmware utility (01h).

The control program should immediately perform the following

tasks:

= Dizable interrupts

* Allocate a local stack

* Initialize the interrupt vectors for the system’s interrupts,

timers, and SCCs

Following this initialization, enable interrupts and continue with
normal operation.
Comtrol recommends that the control program sets up its interrupt
vectors and then compliments the bytes of the interaction flag back to
mm.____.,@&.H This notifies the system that the control program is functioning
properly.

Downloading and Exccuting & Control Program 11-1

Using Firmware Utilities

11.2. Using Firmware Utilities

Using firmware utilities allows you to place and invoke a control
program anywhere in the controller's memory below 1MB.

The following is a list of the firmware utility buffer fields, taken from
the firmware user area map in Table 5-2:

= 2FEh Offset

The firmware utility command executes upon interrupt, The utility
commands are listed in Tahle 11-1.

Table 11-1. Utility Commands

Command Action

A null eommand that is set for status
00h
and return.

Executes a control program at a vector
in the message buffer:

30h = segment

32h = offset

A control program sets the command
status to finished (status=01),

A copy command that uses the
following message buffer parameters:

30h = source sepment

32h = source offset

02h 34h = destination segment
36h = destination offset
38h = count (two bytes)

When complete, it seta the command
status to finished (status=01)

03h through FFh _ Reserved, currently uses a null

01h (default)

command,

= 2Fh Offset

The firmware utility status holds the status of the firmware utility
command. The values include:

00h default (command processing)
- 0h (command processing finished)
- 02h through FFh (reserved)

11-2 Downlosding and Executing o Control Program

1
It

oW W W W

—

Al m) -m) i B 14

mmmmemmmMemm

f I Iy —

E__?I_TI__J'!;_T_T !
VAT VI VAT VI VAT VT VY TR

Using the Copy Command {(02h)

= 30h Offset
The firmware utility message buffer is a message buffer for
commands. This buffer is initialized before the controller is
interrupted. The controller can also return information in this
buffer.

11.2.1. Using the Copy Command (02h)

The following steps explain how to use the copy command (02h) to
download the control program at the execution address in the
controller's memory:

1. Write the controller memory segment and offset of the source
buffer at offsets 30h and 32h in the firmware user area.

2. Write 02h (copy) in the firmware user area.

3. Write the first (or next) block of the control program into the
dual-ported memory source buffer.

4. Write the number of bytes in the source buffer at offset 38h in the
firmware user area.

3. Write the controller memory first (or next) destination segment
and offset at offsets 34h and 36h in the firmware user area.

6. Write 00h at 2Fh (status field) in the firmware user area.

7. Interrupt the eontroller,

8. Wait for the status field to change to 01h, indicating that the copy
15 complete.

9. Repeat steps 3 through 8 until the entire control program is
downloaded.

11.2.2.Using the Execute Command (01h)

The following steps explain how to use the execute command (01h) to
start executing a previously downloaded control program:

1. Write AASsh at offset 0 (interaction flag) in the firmware user area,

2. Write 01h (execute) at offset 2Eh (command field) in the firmware
user area,

3. Write the control program entry point segment and offset at offset
30h and 32h in the firmware user area.

4, Interrupt the controller.

5. Wait for the control program to change the interaction flag to
BeAAD.

Downloading and Executing n Control Program 11-3

Using the DPLOADER Program

11.3. Using the DPLOADER Program

You can use the DPLOADER DOS program found on the Developer’s
Toolkit diskette, to download a control program. This program uses
the following format:

DPLOADER [control-pragram-name] [Turbo Debugger (Y/N)]
Where:
control-program-name is an optional name of the control program file
to download. If not given this defaults to CPC.BIN,

Turbo Debugger (Y/N) is an optional Yes or No switch indicating
whether or not to invoke the Turbo Debugger program remotely to
allow debugging of the control program.

The DPLOADER program uses the 218h /O address and D000:0 memory
address for the controller,

Er

W

mowmm
W oW

1 T S I S 1) S

h;._;___m
o

p—k—tr—t—
W oW oW oW W W

mmmmmm

L)
iy

_IH

‘i‘i

m

114 Downlonding mda..ﬁa_wnﬂc.nn a Control Ta@.:ﬁ

Section 12. Debugging Tools

12.1. Debugging Tools Overview

This section contains information on a variety of debugging tools
available to you. These tools include the following:

* The Borland Turbo Debugger
* Tirmware debugger

12.2. Turbo Debugger Overview

The Borland Turbo Debugger is a source-level debugger that provides

a windowing user interface. Comtrol supports the use of this

debugger, which allows you to execute and debug programs that

operate on the controller,

There are two possible debugging environments:

® A single PC with the controller and Turbo Debugger.

* Two PCs, one with the Turbo Debugger and the other with the
controller. The following subsections describe this method.

You can debug only code that resides in RAM. The Borland Turbo
Debugger cannot make firmware debugging calls (for example int 21h,
the irmware RAM query) to the controller.
Note: The firmware on the controller only supports the Borland C++
4.02 version of the Turbo Debugger.
The controller is not backwards compatible with earlier
versions of the Turbo Debugger.

12.2.1. Setting Up the Hardware Environment

The following subsections discuss a debugging environment that

consists of a

* Development PC that displays the Borland Turbo Debugger.

* Hemote PC that executes the controller’s control programs under
the Borland Turbo Debugger environment. The controller is
installed in this system.

See the documentation that came with the Turbo Debugger for detailed

information about system requirement to run the Turbo Debugger.

To use this subsection, you should have ordered the Development

Debugging Toola 12-1

i

.__m_ﬁ.umnmdm a Two-PC Environment

Board Option on your controller. This option is provided at no
additional charge and includes the following pieces:

* A debug/reset header soldered to the controller
* A debug/reset box and cahle

Note: If you have any questions regarding the Toolkit or the
Development Board Option, contact Comtrol using the
information provided in Appendix A.

Use the next subsection to connect the debugging environment.

12.2.2. Connecting a TwoPC Environment

To physically connect the debugging environment, perform the
following steps (see Figurae 12-1):
1. Connect the development PC to the remote PC with an RS-232
null-modem ecable,
a. Attach one end of the cable to port 8 of the controller's interface
box,
b. Attach the other end of this cable to the COM1 or COM2 port of
the development PC.
2. Connect the cable attached to the reset/debug box to the reset/
debug header on the controller.

Remote PC
Development PC Controller 100-Pin
Connector.
/ Wﬂﬂnq
f—_— Interface Box cbug
_ .|. .mun__—._. 8 z \:ﬂuh_m.-.
=
[
| =
_ _._ = ﬂ Frrs
S RS-232
COMI or COM2 Port Null-Modem Cable Reset/Debug Box

Note: This assumes that the interface box has already been attached
to the controller (see the Interface Reference Card).

Figure 12-1. Cabling between the Development System and the
Hemote System

12-2 Debugging Tools

i

W W

"

W

W |

TRV

W

‘_TL_F!\PI'I‘FF_FHIFI‘.FI‘FIIFI‘:TMFI‘FI‘MFI‘M

nmw
Y A1 oS ;
W oW W W

Configuring Symbol Tables

12.2.3. Configuring Symbol Tables

To use the Borland Turbo Debugger, you must generate a symbol table

to accompany your program on the development PC.

Use the following steps to create a symbol table:

1. Use the compiler's command options to compile and link your
program _“H.mmmn o your compiler documentation for specifics).

2. Run the resulting .EXE file through the Turbo Debugger symbal
table separating utility, which is called TDSTRIP.EXE,
This utility removes the symbol table from the executable file and
places it in a separate file. The symhbol table file has a .TDS
extension.

3. Run the stripped CPC.EXE file through the Comtrol locate utility
called CLOCATE.EXE. This converts the load module for the M5-DOS
operating system into an executable download file called CPC.BIN.

The sample MAKEFILE.BC make file on the Developer’s Toolkit diskette
gives an example of how this is done,

12.2.4. Imvoking the Remote Kernel

The controller's firmware contains a Turbo Debugger remote kernel
that must be invoked before the development PC can establish
communications with the eontroller.

Invoke the kernel by executing an int 27h interrupt to the controller's
processor. This interrupt can be executed in one of two ways:

* Before downloading the control program

H._H.Wmmu.m__..ma_...Ennmma_.sinmmEmgﬁiup,mouc&mdﬂcmﬁqibu
into dual-ported RAM at the C0:0 local proceseor address,

u.ﬂrmmum_..mﬁ m_d.nmum_u_. mumnnﬂmmﬁrmmuﬂimﬂmﬁm.:q_Eﬂnrmxm.nﬂnhm
the int 27h ISR to start the kernel.

_M.m. Download the control program to start the debugging m‘mmmwan.u

Flowchart 12-1. Executingint 27h Before Downloading the
Control Program
¢ Within the downloaded control program
To embed the int 27h interrupt within the downloaded contral
program, enter the starting address of the instruction immediately
following the int 27h interrupt (do this in the <Ctrl> G step of the
Turbo Debugger start-up sequence).

Debugging Tools 12-3

r

Running the Turbo Debugger

Example 12-1 shows a sample in assembly language.

int 27h
start_debug:

: invoke Turbo Debugger remote kernel
; symbolic address for

; Turbo Debugger <CTRL G>
Example 12-1. Embeddingint 27h

Note: When debugging code remotely, do not use or initialize line 7
(Port 8) of the SCC channel because it is used by the Turbo
Debugger.

12.2.5. Running the Turbo Debugger

The Developer's Toolkit diskette contains sample C programs. Before
you can run the Turbo Debugger

1. Create directories on both the remote and the development PCa.
2. Copy the following programs to the appropriate systems:
* HRemote System
- DPLOADER, CPC.EIN, and HITERM.EXE {executable files)
= Development System
- CPC.C, CPC.H, and CPCSTART.ASM (source files)
= CPC.TDS (symbol table)
Note: If you hiave not done so already, install the Borland Turbe
Debugger Version 4.02 on the development system.
Use the following steps to invoke the debugger on both systems.

jote: Because this procedure can be tedious, steps have been included
to tnvoke the Turbo Debugger macro recording function. This
saves time and keystrokes when performing subsequent
debugging sessions,

1. Invoke DPLOADER on the remote system, by entering the following
at the prompt:

dploader

2. Authorize DPLOADER to reset the controller, identify the control
program to download, and to invoke the Turbo Debugger remote
kernel.

3. Invokethe Borland Turbo Debugger on the development system, by
entering the following at the prompt:

td -rp# -rs3
where;
-rpl specifies the COM1 port and -rp2 specifies the COM2 port.
-rs3 specifies 38.4K baud for the Turbo Debugger, Version 4.02.

12-4 Debugging Tools

I LE-

W W

W o

i

W W

Mmoo mm oW
W oW W W w

Ll
W

7

T
1

Running the Turbo Debugger

An opening window appears firat, followed by the CPU window.
Note: If your control program becomes large, the debugger may need
additional memory to hold the symbol table. In that case, add
the -smxx option to the td command, where xx is the number of
Kilobytes to be used for the symbol table.
See the CPC.EXE and CPCSTART sample files for examples of the
following steps. Your macros will differ, depending on the files to
debug,
4. Press <Alt> O and choose Macros and then Create.

The Turbo Debugger prompts you for the macro keystroke
BEqUEnce.

5. BSet the stack sequence to 98h:

a. Press <Alt> V to view.

b. Press R or press the <Arrow key> to Registers.

c. Press the <Arrow key> to choose the Stack Segment by
highlighting S8 and press <Alt> F10.

d. Press C or press the <Arrow key> to Change

e. Enter the value (in this case, 98h), press <Enter>, <Alt>W for
Window, and then Close.

Note: The Stack Segment (55) must be set to 98h before executing the
startup program. Failure to do so might result in your code
getting stepped on by the stack.

6. Press <Alt> F and choose Symbol load.

7. Choose the file to load, and enter the symbaol table’s file name. The
example file uses the cpedds symbol table file.

8. Press <Alt> F and choose Table relocate.

9. Enter the new segment value,
This specifies the segment to execute on the controller's processor.
This value should always be 0C0.

10. Press <Ctrl> (; and enter the address of the entry point, in this

example. Type start,

Press <Ctrl> N.

This updates the registers for the CS:1P (current

segment:instruction pointer).

12. Enter the first instruction displayed to assemble, in this example.
Type cli,

To bring up the Enter instruction to assemble window, you must
type in the first character of the instruction (c in the example). If
you do not enter the first instruction displayed, the debugger does
not acknowledge that your program is loaded.

11

Debugging Toola 12-5

i

Single-Stepping Inatrustions

At this point, you can customize your environment, but remember that

the macro facility records all of your actions. To stop recording, open

the Options menu and choose Macros and Stop recording. To save

the macro, open the Options menu and choose Save options.

For future debugging sessions, use this macro to automatically replay

steps 6 through 11.

To invoke the maero, type the specified macro keystrokes when the

debugger starts.

Note: If the Borland Turbo Debugger is running and a breakpoint is
never reached, press the Reset switch to stop execution,

12.2.6. Single-Stepping Instructions

Single-stepping through hardware interrupt instructions with the
<F7> and <F8> function keys may not generate interrupts reliably.
For example, outp(Uxelf6,0x31) writes a character out to Line 0, This
normally results in a Transmit Buffer Empty (TBE) interrupt.
However, if this instruction is single-stepped, the interrupt may not
occur, To avoid this, set a breakpoint after outp{) and run to it, rather
than single stepping over it.

12.3. Firmware Debugger Background

W

m
[t

m

This section lains the commands to use with the firmware
debugger. The debugger is part of the firmware installed on the
controller, and it provides the following functions:

* Displays/changes memory * Displays registers
* Disassembles instructions * Single steps
* Performs input and cutput * Sets breakpoeints

to 140 ports
The debugger console is initially assigned to the first serial port on the
controller. The serial communieations parameters are defined as
follows:
* 8,600 bite/second * No parity
* Right (8) bits per character ® One (1) stop bit
Because these parameters are fixed, a program cannot alter them.
Note: This assumes that the interfuce box has already been attached
to the controller in the development PC (see the Interface
Reference Card).

12-6 Debupgming Toola

W W

wowomom
N

m m
WO W W

m m m
FTRTTRTIER
B

w
WY

I

-
W

b

L)

Invoking the Firmware Debugger

12.3.1. Invoking the Firmware Debugger

The firmware debugger essentially operates as an interrupt service

routine (ISR). The controller firmware provides access to debugger

functions through the following software interrupts:

* int 20h
A program can invoke the debugger through this interrupt. The
firmware configures Port 1 as the debug console during system
initialization.

® int22h
After the system initializes, a program can change the debu
console by executing this interrupt. Load a valid device number
from 0 to F (Ports 1 through 16) into the AL register before
executing the software interrupt.

Note: To access the firmware debugger, make sure that you have your

system connected as shown tn Subsections 12.5.1 and 12.5.2.

To invoke the firmware debugger, press the Debug switch on the box.

12.3.2. Firmware Debugger Commands

Table 12-2 lists the commands the firmware debugger supports.
Table 12-1. Debugger Commands

Command Name Funetion
B B Formata all suceeeding input or output
yte commands to read or write 8 bit values.
|Displays the contents of a specified memory
D Dimmp region.
E Edit Wwwhmﬁm the contents of a specified memory
F Fill Changes the contents of a specified memory
region.
G Go Continues execution from the current

location with or without breakpoints.

Inputs and displays a byte or word from the
Input specified 'O port,

QOutputs a byte or word to the specified /0

—

0 Output port.
R Register |Displays the contents of all registers.
T Trace |Executes the next instruction (single step).
U Unassemble Disassembles a specified memory region,
Formats all succeeding input or sutput
W Word commands to read or write 16 bit values.
Debugging Tools 12-7

i

Firmware Debugger Command Definitions mn.ll.w_ Firmware Debugger Command Definitions

12.3.3. Firmware Debugger Command Definitions X Table 12-2. Debugger Command Definitions (Continued}
S —— = Format Where Clause
Ihis subsection describes how to use each of the debugger commands ot D (starting address) |D40:0 FF or D 40:0 L 100The following command
listed in Tables 12-2 and 12-3. The following is a list of guidelines that muﬁ (ending nn.mﬁm.n_...“_ displays the contents of memory from the 1000h
mvﬁw S_Hnw.m debugger commands: AL offset. This is J».Eh the Emﬂ%ﬁ that the ES
* Each command consists of a single letter, followed by one or more il or register currently points to. The ES register

parameters, . u E _ me.mm wrn 107Fh offset, which is the default
s (Optional ¢ di B : o D (starfing address) ength.

il parameters are displayed inside parenthesis (), = | (1 length) (cont.) T 541500

* Enter commands and parameters in uppercase, lowercase, or a
combination of both.

* Commands executed after pressing <Enters.

* The debugger prompt is a hyphen (-},

* The location of syntax errors is indicated by the pointer error.
Table 12-2. Debugger Command Definitions

starting address specifies the first address of &

ranpe of addresses to change and takes any of

the following forms:

[* A szegment value, offset value pair separated
by a colon (:)

* A segment register mnemonic and an offast

W

momowomm

Format Where Clause value separated by a colon (:) |
B Arguments are not required, h E (starting address) . WmﬂmMu_m.mmw value only (a default segment 1s
starting address specifies the first address of a o (byte value)

thyte value specifies the value to change. If no byte
{value 15 1ssued, you enter edit mode,

The following commands change the contents of
memory 0040h:000h:

E40:0 55

Note: Inedit mode, to continue editing the next
byte, press the space bar. To exit edit
mode, press the return key,

starting address specifies the first address of &
range of addresses to change and takes any of

range of addresses to digplay and takes any of

the following forms:

* Asegment value, offset value pair separated
by a colon (2)

® A segment register mnemonic and an offset
value separated by a colon (3)

* Anoffset value only (a default segment is
used)

. ending address is an offset value within the
D (starting address) |segment specified by the starting address, which

g |

WOW oW WO W W W W Wl W WO Wl

(ending address) specifies the last address of a range of addresses " the following forms:
S to display. * Asegment value, offset value pair separated
by a colon (3)

! length specifies the number of bytes to display.

D (starting address) |[Notfe: If ending address or 1 length is not
(F length) specified, the default display length is
128 bytes.

If arguments are not specified and a D
command has not been entered, display starta
at the current CS:IP location. If a D command
has been entered, display starts with the byte
following the last byte displayed. The default
length is 128 bytes.

The following commands display the contents of

mowemommm

F (starting address)
(ending address)
(byte value)

A pegment register mnemonic and an offset
value separated by a colon (:)

* An offset value only (a default segment is
or used})

: ending address is an offset value within the
Fistarting address) segment specified by the starting address, which
(I length) (byte value) |specifies the last address of a range of addresses
to change.

[length specifies the number of bytes to change.

byte value specifies the value to change.

d |

a4

il

memory from 0040h:000h through 0040h:008h: Continued
_ Continued
12-A Debuggi :.m..___...SE B Debugging Tanla 12-8

mmom Mmoo m

1

Firmware Debugger Command Definitions

Table 12-2. Debugger Command Definitions (Continued)

Format _ Where Clause
F (starting address)
ﬁahﬁh ﬁn&_,mﬁu The following commands change the contents of
(byte value) or memory from 0040h:000h to 0040h:FFh:
Fistarting address)

(I length) (byte value)
{cont.)

F40:0 FFh 55 or F40:0 L 100 55

G (breakpoint address)

breakpoint address specifies an address where
program execution is interrupted, and contral is
returned to the debugger.

If a breakpoint address is not specified, the
program continues normal execution.

The following command allows program
execution to continue from the current location
(C5:1P), and sets a breakpoint at 4000h:0007h,
If the program attempts to execute the
instruction at this address, execution is
interrupted, and control is returned to the
debugger,

G 4000:7

I portaddress

pportaddress specifies a 16 bit /0 address for
input data. The size of the input data (byte or
word) depends on the current /0 mode (see B
and W commands).

The following command inputs data from the
140 port at 202h:

1202

O poriaddress value

portaddress specifies a 16 bit /'O address for

‘output data. The size of the output data

specified by value (byte or word) depends on the
current 'O mode (see the B and W ecommands).

The following command outputs 55h to the /O
port at 200h:

O 200 55

Arguments are not required.

Arguments are not required,

U (starting address)
(count)

starting address specifies the first address of a
range of addresses to disassemble and takes
any of the following forms:

* Asegment value, offset value pair separated

by a colon (3)
Continued

12-10

Debugping Tools

——

E -

Uming the Firmware Debugper

Table 12.2. Debugger Command Definitions (Continued)

Tormat Where Clause

U (starting address)
(count)

{Cont.)

* A segment register mnemonic and an offset
value separated by a colon (2}

* An offset value only (a default segment ia
used)

count gpecifies the number of instructions to

disassemble. If count is not specified, a default
of 16 instructions are disassembled,

If arguments are not specified and a U
command has not been entered, disassembly
begins at the current CS:IP location.
If 8 U command has been entered, disassembly
begins with the instruction following the last
_Hnmwﬂznﬂcn previously displayed.
[The following command disassembles eight
instructions starting at 4000h:0003h:

L7 4000:3 §
The following command disassembles 16
instructions (default count). Disassembly begins
at the 0003h offset, within the segment that the
CS register points to;

UCs:a

W

\Arpuments are not required.

12.4. Using the Firmware Debugger

The following is a list of things to remember when using the firmware
debugper:

Jump instructions display the next instruction's address as a
relative address, not as an absolute address.

Non-8086 instructions do not disassemble correctly, but they do
execute correctly.
The instructions appear as follows:

#* data *
Timer, system, and SCC interrupts continue to occur when using
the firmware debugger.
These ISRs cannot make any assumptions about the state of any
registers. This includes the segment registers, which the firmware
debugger modifies for its own use. Because of this, the 1SRs must
save and initialize the registers. Then, the registers must be
restored before exiting the ISRs.

Debopgging Tools

12-11

Using the Firmware Debugger

12-12

Debogging Tools

E-=

£

T

m

BOW

m m m
TR
o

m m

o

Appendix A. Developer’s License
Agreement and
Contacting Comtrol

A.l1. Developer's License Agreement

At Comtrol, we want to encourage you to develop software products for

our hardware products, so we developed this no-nonsense Developer's

License Agreement.

The software supplied with the Developer's Toolkit is protected by

United States nuwvimwﬂ law and international copyright treaties. In

order for Comtrol to protect its copyrights, we have some limitations on

reproduction and distribution:

1. The software may only be used to develop software products that
will operate with Comtrol brand hardware and software.

2. You may not reproduce nor distribute the source code contained in
the Developer's Toolkit.

4. Any reproduced or modified Developers's Toolkit software
distributed in executable object code form must bear either
Comtrol's copyright notice (for example, Copyright 1991, 1992,
1993, 1994, 1995 Comtrol Corporation), or your own copyright
notice.

Other than these restrictions, programs that you write using the
materials in the Developer's Toolkit may be used, distributed,
modified, or licensed by you as you decide,

Sample programs are provided to help you start programming right
away. You may edit, modify, or otherwise incorporate these programs
and routines; and you may redistribute and license them for use by
your customers without any other license fee or restriction.

Of eourse, you are solely responsible for your own programming and
you agree to hold us harmless from all claims, liahility, and damage
arising from your own products which include any Comtrol Software.
Remember that this software is designed for use only with Comtrol
m_uumﬂﬂm, It will not function properly with any other brand of
controller.

Developer's License Agreement and Contacting Comtral A-l

Contacting Comtral

A.2. Contacting Comtrol

If you need assistance or have questions about any of our products,

contact Comtirol using one of the following methods. Comtrol has a

WJE.. of hardware and software engineers, and technicians availahle to
elp you.

Corporate Headquarters:

email: support@Comtrol.com

FAX: (612) 631-8117

BBES (for device driver updates); (612) 631-8310

Note: The BBS supports modem speeds up to 28.8 Kbps (V.FC} with 8
bits and no parity.

Toll free: (800) 926-6876
Phone: (612) 631-7654

Comtrol Europe:

BBS: +44 (0) 1* 869-243-687

Note: The BBS supports modem speeds up to 14.4 Kbps with 8 bits and
na parity.

FAX: 444 (0) 1% 868.323-211

Phone: +44 (0) 1* 869-323-220

*Dependent upon the telephone carrier until April 16, 1995.

A2 Developer's License Agreement and Contacting Comtrol

rTmERREAENAN

1
ks

mmmm

mmomm

womm m o
1YV VA VA VRV AT YA VY VAN AT VANV VAT VANV VAT VANAY TNV WY VARRY THNRY VR \

Ii

m
|

Index

Symbols
uPD71071
mode commands 7-4

Numerics
8530 interrupt 8-5

A

accessing

DMAU regiaters 7-4
address

/O switeh settings 3-2

reserved for /O 3-3
address conversion table 6-3
addresses

high-order 7-2

low-order 7-2

relocating 6-1

SCC 0 10-1

gignal bits 7-2
addressing

normal mode 6-1
AL register 8-5
ATPC mode

control register #1 3-6
antoinitialization function 7-11
AX register 8-

B

base
address register 7-8
count register 7-7
Bibliography v
binary values
SCC interrupt vector 8-7
boot flag 5-4
Borland Turbo Debugger (see
Turbo Debugger)
BREXAn 6-6

building
sample programs 2-20

C

cabling
development system and
remote system 12-2
channel
port function 7-1
channel register (see DCH} 7-6
clearing
extended addressing mode 6-8
interrupts 8-1
COMIM Message queie
map of 2-9
command definitions
firmware debugger 12-7-12-11
commands 7-4
copy 11-3
Count Latch 9-5
execute 11-3
firmware 11-2-11-3
firmware debugger 12-7
Multiple Latch 59-6
utility 5-6
components
controller 1-2
Comq 2-8
CONFIG_QUERY 8-5
configuration control register 4-3
Int 24 4.5
Int 25 4-5
interrupts 4-5
configuration control register
bits 4-4
CONFIGURATION_CONTROL_
REGISTER_READ 8-5

Index-1

E

CONFIGURATION CONTROL_
REGISTER_WRITE 8-5
configuring
symbal table 12-3
control programs
downloading 11-1
executing 11-1
how it works 2-2
mode] 2-1
control register
#1 format 3-8
#2 format 3-8
#3 format 3-10
#3 window offset 3-11
#4 interrupt values 3-13
configuration 4-3
Int 24 4-5
Int 25 4-5
interrupts 4-5
configuration hits 4-4
funetions 1-4
overview of 3-4
gyatem 7-2
writing 3-5
control register #1
AT/PC mode 3-6
controller
components 1-2
EPROM 1-2
features 1-1
/0 address 4-1-4-5
/0 internal addresses 4-1
identification byte 3-3
initializing 3-3
interrupting 3-4, 8.1
memory 1-3
resetting 3-3
SIMMs upgrade 1-1
support iii
toolkit contents iv
toolkit installation 1-4
view of RAM 5-2

copy command 11-3
count
data 9-2
value
TCRS 9-10
Count Latch command 9-5
counter
status 9-2
current
address register 7-8
update 7-11
count register 7-7

D
DBA 7-8
DBC 7-7
DCA 7-8
Doc 77
DCH
read 7-6
write 7-6
ppc 7-9
BHLD 7-10
DDMA 7-8
EXW 7-10
ROT 7-9
NDCWEV 7-10
DEBUG_FPORT
interrupt 8-4
DEBUGGER
interrupt 8-4
debugger
firmware averview 12-6
debugging tools 12-1-12-11
Developer's License Agreement.
A1
development board option
deseription of iv
device
control register 7-9
DICM 7-5
direct memory access (see DMA)

Index-2

disabling
DPM 3-4
timers 9-11
DMA 7-1
address registers 7-8
addressing 7-1
base address register (DBA) 7-8
base count register (DBC) 7-7
channel register (DCH) 7-6
control unit (DMALT) 7-1
current address register (DCA)
7-8
current count register (DCC)
7-7
device control register (DDC)
7-9
initialize command register
(DICM) T-5
mask register (DMK) 7-12
mode control register (DMD)
7-10
registers 4-1
status register (DST) 7-12
terminal count interrupt 8-5
DMAU
definition of 7-1
registers 7-2
accessing 7-4
addresses 7-3
initialization changes 7-5
DMD 7-10
ADIR 7-11
AUTT 7-11
TDIR 7-11
TMODE 7-11
W/B 7-11
DMK 7-12
downloading
control program 11-1
DPLOADER 2-13
using 11-4

DFM 5-1-5-7
contral window size 3-10
disabling 3-4
enabling 3-4
map 2-9, 5-1
system view of 5-2

D3T 7-12
RQO-RQ3 7-12
TCO-TC3 7-12

DTR output 4-4

DTR source 4-4

dual-port memaory
see DPM

E

enabling

DFPFM 3-4

EPROM 4-4
ENTER/EXIT_EXTENDED_MODE

8-5
EPROM

description of 1-2

enable 4-4

serial numbers iii
ESC_isr 2-7
execute command 11-3
executing

control program 11-1
expanding

memory 6-1
extended address mode 6-1-6-7

F
firmware
defining the data area 5-7
utilities 11-2
utility commands 5-5
utility message buffer 5-6
utility status 5-6

Index-3

firmware debugpger
background 12-6
command definitions 12-7-
12-11
commands 12-7
involking 12-7
using 12-11
firmware release number 5-4
firmware user area 5-3
map of 2-9
functions
autoinitialization 7-11
hiopen 2-5
hiread 2-7
hiwrite 2-5

G

generating
symbol table 12-3

H

hardware

setting up debugging

environment 12-1

heartbeat counter 5-5
hiclose 2-15
high-order

addresses 7-2
HILIE.C 2-13
hiopen 2-5, 2-14
hiread 2-7, 2-16
hiwrite 2-5, 2-17

I

o
addresses for SCC 10-1
block functions 1-3
map 3-3

/0 address
controller 4-1—4-5
eonversion table 6-3
setting for the system 3-1
switch seltings 3-2

1/0 address (eont.)
system 3-1-3-14
VO _bases1 3-5
identication hyte
controller 3-3
identification number 5-5
IMR 8-6
bits 8-6
initialize command register 7-5
initializing
controller 3-3
extended addressing mode 6-5
input/output (see L'O)
installation
IO switch settings 3-2
toolkit 1-4
Int 24 4.5
Int 26 4-5
interaction flag 5-4
internal addresses
controller I/0 4-1
internal 'O address (10GA) 7-3
interrupt mask register (IMR) 8-6
interrupt service routine (zee
ISR) 8-2
interrupts
clearing 8-1
configuration control register
4-h
control register 8-2
control register #4 values 3-13
control register address 4-2
controller 3-4, 8-1
hardware 8-6
IMR B-6
SCC vector types
binary values 8-7
initializing 8-9
table locations 8-8
setting 8-1
vectors 8-3-8-6
invalid interrupt field 5-5

Index-4

|
==
]
E =
g
= e
E -
=
]
|
=
= -
=g

= e
=
|
|
|
= -
|
E =

= -

invoking
firmware debugger 12-7, 12-11
remote kernel 12-3
invaking remote kernel 12-3
1I0GA 7-3
RG 8-1
IRQ7 interrupt 8-6
ISk
ESC_isr 2-7
internal 8-2
RCA_isr 2-6
SRC_isr 2-7
system_isr 2-4
TBE_isr 2-6
timerl_isr 2-8
timer 8-2

K
kernel
invoking remote 12-3
kernel call
spl 7()3-3

L

line

definition of 2-2
line tables

map of 2-10
local RAM map

extended mode 5-4

normal mode 5-4

low-order
addresses 7-2

M

MAKEFILE 2-19

map 5-3

mask register 7-12

memory
above one megabyte 3-7
below one megabyte 3-9
control register functions 1-4
description of 1-3

memory (cont.)
DPM map 5-1
dual-port 5-1-5-7
expanding 6-1
1/0 block functions 1-3
/0 transfer 7-11
sliding window 1-3
standard map 1-3
MiCroprocessor
components 1-2
DMALU 7-1
mode
control register 7-10
Multiple Latch command 9-6
NC flap change 9-7
state of 9-8

N

non-maskable interrupt (NMI}
8-4

0
old config map 5-4
on-chip peripheral selection
register (OPSEL) 7-2

P

page register

convergion 6-3
page registers 6-2
port communications

SCC 10-1

writing a value to port 1 10-2
prerequisites

gystem iii

R
RAM
controller view of 5-2
RAM _QUERY
interrupt 8-4
RCA_isr 2-6

Index-6

il

reading
configuration control register
4-5
controller identification byte
4-3
Eﬂmﬂﬁ (see control register)
regsters
accessing DMAU 7-4
AL 8-5
AX 8-5
base eount 7-7
clock selection 9-1
current count 7-7
DICM 7-5
DMA 4-1
DMA base address 7-8
DMA channel 7-8
DMA current address 7-8
DMA device control 7-9
DMA mask register 7-12
DMA status 7-12
DMAmode control 7-10
DMAL 7-2
DMAU addresses 7-3
initialize command 7-5
interrupt mask 8.6
OPSEL 7-2
page 6-2
page conversion 6-3
SCC command 10-1
80CC data 10-1
TCT 9-5
TCU B-1
timer clock selection 9-3
ﬂEE. count addresses 9-10
timer mode 9-1
timer status 9.7
fimer/counter 9-4
™™D 9-2
relocating
addresses 6-1

remote

invoking kernel 12-3
reserved addresses 3-3
resetting

controller 3-3
RETXAn 6-6
rotating priority 7-9
routine

system_isr 2-4
RS-232 synchronous support 4-3
mrm.m synchronous support 4-3
running

Turbo Debugger 12-4

s
S50C 4-4
command register addresses
4.2
data register addresses 4-2
interrupt vector types 8-7
initializing 8-9
table locations 8-8
interrupt vectors 8-7
port communications 10-1
port map 5-4
SCC_base interrupt 8-6
security GAL
address 4-3
Serial Communications
Controller (see SCC)
serial numbers
EPROM iii
setting
extended addressing mode 6-6
interrupts 8-1
setting up
debugging environment 12-1
SIMMs upgrade 1-1
sliding window 1-3
sizes 3-12
spl 7 () kernel call 3-3
SRC_isr 2-7
status register 7-12

Index-&

g i i i g

e

mmm MMM mWm e W m

support
controller types iii
Turbo Debugger iii
switch settings
I/'D address 3-2
symbol table
generating 12-3
synchronous
R5-232 and RS-422 support 4-3
Sysq 2-8
system
cabling debugging
environment 12-2
control register (SCTL) 7-2
/0 addresses 3-1-3-14
interrupting the processor 8-1
reserved /0 addresses 3-3
view of DPM 5-2
SYSTEM interrupt 8-5
system message queue
map of 2-9
system_isr 2-4

T
TBE_isr 2-6
TCKS 9-1,9-3, 9-4
TCT 9-4
registers 9-5
TCU 9-1
registers 9-1
timer
clock selection register 9-3
clock selection register (TCKS)
9-1
control word 9-9, 9-11
Count Latch command 9-5
count register 89-9
counter registors 9-4
frequencies 9-10
ISR 8-2
mode regiater 9.2
mode register (TMD) 9-1

timer (cont.)
Multiple Latch command 9-6
state of 9-8
setting
timer 1 9-11
timer 2 9-11
status register (TST) 9-7
using 9-9
TIMER 0 interrupt 8-5
TIMER 1 interrupt 8-6
TIMER 2 interrupt 8-6
timer control unit 9-1
timerl_isr 2-8
timers 9-1-9-11
clearing 9-11
dizabling 9-11
timers 0 - 2 count register
addresses 4-2
TMD
bits 9-3
TMD §-1, 9-2
toolkit
building sample programs
sample programs
building 2-20
contents v
installation 1-4
tools
debugging 12-1-12-11
transmit buffers
map of 2-10
TST 9-7
Turbo Debugger 12-3
confipuring symhbol table 12-3
overview 12-1
running 12-4
setting up hardware
environment 12-1
support iii
TURBO_DEBUGGER_REMOTE
8-5

Index-7

U
using
DPLOADER 11-4
firmware debugger 12-11
using utilities 11-2
utilities
firmware 11-2
utility commands 5-6

A%
V53 microprocessor
DMAT 7-1
extended addressing mode
6-1-6-7

W
window offset
control register #3 3-11
writing
configuration control register
4-5

Index-8

