The eCos Component Writer's Guide

Bart Veer

John Dallaway



The eCos Component Writer's Guide
by Bart Veer and John Dallaway

Published 2001
Copyright © 2000, 2001 by Red Hat Inc.



Table of Contents

L. OVEBIVIBW. ...ttt t ettt ettt b e et s e ek se ek e s e ek e Rt e b eme e b ese s e e bt e A ekt Ao ke s e e b e e e b ene e b ene e b ebentebeneebeneebenenbenenbeneas 1
QL= 01T ] o T 1
COMPONENT FIAMEWOLK......eiuiiieiirieiirietieeieeei ettt bttt sttt ene e 1
(@0]g)iTo 0T e=ViTo] 0@ ) o] PO SRS 1

(O] 101 0 o] 1 T=T o1 FE TSP SS TSP PP SRRSO 1

L= 103 = 1o = TSSOSO 2
CONTIGUIBLION. ...ttt bbbttt bbbt b et b et bbbt e 2

JLIE= L[] PP 2
TEIMPIALE ...ttt b e bbbt E e R e b bbbt bt bt e b e 2
PIOPEITIES ...ttt b bt b bbbt e R R bR R e R e b b e R bt b ens 3

(O70] g IST=To (U] o [0 =S TSP RT PP TP SRSV 3

(0] 0153 1= T | €= PR R 3
(O] 011 1Tod £SO R 3

3 0 TSRS 4
COMPONENT REPOSITOLY. c..cueeueeiertirtesiereeeeeeeee sttt reeae et sbe e e e e e e e et eae st e s besee e eneebesbeseessenseneeneenesbetas 4

WY CONFIQUIBIDITIEY 2.t ettt st b e et b e b b e e se e e e e e e enesbeeeas 4
APProaches to CONfIGUIADIIILY.........ccciiiere ettt s s e e e e 5
Degrees Of CONfIGUIADIIILY.......co.coie e et et sb e e 7
RTAT U 11 o LTRSS 8
2. PaCKage OrQAnIZALION. ........eeieeeiiteite ettt sttt b b b s e e et e st e bt eb e s b e s bese et ebesbesbesee s e e e e eneenen 11
Packages and the Component REPOSILAIY........c.ccviieriirieie i sieeseseeeste e see e e ste e saeste e ensesneesaesresnnens 11
Lo Y03 T LIV 6] o 11 o RS 12
Package Contents and LAYQUL........ccccviiiiierieieeesesesteseeeeesese st e e see e ssesresteseesaesaesessessessessessensesessenses 13
OULliNE Of the BUIID PrOCESS.....c.iiviuiiriiiriiisies ettt s e nsens 15
Configurable SOUICE COUE.......ciiiiiiieeee ettt se e e esessesaeseesaenaennenennens 16
Compiler Flag DEPENUENCIES. .....cccveererereireriere e ste e see e sae e sa e esesresteseesaeneesesseses 16

Package Interfaces and IMplementatiQns.........c.cccvvererereienesie s 16

Source Code and Configuration OPLIONS.......ccceveeerierierierereeeeese e ens 17

EXPOrTEd HEAUET FIlES. ...ttt et s b ettt b e e b et e 18
Configurable FUNCHONAIITY. .......coeirieiiicre e 18
NESTEHINCIUAER'S  eeeviiiieieeiteeteeete ettt et e e te st te st e et et e s beesesbesaeesbesbeeasesbeeaeessesaeentesbeessenbenseenns 19

Including Configuration HEAUELS........cociriiiiiee ettt 19

Package DOCUMENTALION .......ciiiiieirieiirietereete sttt st st b et b ettt be e b e b e ebe e 20

=2 = ST PRS 20

[ [0 1S ] T [T T o] o o] ¢ AR 20
Making a Package DiStrDULION..........c.iiiiieeee ettt ene e 20
The eCos package distribution file fOrmaL..........cccooeriiiiine e 20
Preparing eCos packages for diStribUtiQn............ccoiiiiiiinieeeee e 21

T I L O T =Ty o U= Vo [T USRI 25
LANQUAGE OVEIVIEW.....cuiiuirteiereeeeieetesiesteseastesee e ssesbesbeseeseeseesessesaeseesbanse e eaeaaeabesbeseesansesesaesaesbenbaneeneenearentas 25
L1 I @70 ] 1 4110 F=Tg o K-SR 26
(1B I o (] o 1= 1 1= T TSR U PO 29
INformation-providing PrOPeItIES.......coo it e e 30

The Configuration HIErarChy ...t e neen e sne e 31

Y LU =T o (T N o] 0 1= = 31



Generating the Configuration Header Files..........cccveriiniinniee s 34

Controlling What gets BUIIL.........c..ciiiiiiiicere e 35
MISCEIIANEOUS PrOPEITIES. ... ettt b e bbbt b et bt e b e b e b e 36
OPLioN NamMING CONVENTION......c.ciuitirieiirietire ettt ettt b e bbb b st e e bt ss e b e st b s b e e s enesnenes 37
YA oI i oo (8 exuTo] o1 (o N I oX TS SRSRR 39
ValUES ANU EXPIESSIONS. ...c.eiuiuiitiuirteiirteiert ettt s et b e b et b et b bbbt s b e b e e b et et e b et bt nnes 44
OPLION VAIUBS. ...ttt et b b e e e e e e e m e e st eae e besbeseeseeneebeebesaeseenseneenneneaneas 44

SR (g[S @] o) io] o [ I oY= To [=To 10U 44

IS the OPLION ACLVE.......iieiieeeee ettt et b e e ettt b st be e e e e e ebeneas 45

Is the Option Enabled? What iS the Data?........c.ccouvieiinrinenere e 46

SOME EXAMIPIES ...ttt et b et s b b b et eb e s b e b e e e e e enenae e 48

OrdiNArY EXPIESSIONS....c.viteieieeuirterte sttt sttt st se et et b e b sb e b e e e e st eaesbesbeseese e e ebesbesaeseenaenseneenenaens 50
FUNCHIONS ..ottt r et r et r et e bt s e bt ne b e seeR et e R e e e reseeresennenennereneereneas 53

LCTo = L o d o] (=TT 0] P 56

ISy b o] £ ST 0] 57

1] (=T 0 £= Yot STV 58
Updating the €C0S.db databhasSe.......cccveii et ste et eneeaesneeeesrennnens 60
4. THE BUIIO PrOCESS .. .vtiiiere ettt b et e e bt ne R b et e b b n e e enan 63
BUIIA TrEE GENEIALIONL. .. ..c ittt eer b e ner e e e enas 63
Configuration Header File GENEIatiON.......cocoveireiersireeee e e e se e ne s st see e eneenesnenes 64
THESYSIEM.N  HEAUEK......ccee ettt sttt eaeesbe s aeebesbeeasesbesaeenneereennes 69
121071 o 1T =10 0 LSOO 70
Updating the BUIIA TrEE......cceiiieeee ettt st sttt be st e 71
EXporting PUDIIC HEAAET FIlES.....c.couiieiiree ettt seebe e 71
(©70] 001 o 11 0o TR TSSOSO 73
Generating the LIBIariEs. .......o bbb 75
TREEXIAS.0  fIl e e et b e e r e e ae s beeaa et e eaeereeaeeneas 75
COMPIIEIS BN FIAGS ... cvetireetirietereet ettt b et b e bt e bbb e ens 76
CUSEOM BUIIA STEPS. ...ttt ettt ettt b et b e bbb e 79
STAMTUD COUR. ..ottt e bbbt b et bbb s e e bbbt e b e e e bt s b e b e b 82

THE LINKET SCEIPL. .ttt ettt et b et b et bt b nnes 82
BUIIAING TEST CASES.... ittt ettt sttt st b et b et b ettt e bt se b se b e se e b et b et sb e st sbebesrebeneebeneebe e 82
5. CDL Language SPECITICALION. .......ciiieieerieite sttt sttt et sb e bt e e et sesbe b see s e e e e eneeaens 85
(ot | IeT 1T s TR PSR PRROSPRROURRN 85
(ot | I ot T Yo 4 1=Y o | PSSR 89
(ot | I T= o122 Vo L= PSP 93
(ot | I 101 (=T 7= o3 = PSP 97
= ox 1)< | S 101
o= 1[I0 = 1= o F PSSP P PSPPI PTUOTTRSTTN 103
o0 101 011 107
(o= = LU Y= | [0S 109
(0[] TSP ST ST TPTRTR T TT 113
(o Lo T =T 0 1 - 117
[0 Lo T T VST T [ S 119
[0 =Y T T o] o o 121
[0 LCE Y03 1) 1 o S 123

[0 S 0] = /S 125



1= 1Y/ ] PSSR 129
PYATTWATE. ...ttt ettt e ee s e et e n e e se e et st e e e et et eneeseebesbeseessemeeneeneeneseenbenseneennnnens 133
0 L= 11 =TSSR 135
g o] L= 44 T=T 01 £ TSSOSO PRSP SRR STTR U PRO 139
T3 0o [ o 1 SRR 141
1o [0 Lo L= 1= SRR 143
L=To o Y72 LU =SS USROS 145
o] = oY USSR USSR 147
QT 1SRV USSR 149
(g T 1S o] o] [T OSSR USSR 151
Lo T 0 = 1 =SSR 153
0= L= 0 S SRS 155
1T [0 1T £ 157
£ 1] ) SRS 159
6. Templates, Targets and Other TOPICS. .....cuuiiriieeierieriere e e et s eestese e ae e essestesseeseesneeneens 161
=T 0] o] = =T 161
I 10 = PO PRURTPRUPRTRON 161



Vi



Chapter 1. Overview

eCos was designed from the very beginning as a configurable component architecture. The core eCos system con-
sists of a number of different components such as the kernel, the C library, an infrastructure package. Each of these
provides a large number of configuration options, allowing application developers to build a system that matches
the requirements of their particular application. To manage the potential complexity of multiple components and
lots of configuration options, eCos comes with a component framework: a collection of tools specifically designed
to support configuring multiple components. Furthermore this component framework is extensible, allowing addi-
tional components to be added to the system at any time.

Terminology

The eCos component architecture involves a number of key concepts.

Component Framework

The phrase component framework is used to describe the collection of tools that allow users to configure a system
and administer a component repository. This includes the ecosconfig command line tool, the graphical configura-
tion tool, and the package administration tool. Both the command line and graphical tools are based on a single
underlying library, the CDL library.

Configuration Option

The option is the basic unit of configurability. Typically each option corresponds to a single choice that a user can
make. For example there is an option to control whether or not assertions are enabled, and the kernel provides an
option corresponding to the number of scheduling priority levels in the system. Options can control very small
amounts of code such as whether or not the C librasyisk gets inlined. They can also control quite large
amounts of code, for example whether or notghietf  supports floating point conversions.

Many options are straightforward, and the user only gets to choose whether the option is enabled or disabled. Some
options are more complicated, for example the number of scheduling priority levels is a number that should be
within a certain range. Options should always start off with a sensible default setting, so that it is not necessary for
users to make hundreds of decisions before any work can start on developing the application. Once the application
is running the various configuration options can be used to tune the system for the specific needs of the application.

The component framework allows for options that are not directly user-modifiable. Consider the case of processor
endianness: some processors are always big-endian or always little-endian, while with other processors there is a
choice. Depending on the user’s choice of target hardware, endianness may or may not be user-modifiable.

Component

A component is a unit of functionality such as a particular kernel scheduler or a device driver for a specific device.
A component is also a configuration option in that users may want to enable or disable all the functionality in a
component. For example, if a particular device on the target hardware is not going to be used by the application,
directly or indirectly, then there is no point in having a device driver for it. Furthermore disabling the device driver
should reduce the memory requirements for both code and data.



Chapter 1. Overview

Components may contain further configuration options. In the case of a device driver, there may be options to
control the exact behavior of that driver. These will of course be irrelevant if the driver as a whole is disabled.
More generally options and components live in a hierarchy, where any component can contain options specific
to that component and further sub-components. It is possible to view the entire eCos kernel as one big compo-
nent, containing sub-components for scheduling, exception handling, synchronization primitives, and so on. The
synchronization primitives component can contain further sub-components for mutexes, semaphores, condition
variables, event flags, and so on. The mutex component can contain configuration options for issues like priority
inversion support.

Package

A package is a special type of component. Specifically, a package is the unit of distribution of components. It is
possible to create a distribution file for a package containing all of the source code, header files, documentation, and
other relevant files. This distribution file can then be installed using the appropriate tool. Afterwards it is possible
to uninstall that package, or to install a later version. The core eCos distribution comes with a number of packages
such as the kernel and the infrastructure. Other packages such as network stacks can come from various different
sources and can be installed alongside the core distribution.

Packages can be enabled or disabled, but the user experience is a little bit different. Generally it makes no sense
for the tools to load the details of every single package that has been installed. For example, if the target hardware
uses an ARM processor then there is no point in loading the HAL packages for other architectures and displaying
choices to the user which are not relevant. Therefore enabling a package means loading its configuration data into
the appropriate tool, and disabling a package is an unload operation. In addition, packages are not just enabled or
disabled: it is also possible to select the particular version of a package that should be used.

Configuration

A configuration is a collection of user choices. The various tools that make up the component framework deal with
entire configurations. Users can create a new configuration, output a savefile (by eefaatic ), manipulate a
configuration, and use a configuration to generate a build tree prior to building eCos and any other packages that
have been selected. A configuration includes details such as which packages have been selected, in addition to
finer-grained information such as which options in those packages have been enabled or disabled by the user.

Target

The target is the specific piece of hardware on which the application is expected to run. This may be an off-the-
shelf evaluation board, a piece of custom hardware intended for a specific application, or it could be something
like a simulator. One of the steps when creating a new configuration is need to specify the target. The component
framework will map this on to a set of packages that are used to populate the configuration, typically HAL and
device driver packages, and in addition it may cause certain options to be changed from their default settings to
something more appropriate for the specified target.

Template

A template is a partial configuration, aimed at providing users with an appropriate starting point. eCos is shipped
with a small number of templates, which correspond closely to common ways of using the system. There is a



Chapter 1. Overview

minimal template which provides very little functionality, just enough to bootstrap the hardware and then jump
directly to application code. The default template adds additional functionality, for example it causes the kernel
and C library packages to be loaded as well. The uitron template adds further functionality in the forif RCN
compatibility layer. Creating a new configuration typically involves specifying a template as well as a target,
resulting in a configuration that can be built and linked with the application code and that will run on the actual
hardware. Itis then possible to fine-tune configuration options to produce something that better matches the specific
requirements of the application.

Properties

The component framework needs a certain amount of information about each option. For example it needs to know
what the legal values are, what the default should be, where to find the on-line documentation if the user needs to
consult that in order to make a decision, and so on. These are all properties of the option. Every option (including
components and packages) consists of a name and a set of properties.

Consequences

Choices must have consequences. For an eCos configuration the main end product is a library that can be linked
with application code, so the consequences of a user choice must affect the build process. This happens in two
main ways. First, options can affect which files get built and end up in the library. Second, details of the current
option settings get written into various configuration header files using C preproggsgos directives, and
package source code c&mclude these configuration headers and adapt accordingly. This allows options to
affect a package at a very fine grain, at the level of individual lines in a source file if desired. There may be other
consequences as well, for example there are options to control the compiler flags that get used during the build
process.

Constraints

Configuration choices are not independent. The C library can provide thread-safe implementations of functions
like rand , but only if the kernel provides support for per-thread data. This is a constraint: the C library option
has a requirement on the kernel. A typical configuration involves a considerable number of constraints, of varying
complexity: many constraints are straightforward, opt\aequires optiorB, or optionC precludes optiom. Other
constraints can be more complicated, for example oftioray require the presence of a kernel scheduler but does
not care whether it is the bitmap scheduler, the mlqueue scheduler, or something else.

Another type of constraint involves the values that can be used for certain options. For example there is a kernel
option related to the number of scheduling levels, and there is a legal values constraint on this option: specifying
zero or a negative number for the number of scheduling levels makes no sense.

Conflicts

As the user manipulates options it is possible to end up with an invalid configuration, where one or more constraints
are not satisfied. For example if kernel per-thread data is disabled but the C library’s thread-safety options are
left enabled then there are unsatisfied constraints, also known as conflicts. Such conflicts will be reported by
the configuration tools. The presence of conflicts does not prevent users from attempting to build eCos, but the
consequences are undefined: there may be compile-time failures, there may be link-time failures, the application



Chapter 1. Overview

may completely fail to run, or the application may run most of the time but once in a while there will be a strange
failure. .. Typically users will want to resolve all conflicts before continuing.

To make things easier for the user, the configuration tools contain an inference engine. This can examine a conflict
in a particular configuration and try to figure out some way of resolving the conflict. Depending on the particular
tool being used, the inference engine may get invoked automatically at certain times or the user may need to invoke
it explicitly. Also depending on the tool, the inference engine may apply any solutions it finds automatically or it
may request user confirmation.

CDL

The configuration tools require information about the various options provided by each package, their consequences
and constraints, and other properties such as the location of on-line documentation. This information has to be
provided in the form of CDL scripts. CDL is short for Component Definition Language, and is specifically designed
as a way of describing configuration options.

A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this
library to produce an executable. Some source files may serve other purposes, for example to provide a linker
script.

2. Exported header files which define the interface provided by the package.
3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as
expected on their particular hardware and in their specific configuration.

5. One or more CDL scripts describing the package to the configuration system.

Not all packages need to contain all of these. For example some packages such as device drivers may not provide
a new interface, instead they just provide another implementation of an existing interface. However all packages
must contain a CDL script that describes the package to the configuration tools.

Component Repository

All eCos installations include a component repository. This is a directory structure where all the packages get
installed. The component framework comes with an administration tool that allows new packages or new versions
of a package to be installed, old packages to be removed, and so on. The component repository includes a simple
database, maintained by the administration tool, which contains details of the various packages.

Generally application developers do not need to modify anything inside the component repository, except by means
of the administration tool. Instead their work involves separate build and install trees. This allows the component
repository to be treated as a read-only resource that can be shared by multiple projects and multiple users. Compo-
nent writers modifying one of the packages do need to manipulate files in the component repository.



Chapter 1. Overview

Why Configurability?

The eCos component framework places a great deal of emphasis on configurability. The fundamental goal is to

allow large parts of embedded applications to be constructed from re-usable software components, which does not
a priori require that those components be highly configurable. However embedded application development often

involves some serious constraints.

Many embedded applications have to work with very little memory, to keep down manufacturing costs. The final
application image that will get blown into EPROM'’s or used to manufacture ROMs should contain only the code
that is absolutely necessary for the application to work, and nothing else. If a few tens of kilobytes are added
unnecessarily to a typical desktop application then this is regrettable, but is quite likely to go unnoticed. If an
embedded application does not fit on the target hardware then the problem is much more serious. The component
framework must allow users to configure the components so that any unnecessary functionality gets removed.

Many embedded applications need deterministic behavior so that they can meet real-time requirements. Such de-
terministic behavior can often be provided, but at a cost in terms of code size, slower algorithms, and so on. Other
applications have no such real-time requirements, or only for a small part of the overall system, and the bulk of
the system should not suffer any penalties. Again the component framework must allow the users control over the
timing behavior of components.

Embedded systems tend to be difficult to debug. Even when it is possible to get information out of the target hard-
ware by means other than flashing an LED, the more interesting debugging problems are likely to be timing-related
and hence very hard to reproduce and track down. The re-usable components can provide debugging assistance in
various ways. They can provide functionality that can be exploited by source level debuggers such as gdb, for ex-
ample per-thread debugging information. They can also contain various assertions so that problems can be detected
early on, tracing mechanisms to figure out what happened before the assertion failure, and so on. Of course all of
these involve overheads, especially code size, and affect the timing. Allowing users to control which debugging
features are enabled for any given application build is very desirable.

However, although it is desirable for re-usable components to provide appropriate configuration options this is not
required. It is possible to produce a package which does not provide a single configuration option — although the
user still gets to choose whether or not to use the package. In such cases it is still necessary to provide a minimal
CDL script, but its main purpose would be to integrate the package with the component framework’s build system.

Approaches to Configurability

The purpose of configurability is to control the behavior of components. A scheduler component may or may not
support time slicing; it may or may not support multiple priorities; it may or may not perform error checking on
arguments passed to the scheduler routines. In the context of a desktop application a button widget may contain
some text or it may contain a picture; the text may be displayed in a variety of fonts; the foreground and background
color may vary. When an application uses a component there must be some way of specifying the desired behavior.
The component writer has no way of knowing in advance exactly how a particular component will end up being
used.

One way to control the behavior is at run time. The application creates an instance of a button object, and then
instructs this object to display either text or a picture. No special effort by the application developer is required,
since a button can always support all desired behavior. There is of course a major disadvantage in terms of the size
of the final application image: the code that gets linked with the application has to provide support for all possible
behavior, even if the application does not require it.



Chapter 1. Overview

Another approach is to control the behavior at link-time, typically by using inheritance in an object-oriented lan-
guage. The button library provides an abstract base Blags and derived classé@xtButton  andPicture-

Button . If an application only uses text buttons then it will only create objects of TggesButton , and the code

for the PictureButton class does not get used. In many cases this approach works rather well and reduces the
final image size, but there are limitations. The main one is that you can only have so many derived classes before
the system gets unmanageable: a derived Gi@gButtonUsingABorderWidthOfOnePlusAWhiteBackgroun-
dAndBlackForegroundAndATwelvePointTimesFontAndNoErrorCheckingOrAssertions is not particularly
sensible as far as most application developers are concerned.

The eCos component framework allows the behavior of components to be controlled at an even earlier time: when
the component source code gets compiled and turned into a library. The button component could provide options,
for example an option that only text buttons need to be supported. The component gets built and becomes part of
a library intended specifically for the application, and the library will contain only the code that is required by this
application and nothing else. A different application with different requirements would need its own version of the
library, configured separately.

In theory compile-time configurability should give the best possible results in terms of code size, because it allows
code to be controlled at the individual statement level rather than at the function or object level. Consider an ex-
ample more closely related to embedded systems, a package to support multi-threading. A standard routine within
such a package allows applications to kill threads asynchronously: the POSIX routine fopthisds cancel

the equivalent routine ipl TRON ister_tsk . These routines themselves tend to involve a significant amount of
code, but that is not the real problem: other parts of the system require extra code and data for the kill routine to be
able to function correctly. For example if a thread is blocked while waiting on a mutex and is killed off by another
thread then the kill operation may have to do two things: remove the thread from the mutex’s queue of waiting
threads; and undo the effects, if any, of priority inheritance. The implementation requires extra fields in the thread
data structure so that the kill routine knows about the thread’s current state, and extra code in the mutex routines to
fill in and clear these extra fields correctly.

Most embedded applications do not require the ability to kill off a thread asynchronously, and hence the kill routine
will not get linked into the final application image. Without compile-time configurability this would still mean that

the mutex code and similar parts of the system contain code and data that serve no useful purpose in this application.
The eCos approach allows the user to select that the thread kill functionality is not required, and all the components
can adapt to this at compile-time. For example the code in the mutex lock routine contains statements to support
the killing of threads, but these statements will only get compiled in if that functionality is required. The overall
result is that the final application image contains only the code and data that is really needed for the application to
work, and nothing else.

Of course there are complications. To return to the button example, the application code might only use text buttons
directly, but it might also use some higher-level widget such as a file selector and this file selector might require
buttons with pictures. Therefore the button code must still be compiled to support pictures as well as text. The
configuration tools must be aware of the dependencies between components and ensure that the internal constraints
are met, as well as the external requirements of the application code. An area of particular concern is conflicting
requirements: a button component might be written in such a way that it can only support either text buttons or
picture buttons, but not both in one application; this would represent a weakness in the component itself rather than
in the component framework as a whole.

Compile-time configurability is not intended to replace the other approaches but rather to complement them. There
will be times when run-time selection of behavior is desirable: for example an application may need to be able
to change the baud rate of a serial line, and the system must then provide a way of doing this at run-time. There
will also be times when link-time selection is desirable: for example a C library might provide two different
random number routineand andirand48 ; these do not affect other code so there is no good reason for the



Chapter 1. Overview

C library component not to provide both of these, and allow the application code to use none, one, or both of
them as appropriate; any unused functions will just get eliminated at link-time. Compile-time selection of behavior

is another option, and it can be the most powerful one of the three and the best suited to embedded systems
development.

Degrees of Configurability

Components can support configurability in varying degrees. It is not necessary to have any configuration options at
all, and the only user choice is whether or not to load a particular package. Alternatively it is possible to implement
highly-configurable code. As an example consider a typical facility that is provided by many real-time kernels,
mutex locks. The possible configuration options include:

1.1f no part of the application and no other component requires mutexes then there is no point in having the
mutex code compiled into a library at all. This saves having to compile the code. In addition there will never
be any need for the user to configure the detailed behavior of mutexes. Therefore the presence of mutexes is a
configuration option in itself.

2.Even if the application does make use of mutexes directly or indirectly, this does not mean that all mutex
functions have to be included. The minimum functionality consists of lock and unlock functions. However
there are variants of the locking primitive such as try-lock and try-with-timeout which may or may not be
needed.

Generally it will be harmless to compile the try-lock function even if it is not actually required, because the
function will get eliminated at link-time. Some users might take the view that the try-lock function should
never get compiled in unless it is actually needed, to reduce compile-time and disk usage. Other users might
argue that there are very few valid uses for a try-lock function and it should not be compiled by default to
discourage incorrect uses. The presence of a try-lock function is a possible configuration option, although it
may be sensible to default it to true.

The try-with-timeout variant is more complicated because it adds a dependency: the mutex code will now
rely on some other component to provide a timer facility. To make things worse the presence of this timer
might impact other components, for example it may now be necessary to guard against timer interrupts, and
thus have an insidious effect on code size. The presence of a lock-with-timeout function is clearly a sensible
configuration option, but the default value is less obvious. If the option is enabled by default then the final
application image may end up with code that is not actually essential. If the option is disabled by default then
users will have to enable the option somehow in order to use the function, implying more effort on the part of
the user. One possible approach is to calculate the default value based on whether or not a timer component is
present anyway.

3. The application may or may not require the ability to create and destroy mutexes dynamically. For most em-
bedded systems it is both less error-prone and more efficient to create objects like mutexes statically. Dynamic
creation of mutexes can be implemented using a pre-allocated pool of mutex objects, involving some extra
code to manipulate the pool and an additional configuration option to define the size of the pool. Alterna-
tively it can be implemented using a general-purpose memory allocator, involving quite a lot of extra code
and configuration options. However this general-purpose memory allocator may be present anyway to support
the application itself or some other component. The ability to create and destroy mutexes dynamically is a
configuration option, and there may not be a sensible default that is appropriate for all applications.



Chapter 1. Overview

4. An important issue for mutex locks is the handling of priority inversion, where a high priority thread is pre-
vented from running because it needs a lock owned by a lower priority thread. This is only an issue if there is a
scheduler with multiple priorities: some systems may need multi-threading and hence synchronization primi-
tives, but a single priority level may suffice. If priority inversion is a theoretical possibility then the application
developer may still want to ignore it because the application has been designed such that the problem cannot
arise in practice. Alternatively the developer may want some sort of exception raised if priority inversion does
occur, because it should not happen but there may still be bugs in the code. If priority inversion can occur
legally then there are three main ways of handling it: priority ceilings, priority inheritance, and ignoring the
problem. Priority ceilings require little code but extra effort on the part of the application developer. Priority
inheritance requires more code but is automatic. Ignoring priority inversion may or may not be acceptable,
depending on the application and exactly when priority inversion can occur. Some of these choices involve
additional configuration options, for example there are different ways of raising an exception, and priority
inheritance may or may not be applied recursively.

5. As a further complication some mutexes may be hidden inside a component rather than being an explicit part
of the application. For example, if the C library is configured to provideatoc call then there may be an
associated mutex to make the function automatically thread-safe, with no need for external locking. In such
cases the memory allocation component of the C library can impose a constraint on the kernel, requiring that
mutexes be provided. If the user attempts to disable mutexes anyway then the configuration tools will report a
conflict.

6. The mutex code should contain some general debugging code such as assertions and tracing. Usually such
debug support will be enabled or disabled at a coarse level such as the entire system or everything inside the
kernel, but sometimes it will be desirable to enable the support more selectively. One reason would be memory
requirements: the target may not have enough memory to hold the system if all debugging is enabled. Another
reason is if most of the system is working but there are a few problems still to resolved; enabling debugging
in the entire system might change the system’s timing behavior too much, but enabling some debug options
selectively can still be useful. There should be configuration options to allow specific types of debugging to
be enabled at a fine-grain, but with default settings inherited from an enclosing component or from global
settings.

7. The mutex code may contain specialized code to interact with a debugging tool running on the host. It should be
possible to enable or disable this debugging code, and there may be additional configuration options controlling
the detailed behavior.

Altogether there may be something like ten to twenty configuration options that are specific to the mutex code.
There may be a similar number of additional options related to assertions and other debug facilities. All of the
options should have sensible default values, possibly fixed, possibly calculated depending on what is happening
elsewhere in the configuration. For example the default setting for an assertion option should generally inherit from
a kernel-wide assertion control option, which in turn inherits from a global option. This allows users to enable or
disable assertions globally or at a more fine-grained level, as desired.

Different components may be configurable to different degrees, ranging from no options at all to the fine-grained
configurability of the above mutex example (or possibly even further). It is up to component writers to decide
what options should be provided and how best to serve the needs of application developers who want to use that
component.

Warnings

Large parts of eCos were developed concurrently with the development of the configuration technology, or in



Chapter 1. Overview

some cases before design work on that technology was complete. As a consequence the various eCos packages
often make only limited use of the available functionality. This situation is expected to change over time. It does
mean that many of the descriptions in this guide will not correspond exactly to how the eCos packages work right
now, but rather to how they could work. Some of the more extreme discrepancies such as the location of on-line
documentation in the component repository will be mentioned in the appropriate places in the guide.

A consequence of this is that developers of new components can look at existing CDL scripts for examples, and
discover discrepancies between what is recommended in this guide and what actually happens at present. In such
cases this guide should be treated as authoritative.

It is also worth noting that the current component framework is not finished. Various parts of this guide will refer to
possible changes and enhancements in future versions. Examining the source code of the configuration tools may
reveal hints about other likely developments, and there are many more possible enhancements which only exist at
a conceptual level right now.



Chapter 1. Overview

10



Chapter 2. Package Organization

For a package to be usable in the eCos component framework it must conform to certain rules imposed by that
framework. Packages must be distributed in a form that is understood by the component repository administration
tool. There must be a top-level CDL script which describes the package to the component framework. There are
certain limitations related to how a package gets built, so that the package can still be used in a variety of host
environments. In addition to these rules, the component framework provides a number of guidelines. Packages do
not have to conform to the guidelines, but sticking to them can simplify certain operations.

This chapter deals with the general organization of a package, for example how to distinguish between private and
exported header file€hapter Jescribes the CDL languagéhapter 4etails the build process.

Packages and the Component Repository

All eCos installations include a component repository. This is a directory structure for all installed packages. The
component framework comes with an administration tool that allows new packages or new versions of a package
to be installed, old packages to be removed, and so on. The component repository includes a simple database,
maintained by the administration tool, which contains details of the various packages.

packages’

ccosdb  compay  ervol hal?  infra/ =1 ketnel!  langoage! veioplates!

mikLon/! | | o

calchlz=! <arch?=~' ./

Each package has its own little directory hierarchy within the component repository. Keeping several packages
in a single directory is illegal. The error, infra and kernel packages all live at the top-level of the repository. For
other types of packages there are some pre-defined directangsat is used for compatibility packages, which
implement other interfaces such @3 RON or POSIX using native eCos callsil is used for packages that port

eCos to different architectures or platforms, and this directory is further organized on a per-architectuie &asis;
intended for device driveréanguage is used for language support libraries, for example the C library. There are

no strict rules defining where new packages should get installed. Obviously if an existing top-level directory such
ascompat is applicable then the new package should go in there. If a new category is desirable then it is possible to
create a new sub-directory in the component repository. For example, an organization planning to release a number
of eCos packages may want them all to appear below a sub-directory corresponding to the organization’s name —
in the hope that the name will not change too often. It is possible to add new packages directly to the top-level of
the component repository, but this should be avoided.

The ecos.db file holds the component repository database and is managed by the administration tool. The vari-
ous configuration tools read in this file when they start-up to obtain information about the various packages that

11



Chapter 2. Package Organization

have been installed. When developing a new package it is necessary to add some information to the file, as de-
scribed inthe Section calletipdating the ecos.db databaseChapter 3Thetemplates  directory holds various
configuration templates.

Note: Earlier releases of eCos came with two separate files, targets and packages . The ecos.db database
replaces both of these.

Caution

The current ecos.db database does not yet provide all of the information needed by the com-
ponent framework. Its format is subject to change in future releases, and the file may be
replaced completely if necessary. There are a number of other likely future developments
related to the component repository and the database. The way targets are described is
subject to change. Sometimes it is desirable for component writers to do their initial develop-
ment in a directory outside the component repository, but there is no specific support in the
framework for that yet.

Package Versioning

12

Below each package directory there can be one or more version sub-directories, named after the versions. This is
a requirement of the component framework: it must be possible for users to install multiple versions of a package
and select which one to use for any given application. This has a number of advantages to users: most importantly
it allows a single component repository to be shared between multiple users and multiple projects, as required;
also it facilitates experiments, for example it is relatively easy to try out the latest version of some package and
see if it makes any difference. There is a potential disadvantage in terms of disk space. However since eCos
packages generally consist of source code intended for small embedded systems, and given typical modern disk
sizes, keeping a number of different versions of a package installed will usually be acceptable. The administration
tool can be used to remove versions that are no longer required.

kecoelf

cuccentS v]. 2L/ vl .3f

The versioncurrent  is special. Typically it corresponds to the very latest version of the sources, obtained by
anonymous CVS. These sources may change frequently, unlike full releases which do not change (or only when
patches are produced). Component writers may also want to work eorthet  version.

All other subdirectories of a package correspond to specific releases of that package. The component framework
allows users to select the particular version of a package they want to use, but by default the most recent one will
be used. This requires some rules for ordering version numbers, a difficult task because of the wide variety of ways
in which versions can be identified.



Chapter 2. Package Organization

1. The versiorcurrent  is always considered to be the most recent version.

2. If the first character of both strings are eitheor v, these are skipped because it makes little sense to enforce
case sensitivity here. Potentially this could result in ambiguity if there are two version direstorgesnd
v1.0 , but this will match the confusion experienced by any users of such a package. However if two subsequent
releases are calledl.0 andvl.1 , e.g. because of a minor mix-up when making the distribution file, then the
case difference is ignored.

3. Next the two version strings are compared one character at a time. If both strings are currently at a digit then a
string to number conversion takes place, and the resulting numbers are compared. For exanspgemore
recent release thare. If the two numbers are the same then processing continues, sebfandv2c the
version comparison code would move orbtandc.

4. The characters dot hyphen and underscore are treated as equivalent separators, so if one release goes out
asvl 1 and the next goes out &$.2 the separator has no effect.

5.If neither string has yet terminated but the characters are different, ASCIl comparison is used. For example
V1.1b is more recent thami.1lalpha

6. If one version string terminates before the other, the current character determines which is the more recent. If
the other string is currently at a separator character, for exarngle andv1.3 , then the former is assumed
to be a minor release and hence more recent than the latter. If the other string is not at a separator character,
for examplevl.3beta ,thenitis treated as an experimental version ofthe release and hence older.

7. There is no special processing of dates, so with two vergi©ns000316 andss-20001111 the numerical
values20001111 and20000316 determine the result: larger values are more recent. It is suggested that the
full year be used in such cases rather than a shorthanddik® avoid Y2100 problems.

8. There is no limit on how many levels of versioning are used, so there could in theonghedal.5.9.2.7
release of a package. However this is unlikely to be of benefit to typical users of a package.

The version comparison rules of the component framework may not be suitable for every version numbering
scheme in existence, but they should cope with many common cases.

Caution

There are some issues still to be resolved before it is possible to combine the current
sources available via anonymous CVS and full releases of eCos and additional packages
in a single component repository. The first problem relates to the ecos.db database: if a
new package is added via the CVS repository then this requires a database update, but the
administration tool is bypassed. The second problem arises if an organization chooses to
place its component repository under source code control using CVS, in which case different
directories will belong to different CVS servers. These issues will be addressed in a future
release.

Package Contents and Layout

A typical package contains the following:

1. Some number of source files which will end up in a library. The application code will be linked with this
library to produce an executable. Some source files may serve other purposes, for example to provide a linker
script.

13



Chapter 2. Package Organization

14

2. Exported header files which define the interface provided by the package.
3. On-line documentation, for example reference pages for each exported function.

4. Some number of test cases, shipped in source format, allowing users to check that the package is working as
expected on their particular hardware and in their specific configuration.

5. 0ne or more CDL scripts describing the package to the configuration system.

It is also conventional to have a per-pack@jangeLog file used to keep track of changes to that package. This

is especially valuable to end users of the package who may not have convenient access to the source code control
system used to manage the master copy of the package, and hence cannot find out easily what has changed. Often
it can be very useful to the main developers as well.

Any given packages need not contain all of these. It is compulsory to have at least one CDL script describing
the package, otherwise the component framework would be unable to process it. Some packages may not have any
source code: itis possible to have a package that merely defines a common interface which can then be implemented
by several other packages, especially in the context of device drivers; however it is still common to have some code
in such packages to avoid replicating shareable code in all of the implementation packages. Similarly it is possible
to have a package with no exported header files, just source code that implements an existing interface: for example
an ethernet device driver might just implement a standard interface and not provide any additional functionality.
Packages do not need to come with any on-line documentation, although this may affect how many people will
want to use the package. Much the same applies to per-package test cases.

The component framework has a recommended per-package directory layout which splits the package contents on
a functional basis:

<package=

Changelog odl doc include s0C tests

For example, if a package hasiadude sub-directory then the component framework will assume that all header
files in and below that directory are exported header files and will do the right thing at build time. Similarly if there
is doc property indicating the location of on-line documentation then the component framework will first look in
thedoc sub-directory.

This directory layout is just a guideline, it is not enforced by the component framework. For simple packages it
often makes more sense to have all of the files in just one directory. For example a package could just contain
the fileshello.cxx  , hello.h , hello.html  andhello.cdl . By defaulthello.n  will be treated as an exported
header file, although this can be overridden with itheude_filesproperty. Assuming there is a doc property
referring tohello.html and there is naloc sub-directory then the tools will search for this file relative to the
package’s top-level and everything will just work. Much the same appliesitocxx ~ andhello.cdl

Tip: Older versions of the eCos build system only supported packages that followed the directory structure
exactly. Hence certain core packages such as error implement the full directory structure, even though that is



Chapter 2. Package Organization

a particularly simple package and the full directory structure is inappropriate. Component writers can decide
for themselves whether or not the directory structure guidelines are appropriate for their package.

Outline of the Build Process

The full build process is described@hapter 4but a summary is appropriate here. A build involves three directory
structures:

1. The component repository. This is where all the package source code is held, along with CDL scripts, doc-
umentation, and so on. For build purposes a component repository is read-only. Application developers will
only modify the component repository when installing or removing packages, via the administration tool.
Component writers will typically work on just one package in the component repository.

2.The build tree. Each configuration has its own build tree, which can be regenerated at any time using the
configuration'scos.ecc  savefile. The build tree contains only intermediate files, primarily object files. Once
a build is complete the build tree contains no information that is useful for application development and can
be wiped, although this would slow down any rebuilds following changes to the configuration.

3. The install tree. This is populated during a build, and contains all the files relevant to application development.
There will be alib  sub-directory which typically containibtarget.a , a linker script, start-up code, and
so on. There will also be ainclude sub-directory containing all the header files exported by the various
packages. There will also bar&lude/pkgconf sub-directory containing various configuration header files
with #define’s ~ for the options. Typically the install tree is created within the build tree, but this is not a
requirement.

The build process involves the following steps:

1. Given a configuration, the component framework is responsible for creating all the directories in the build
and install trees. If these trees already exist then the component framework is responsible for any clean-ups
that may be necessary, for example if a package has been removed then all related files should be expunged
from the build and install trees. The configuration header files will be generated at this time. Depending on
the host environment, the component framework will also generate makefiles or some other way of building
the various packages. Every time the configuration is modified this step needs to be repeated, to ensure that all
option consequences take effect. Care is taken that this will not result in unnecessary rebuilds.

Note: At present this step needs to be invoked manually. In a future version the generated makefile may if
desired perform this step automatically, using a dependency on the ecos.ecc savefile.

2. The first step in an actual build is to make sure that the install tree contains all exported header files. All
compilations will use the install treefsclude  directory as one of the places to search for header files.

3. All source files relevant to the current configuration get compiled. This involves a set of compiler flags initial-
ized on a per-target basis, with each package being able to modify these flags, and with the ability for the user
to override the flags as well. Care has to be taken here to avoid inappropriate target-dependencies in packages
that are intended to be portable. The component framework has built-in knowledge of how to handle C, C++

15



Chapter 2. Package Organization

16

and assembler source files — other languages may be added in future, as and when necessamypilkhe
property is used to list the files that should get compiled. All object files end up in the build tree.

4. 0Once all the object files have been built they are collected into a library, typitatiyget.a , which can
then be linked with application code. The library is generated in the install tree.

5. The component framework provides support for custom build steps, usimyatke objecandmakeproper-
ties. The results of these custom build steps can either be object files that should end up in a library, or other
files such as a linker script. It is possible to control the order in which these custom build steps take place, for
example it is possible to run a particular build step before any of the compilations happen.

Configurable Source Code

All packages should be totally portable to all target hardware (with the obvious exceptions of HAL and device
driver packages). They should also be totally bug-free, require the absolute minimum amount of code and data
space, be so efficient that cpu time usage is negligible, and provide lots of configuration options so that application
developers have full control over the behavior. The configuration options are optional only if a package can meet
the requirements of every potential application without any overheads. It is not the purpose of this guide to explain
how to achieve all of these requirements.

The eCos component framework does have some important implications for the source code: compiler flag depen-
dencies; package interfaces vs. implementations; and how configuration options affect source code.

Compiler Flag Dependencies

Wherever possible component writers should avoid dependencies on particular compiler flags. Any such dependen-
cies are likely to impact portability. For example, if one package needs to be built in big-endian mode and another
package needs to be built in little-endian mode then usually it will not be possible for application developers to use
both packages at the same time; in addition the application developer is no longer given a choice in the matter. It
is far better for the package source code to adapt the endianness at compile-time, or possibly at run-time although
that will involve code-size overheads.

Note: A related issue is that the current support for handling compiler flags in the component framework is
still limited and incapable of handling flags at a very fine-grain. The support is likely to be enhanced in future
versions of the framework, but there are non-trivial problems to be resolved.

Package Interfaces and Implementations

The component framework provides encapsulation at the package level. A packageno way of accessing

the implementation details of another packa@gyat compile-time. In particular, if there is a private header file
somewhere in a packagess: sub-directory then this header file is completely invisible to other packages. Any
attempts to cheat by using relative pathnames beginning with are generally doomed to failure because of the
presence of package version directories. There are two ways in which one package can affect another: by means of
the exported header files, which define a public interface; or via the CDL scripts.

This encapsulation is a deliberate aspect of the overall eCos component framework design. In most cases it does
not cause any problems for component writers. In some cases enforcing a clean separation between interface and
implementation details can improve the code. Also it reduces problems when a package gets upgraded: component



Chapter 2. Package Organization

writers are free to do pretty much anything on the implementation side, including renaming every single source file;
care has to be taken only with the exported header files and with the CDL data, because those have the potential of
impacting other packages. Application code is similarly unable to access package implementation details, only the
exported interface.

Very occasionally the inability of one package to see implementation details of another does cause problems. One
example occurs in HAL packages, where it may be desirable for the architectural, variant and platform HAL's to
share some information that should not be visible to other packages or to application code. This may be addressed
in the future by introducing the conceptfaénd packages, just as a C++ class can Haeed functions and

classes which are allowed special access to a class internals. It is not yet clear whether such cases are sufficiently
frequent to warrant introducing such a facility.

Source Code and Configuration Options

Configurability usually involves source code that needs to implement different behavior depending on the settings
of configuration options. It is possible to write packages where the only consequence associated with various
configuration options is to control what gets built, but this approach is limited and does not allow for fine-grained
configurability. There are three main ways in which options could affect source code at build time:

1. The component code can be passed through a suitable preprocessor, either an existing one such as m4 or a
new one specially designed with configurability in mind. The original sources would reside in the component
repository and the processed sources would reside in the build tree. These processed sources can then be
compiled in the usual way.

This approach has two main advantages. First, it is independent from the programming language used to
code the components, provided reasonable precautions are taken to avoid syntax clashes between preprocessor
statements and actual code. This would make it easier in future to support languages other than C and C++.
Second, configurable code can make use of advanced preprocessing facilities such as loops and recursion. The
disadvantage is that component writers would have to learn about a new preprocessor and embed appropriate
directives in the code. This makes it much more difficult to turn existing code into components, and it involves
extra training costs for the component writers.

2. Compiler optimizations can be used to elide code that should not be present, for example:

if (CYGHWR_NUMBER_UARTS> 0) {

}

If the compiler knows thaCYGHWR_NUMBER_UARS $he constant number O then it is a trivial operation to

get rid of the unnecessary code. The component framework still has to define this symbol in a way that is
acceptable to the compiler, typically by usinganst variable or a preprocessor symbol. In some respects
this is a clean approach to configurability, but it has limitations. It cannot be used in the declarations of data
structures or classes, nor does it provide control over entire functions. In addition it may not be immediately
obvious that this code is affected by configuration options, which may make it more difficult to understand.

3. Existing language preprocessors can be used. In the case of C or C++ this would be the standard C preproces-
sor, and configurable code would contain a numbetifoéf and#if statements.

17



Chapter 2. Package Organization

#if (CYGHWR_NUMBER_UARTS> 0)

#endif

This approach has the big advantage that the C preprocessor is a technology that is both well-understood
and widely used. There are also disadvantages: it is not directly applicable to components written in other
languages such as Java (although it is possible to use the C preprocessor as a stand-alone program); the pre-
processing facilities are rather limited, for example there is no looping facility; and some people consider
the technology to be ugly. Of course it may be possible to get around the second objection by extending the
preprocessor that is used by gcc and g++.

The current component framework generates configuration header files with C preprerdesises  for each

option (typically, there various properties which can be used to control this). It is up to component writers to decide
whether to use preprocesstiidef statements or language constructs sucifi a#\t present there is no support

for languages which do not involve the C preprocessor, although such support can be added in future when the
need arises.

Exported Header Files

A package’s exported header files should specify the interface provided by that package, and avoid any implemen-
tation details. However there may be performance or other reasons why implementation details occasionally need
to be present in the exported headers.

Note: Not all programming languages have the concept of a header file. In some cases the component frame-
work would need extensions to support packages written in such languages.

Configurability has a number of effects on the way exported header files should be written. There may be configu-
ration options which affect the interface of a package, not just the implementation. It is necessary to worry about
nestedkinclude’s  and how this affects package and application builds. A special case of this relates to whether
or not exported header files shoueidclude  configuration headers. These configuration headers are exported, but
should only befinclude’d  when necessary.

Configurable Functionality

Many configuration options affect only the implementation of a package, not the interface. However some options

will affect the interface as well, which means that the options have to be tested in the exported header files. Some
implementation choices, for example whether or not a particular function should be inlined, also need to be tested
in the header file because of language limitations.

Consider a configuration optiocbYGFUN_KERNEL_MUTEX_TIMEDLO®Kich controls whether or not a function
cyg_mutex_timedlock is provided. The exported kernel header €yg/kernel/kapi.h could contain the fol-
lowing:

#include  <pkgconf/kernel.h >

#ifdef CYGFUN_KERNEL_MUTEX_TIMEDLOCK
extern bool cyg_mutex_timedlock(cyg_mutex_t*);

18



Chapter 2. Package Organization
#endif

This is a correct header file, in that it defines the exact interface provided by the package at all times. However
is has a number of implications. First, the header file is now dependegsikgoonf/kernel.h , SO any changes

to kernel configuration options will causgg/kernel/kapi.h to be out of date, and any source files that use

the kernel interface will need rebuilding. This may affect sources in the kernel package, in other packages, and
in application source code. Second, if the application makes use of this function somewhere but the application
developer has misconfigured the system and disabled this functionality anyway then there will now be a compile-
time error when building the application. Note that other packages should not be affected, since they should impose
appropriate constraints aIYGFUN_KERNEL_MUTEX_TIMEDLOIEkhey use that functionality (although of course

some dependencies like this may get missed by component developers).

An alternative approach would be:

extern bool cyg_mutex_timedlock(cyg_mutex_t*);

Effectively the header file is now lying about the functionality provided by the package. The first result is that there

is no longer a dependency on the kernel configuration header. The second result is that an application file using the
timed-lock function will now compile, but the application will fail to link. At this stage the application developer

still has to intervene, change the configuration, and rebuild the system. However no application recompilations are
necessary, just a relink.

Theoretically it would be possible for a tool to analyze linker errors and suggest possible configuration changes
that would resolve the problem, reducing the burden on the application developer. No such tool is planned in the
short term.

Itis up to component writers to decide which of these two approaches should be preferred. Note that it is not always
possible to avoidinclude’ing a configuration header file in an exported one, for example an option may affect

a data structure rather than just the presence or absence of a function. Issues like this will vary from package to
package.

Nested #include’s

As a general rule, unnecessaiyclude’s  should be avoided. A header file showldclude  only those header

files which are absolutely needed for it to define its interface. Any additiomalide’s  make it more likely that
package or application source files become dependent on configuration header files and will get rebuilt unneces-
sarily when there are minor configuration changes.

Including Configuration Headers

Exported header files should avaiiiclude’ing configuration header files unless absolutely necessary, to avoid
unnecessary rebuilding of both application code and other packages when there are minor configuration changes.
A #include is needed only when a configuration option affects the exported interface, or when it affects some
implementation details which is controlled by the header file such as whether or not a particular function gets
inlined.

There are a couple of ways in which the problem of unnecessary rebuilding could be addressed. The first would
require more intelligent handling of header file dependency handling by the tools (especially the compiler) and the
build system. This would require changes to various non-eCos tools. An alternative approach would be to support
finer-grained configuration header files, for example there could be gkijitenf/libc/inline.h controlling

19



Chapter 2. Package Organization

which functions should be inlined. This could be achieved by some fairly simple extensions to the component
framework, but it makes it more difficult to get the package header files and source code correct: a C preprocessor
#ifdef  directive does not distinguish between a symbol not being defined because the option is disabled, or the
symbol not being defined because the appropriate configuration header file has neibhtdegsid . It is likely

that a cross-referencing tool would have to be developed first to catch problems like this, before the component
framework could support finer-grained configuration headers.

Package Documentation

On-line package documentation should be in HTML format. The component framework imposes no special limi-
tations: component writers can decide which version of the HTML specification should be followed; they can also
decide on how best to cope with the limitations of different browsers. In general it is a good idea to keep things
simple.

Test Cases

Packages should normally come with one or more test cases. This allows application developers to verify that a
given package works correctly on their particular hardware and in their particular configuration, making it slightly
more likely that they will attempt to find bugs in their own code rather than automatically blaming the component
writers.

At the time of writing the application developer support for building and running test cases via the component
framework is under review and likely to change. Currently each test case should consist of a single C or C++
source file that can be compiled with the package’s set of compiler flags and linked like any application program.
Each test case should use the testing API defined by the infrastructure. A magically-named calculated configuration
option of the formCYGPKG<PACKAGE-NAME_TESTSIists the test cases.

Host-side Support

On occasion it would be useful for an eCos package to be shipped with host-side support. This could take the form

of an additional tool needed to build that package. It could be an application intended to communicate with the
target-side package code and display monitoring information. It could be a utility needed for running the package
test cases, especially in the case of device drivers. The component framework does not yet provide any such support
for host-side software, and there are obvious issues related to portability to the different machines that can be used
for hosts. This issue may get addressed in some future release. In some cases custom build steps can be subverted
to do things on the host side rather than the target side, but this is not recommended.

Making a Package Distribution

Developers of new eCos packages are advised to distribute their packages in the form of eCos package distribution
files. Packages distributed in this format may be added to existing eCos component repositories in a robust manner
using the Package Administration Tool. This chapter describes the format of package distribution files and details
how to prepare an eCos package for distribution in this format.

20



Chapter 2. Package Organization

The eCos package distribution file format

eCos package distribution files are gzipped GNU tar archives which contain both the source code for one or more
eCos packages and a data file containing package information to be added to the component repository database.
The distribution files are subject to the following rules:

a. The data file must be name#gadd.db and must be located in the root of the tar archive. It must contain data
in a format suitable for appending to the eCos repository database (ectisedBpction calletdpdating the
ecos.db database Chapter 3Jescribes this data format. Note that a database consistency check is performed
by the eCos Administration Tool whetkgadd.db has been appended to the database. Any new target entries
which refer to unknown packages will be removed at this stage.

b. The package source code must be placed in one or rymaekage-path >/ <version > directories in the
tar archive, where eachipackage-path directory path is specified as the directory attribute of one of the
packages entries ikgadd.db .

c. An optional license agreement file nam@@add.txt may be placed in the root of the tar archive. It should
contain text with a maximum line length of 79 characters. If this file exists, the contents will be presented
to the user during installation of the package. The eCos Package Administration Tool will then prompt the
user with the questionDo you accept all the terms of the preceding license agreement?"

The user must resporigles” to this prompt in order to proceed with the installation.

d. Optional template files may be placed in one or meneplates/ <template_name > directories in the tar
archive. Note that such template files would be appropriate only where the packages to be distributed have a
complex dependency relationship with other packages. Typically, a third party package can be simply added
to an eCos configuration based on an existing core template and the provision of new templates would not be
appropriatethe Section calledemplatesn Chapter 6contains more information on templates.

e. The distribution file must be given .apk (not .tar.gz ) file extension. Theepk file extension serves to
distinguish eCos package distributions files from generic gzipped GNU tar archives. It also discourages users
from attempting to extract the package from the archive manually. The file browsing dialog of the eCos Pack-
age Administration Tool lists only those files which havegk extension.

f. No other files should be present in the archive.

g. Files in the tar archive may us€ or CRLFline endings interchangably. The eCos Administration Tool ensures
that the installed files are given the appropriate host-specific line endings.

h. Binary files may be placed in the archive, but the distribution of object code is not recommended. All binary
files must be given ain suffix in addition to any file extension they may already have. For example, the GIF
image filemyfile.gif must be namedhyfile.gif.bin in the archive. Thebin suffix is removed during
file extraction and is used to inhibit the manipulation of line endings by the eCos Administration Tool.

Preparing eCos packages for distribution

Development of new eCos packages or new versions of existing eCos packages will take place in the context of
an existing eCos component repository. This section details the steps involved in extracting new packages from a
repository and generating a corresponding eCos package distribution file for distribution of the packages to other
eCos users. The steps required are as follows:

21



Chapter 2. Package Organization

22

a.Create a temporary directo$pKGTMHor manipulation of the package distribution file contents and copy the
source files of the new packages into this directory, preserving the relative path to the package. In the case of
a new package atypkg/current  in the repository:

$ mkdir -p $PKGTMP/mypkg
$ cp -p -R $ECOS_REPOSITORY/mypkg/current $PKGTMP/mypkg

Where more than one package is to be distributed in a single package distribution file, copy each package
in the above manner. Note that multiple packages distributed in a single package distribution file cannot be
installed separately. Where such flexibility is required, distribution of each new package in separate package
distribution files is recommended.

b. Copy any template files associated with the distributed packages into the temporary directory, preserving the
relative path to the template. For example:

$ mkdir -p $PKGTMP/templates
$ cp -p -R $ECOS_REPOSITORY/templates/mytemplate $PKGTMP/templates

c. Remove any files from the temporary directory hierarchy which you do not want to distribute with the packages
(eg object filescvsdirectories).

d. Add a.bin suffix to the name of any binary files. For example, if the packages contains GIF image files (*.gif)
for documentation purposes, such files must be renamed to *.gif.bin as follows:

$ find $PKGTMP -type f -name '*.gif -exec mv {} {}.bin '}

The.bin suffix is removed during file extraction and is used to inhibit the manipulation of line endings by the
eCos Package Administration Tool.

e.Extract the package records for the new packages from the package database file at
$ECOS_REPOSITORY/ecos.db and create a new file containing these rec@rigGampP/pkgadd.db (in
the root of the temporary directory hierarchy). Any target records which reference the distributed packages
must also be provided in pkgadd.db.

f. Rename the version directories undBeKGTMKtypically current  during development) to reflect the versions
of the packages you are distributing. For example, version 1.0 of a package may use the version directory name
vl O:
$ cd $PKGTMP/mypkg
$ mv current v1_0

the Section calle@ackage Versionindescribes the version naming conventions.

g. Rename any template files und®KGTMKtypically current.ect  during development) to reflect the version
of the template you are distributing. For example, version 1.0 of a template may use the filanarse

$ cd $PKGTMP/templates/mytemplate
$ mv current.ect v1_0.ect

Itis also important to edit the contents of the template file, changing the version of each referenced package to
match that of the packages you are distributing. This step will eliminate version warnings during the subsequent
loading of the template.



Chapter 2. Package Organization

.Optionally create a licence agreement file$aKGTMP/pkgadd.txt ~ containing the licensing terms under

which you are distributing the new packages. Limit each line in this file to a maximum of 79 characters.

. Create a GNU tar archive of the temporary directory hierarchy. By convention, this archive would have a name

of the form<package_name >- <version >:

$ cd $PKGTMP
$ tar cf mypkg-1.0.tar *

Note that non-GNU version of tar may create archive files which exhibit subtle incompatibilities with GNU
tar. For this reason, always use GNU tar to create the archive file.

. Compress the archive using gzip and give the resulting fid¢pla file extension:

$ gzip mypkg-1.0.tar
$ mv mypkg-1.0.tar.gz mypkg-1.0.epk

The resulting eCos package distribution file (*.epk) is in a compressed format and may be distributed without
further compression.

23



Chapter 2. Package Organization

24



Chapter 3. The CDL Language

The CDL language is a key part of the eCos component framework. All packages must come with at least one
CDL script, to describe that package to the framework. The information in that script includes details of all the
configuration options and how to build the package. Implementing a new component or turning some existing code
into an eCos component always involves writing corresponding CDL. This chapter provides a description of the
CDL language. Detailed information on specific parts of the language can be foQidpter 5

Language Overview
A very simple CDL script would look like this:

cdl_package CYGPKG_ERROR {

display "Common error code support"
compile strerror.cxx

include_dir  cygl/error

description

This package contains the common list of error and
status codes. It is held centrally to allow

packages to interchange error codes and status
codes in a common way, rather than each package
having its own conventions for error/status

reporting. The error codes are modelled on the
POSIX style naming e.g. EINVAL etc. This package
also provides the standard strerror() function to
convert error codes to textual representation."

}

This describes a single package, the error code package, which does not have any sub-components or configuration
options. The package has an internal na@¥GPKG_ERRQRhich can be referenced in other CDL scripts using
e.g.requires CYGPKG_ERROR. There will also be atdefine for this symbol in a configuration header file. In
addition to the package name, this script provides a number of properties for the package as a whole. The display
property provides a short description. The description property involves a rather longer one, for when users need a
bit more information. The compile and include_dir properties list the consequences of this package at build-time.
The package appears to lack any on-line documentation.

Packages could be even simpler than this. If the package only provides an interface and there are no files to be
compiled then there is no need for a compile property. Alternatively if there are no exported header files, or if
the exported header files should go to the top-level oirtétall/include directory, then there is no need for

an include_dir property. Strictly speaking the description and display properties are optional as well, although
application developers would not appreciate the resulting lack of information about what the package is supposed
to do.

However many packages tend to be a bit more complicated than the error package, containing various sub-
components and configuration options. These are also defined in the CDL scripts and in much the same way
as the package. For example, the following excerpt comes from the infrastructure package:

cdl_component CYGDBG_INFRA_DEBUG_TRACE_ASSERT_BUFFER {
display "Buffered tracing"
default_value 1

25



Chapter 3. The CDL Language

active_if CYGDBG_USE_TRACING
description
An output module which buffers output from tracing and
assertion events. The stored messages are output when an
assert fires, or CYG_TRACE_PRINT() (defined in
<cyg/infra/cyg_trac.h >) is called. Of course, there will
only be stored messages if tracing per se (CYGDBG_USE_TRACING)
is enabled above."

cdl_option CYGDBG_INFRA_DEBUG_TRACE_BUFFER_SIZE {

display "Trace buffer size"

flavor data

default_value 32

legal_values 5 to 65535

description
The size of the trace buffer. This counts the number of
trace records stored. When the buffer fills it either
wraps, stops recording, or generates output.”

}

Like acdl_package , acdl_component has a name and a body. The body contains various properties for that
component, and may also contain sub-components or options. Similedlyoaton  has a name and a body of
properties. This example lists a number of new properties: default_value, active_if, flavor and legal_values. The
meaning of most of these should be fairly obvious. The next sections describe the various CDL commands and
properties.

There is one additional and very important point: CDL is not a completely new language; instead it is implemented
as an extension of the existing Tcl scripting language. The syntax of a CDL script is Tcl syntax, which is described
below. In addition some of the more advanced facilities of CDL involve embedded fragments of Tcl code, for
example there is a define_proc property which specifies some code that needs to be executed when the component
framework generates the configuration header files.

CDL Commands

26

There are four CDL-related commands which can occur at the top-level of a CDL safippackage |,
cdl_component , cdl_option  and cdl_interface . These correspond to the basic building blocks of the
language (CDL interfaces are describedha Section callethterface$. All of these take the same basic form:

cdl_package <name> {

}

cdl_component  <name> {

}

cdl_option <name> {



Chapter 3. The CDL Language

}

cdl_interface <name> {

}

The command is followed by a name and by a body of properties, the latter enclosed in braces. Packages and
components can contain other entities, soctiepackage andcdl_component can also have nested commands

in their bodies. All names must be unique within a given configuration. If say the C library package and a TCP/IP
stack both defined an option with the same name then it would not be possible to load both of them into a single
configuration. There is aaming conventiomvhich should make accidental name clashes very unlikely.

It is possible for two packages to use the same name if there are no reasonable circumstances under which both
packages could be loaded at the same time. One example would be architectural HAL packages: a given eCos
configuration can be used on only one processor, so the architectural HAL packag@isG_HAL_ARENACYG-
PKG_HAL_I386 can re-use option names; in fact in some cases they are expected to.

Each package has one top-level CDL script, which is specified in the packegesib database entijypically
the name of this top-level script is related to the package, so the kernel packagernsiasii  , but this is just

a convention. The first command in the top-level script shoulddbgackage , and the name used should be the
same as in the ecos.db database. There should be ontyllopsckage command per package.

The various CDL entities live in a hierarchy. For example the kernel package contains a scheduling component, a
synchronization primitives component, and a number of others. The synchronization component contains various
options such as whether or not mutex priority inheritance is enabled. There is no upper bound on how far compo-
nents can be nested, but it is rarely necessary to go more than three or four levels deeper than the package level.
Since the naming convention incorporates bits of the hierarchy, this has the added advantage of keeping the names
down to a more manageable size.

The hierarchy serves two purposes. It allows options to be controlled en masse, so disabling a component auto-
matically disables all the options below it in the hierarchy. It also permits a much simpler representation of the
configuration in the graphical configuration tool, facilitating navigation and modification.

By default a package is placed at the top-level of the hierarchy, but it is possible to override this using a parent
property. For example an architectural HAL package sucbhsPKG_HAL_SHypically re-parents itself below
CYGPKG_HALand a platform HAL package would then re-parent itself below the architectural HAL. This makes

it a little bit easier for users to navigate around the hierarchy. Components, options and interfaces can also be
re-parented, but this is less common.

All components, options and interfaces that are defined directly in the top-level script will be placed below the
package in the hierarchy. Alternatively they can be nested in the body afitmackage command. The follow-
ing two script fragments are equivalent:

cdl_package CYGPKG_LIBC {

}

cdl_component CYGPKG_LIBC_STRING {

}

cdl_option CYGPKG_LIBC_CTYPE_INLINES {

27



Chapter 3. The CDL Language

28

}
and:

cdl_package CYGPKG_LIBC {

cdl_component CYGPKG_LIBC_STRING {

}

cdl_option CYGPKG_LIBC_CTYPE_INLINES {

}
}

If a script defines options both inside and outside the body ofctihg@ackage then the ones inside will be
processed first. Language purists may argue that it would have been better if all contained options and components
had to go into the body, but in practice it is often convenient to be able to skip this level of nesting and the resulting
behavior is still well-defined.

Components can also contain options and other CDL entities, in fact that is what distinguishes them from options.
These can be defined in the body of thié component command:

cdl_component CYGPKG_LIBC_STDIO {

cdl_component CYGPKG_LIBC_STDIO_FLOATING_POINT {

}

cdl_option CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS {

}
}

Nesting options inside the bodies of components like this is fine for simple packages with only a limited number
of configuration options, but it becomes unsatisfactory as the number of options increases. Instead it is possible to
split the CDL data into multiple CDL scripts, on a per-component basis. The script property should be used for
this. For example, in the case of the C library all stdio-related configuration options could be pudimtal

and the top-level CDL scripibc.cdl  would contain the following:

cdl_package CYGPKG_LIBC {

cdl_component CYGPKG_LIBC_STDIO {

script stdio.cdl

}
}
TheCYGPKG_LIBC_STDIO_FLOATING_POINTomponent and theYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS
option can then be placed at the top-leveswfo.cdl . It is possible to have some options nested in the body of

acdl_component command and other options in a separate file accessed by the script property. In such a case the



Chapter 3. The CDL Language

nested options would be processed first, and then the other script would be read in. A script specified by a script
property should only define new options, components or interfaces: it should not contain any additional properties
for the current component.

It is possible for a component’'s CDL script to have a sub-component which also has a script property, and so on.
In practice excessive nesting like this is rarely useful. It is also possible to ignore the CDL language support for
constructing hierarchies automatically and use the parent property explicitly for every single option and component.
Again this is not generally useful.

Note: At the time of writing interfaces cannot act as containers. This may change in a future version of the
component framework. If the change is made then interfaces would support the script property, just like com-
ponents.

CDL Properties

Each package, component, option, and interface has a body of properties, which provide the component framework
with information about how to handle each option. For example there is a property for a descriptive text message
which can be displayed to a user who is trying to figure out just what effect manipulating the option would have
on the target application. There is another property for the default value, for example whether a particular option
should be enabled or disabled by default.

All of the properties are optional, it is legal to define a configuration option which has an empty body. However
some properties are more optional than others: users will not appreciate having to manipulate an option if they are
not given any sort of description or documentation. Other properties are intended only for very specific purposes,
for example make_object and include_files, and are used only rarely.

Because different properties serve very different purposes, their syntax is not as uniform as the top-level commands.
Some properties take no arguments at all. Other properties take a single argument such as a description string, or
a list of arguments such as a compile property which specifies the file or files that should be compiled if a given
option is active and enabled. The define_proc property takes as argument a snippet of Tcl code. The active_if,
calculated, default_value, legal_values and requires properties take various expressions. Additional properties may
be defined in future which take new kinds of arguments.

All property parsing code supports options for every property, although at present the majority of properties do not
yet take any options. Any initial arguments that begin with a hyphen charaetédr be interpreted as an option,
for example:

cdl_package CYGPKG_HAL_ARM {

make -priority 1 {

}
}
If the option involves additional data, as for th®iority example above, then this can be written as either
-priority=1 or as-priority 1 . On occasion the option parsing code can get in the way, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {

29



Chapter 3. The CDL Language

30

legal_values -1 to 1
default_value -1

}

Neither the legal_values nor the default_value property will acaeps a valid option, so this will result in syntax
errors when the CDL script is read in by the component framework. To avoid problems, the option parsing code
will recognize the string- and will not attempt to interpret any subsequent arguments. Hence this option should
be written as:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_STATE {

legal_values -- -1 to 1
default_value -- -1

}

The property parsing code involves a recursive invocation of the Tcl interpreter that is used to parse the top-level
commands. This means that some characters in the body of an option will be treated speciglighdtecter can

be used for comments. The backslash charagtdre dollar charactes, square brackefsand] , braceq and},

and the quote charactermay all receive special treatment. Most of the time this is not a problem because these
characters are not useful for most properties. On occasion having a Tcl interpreter around performing the parser
can be very powerful. For more details of how the presence of a Tcl interpreter can affect CDL scriiti® see
Section calledAn Introduction to Tcl

Many of the properties can be used in anycdif package , cdl_component , cdl_option  oOr cdl_interface

Other properties are more specific. The script property is only relevant to components. The define_header, hard-
ware, include_dir, include_files, and library properties apply to a package as a whole, so can only occur in the body
of acdl_package command. The calculated, default_value, legal_values and flavor properties are not relevant to
packages, as will be explained later. The calculated and default_value properties are also not relevant to interfaces.

This section lists the various properties, grouped by purpose. Each property also has a full reference page in
Chapter 5 Properties related to values and expressions are described in more detaildaction calle&Values
and Expressiongroperties related to header file generation and to the build process are desctibagtier 4

Information-providing Properties

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain tdidpline
property gives a textual alias for an option, which is usually more comprehensible than somethiaydike
PKG_LIBC_TIME_ZONES", thedescriptionproperty gives a longer description, typically a paragraph or sajtlce
property specifies the location of additional on-line documentation related to a configuration option. In the context
of a graphical tool the display string will be the primary way for users to identify configuration options; the de-
scription paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requests it.

cdl_package CYGPKG_UITRON {

display "ulTRON compatibility layer"
doc ref/ecos-ref.a.html
description

eCos supports a ulTRON Compatibility Layer, providing
full Level S (Standard) compliance with Version 3.02 of
the ulTRON Standard, plus many Level E (Extended) features.



Chapter 3. The CDL Language
UITRON is the premier Japanese embedded RTOS standard."

}

All three properties take a single argument. For display and description this argument is just a string. For doc
it should be a pointer to a suitable HTML file, optionally including an anchor within that page. Hitbetory

layout conventionsire observed then the component framework will look for the HTML file in the package’s
sub-directory, otherwise the doc filename will be treated as relative to the package’s top-level directory.

The Configuration Hierarchy
There are two properties related to the hierarchical organization of components and ggatientandscript

The parent property can be used to move a CDL entity somewhere else in the hierarchy. The most common use is
for packages, to avoid having all the packages appear at the top-level of the configuration hierarchy. For example
an architectural HAL package such@gGPKG_HAL_Si$ placed below the common HAL packaQ&GPKG_HAL

using a parent property.

cdl_package CYGPKG_HAL_SH {

display "SH architecture"
parent CYGPKG_HAL
}
The parent property can also be used in the bodyoaf @omponent , cdl_option  or cdl_interface , but this

is less common. However care has to be taken since excessive re-parenting can be confusing. Care also has to be
taken when reparenting below some other package that may not actually be loaded in a given configuration, since
the resulting behavior is undefined.

As a special case, if the parent is the empty string then the CDL entity is placed at the root of the hierarchy. This is
useful for global preferences, default compiler flags, and other settings that may affect every package.

The script property can only be used in the body aflacomponent command. The property takes a single
filename as argument, and this should be another CDL script containing additional options, sub-components and
interfaces that should go below the current component in the hierarchy. tfirdetory layout conventionare
observed then the component framework will look for the specified file relative todthesubdirectory of the
package, otherwise the filename will be treated as relative to the package’s top-level directory.

cdl_component CYGPKG_LIBC_STDIO {

display "Standard input/output functions"
flavor bool
requires CYGPKG_IO
requires CYGPKG_IO_SERIAL_HALDIAG
default_value 1
description
This enables support for standard /O functions from <stdio.h >."
script stdio.cdl

31



Chapter 3. The CDL Language

flavor

flavor

flavor

flavor

32

Value-related Properties

There are seven properties which are related to option values and fitate; calculated default_value le-
gal_valuesactive_if, implements and requires More detailed information can be found ihe Section called
Values and Expressions

In the context of configurability, the concept of an option’s value is somewhat non-trivial. First an option may or
may not be loaded: it is possible to build a configuration which has the math library but not the kernel; however the
math library’s CDL scripts still reference kernel options, for exan@&SEM_LIBM_THREAD_SAFE_COMPAT_MODE

has a requires constraint @YGVAR_KERNEL_THREADS_DATRven if an option is loaded it may or may not

be active, depending on what is happening higher up in the hierarchy: if the C libcar@BKG_LIBC_STDIO
component is disabled then some other options suchYasNUM_LIBC_STDIO_BUFSIZEbecome irrelevant. In

addition each option has both a boolean enabled/disabled flag and a data part. For many options only the boolean
flag is of interest, while for others only the data part is of interest. The flavor property can be used to control this:

none
This flavor indicates that neither the boolean nor the data parts are user-modifiable: the option is always
enabled and the data is always set tdhe most common use for this is to have a component that just acts as
a placeholder in the hierarchy, allowing various options to be grouped below it.
bool
Only the boolean part of the option is user-modifiable. The data part is fixed at
data
Only the data part of the option is user-modifiable. The boolean part is fixed at enabled.
booldata

Both the boolean and the data part of the option are user-modifiable.

For more details of CDL flavors and how a flavor affects expression evaluation, and other consequeltlces, see
Section called/alues and Expressionghe flavor property cannot be used for a package because packages always
have thebooldata flavor. Options and components have tiwel flavor by default, since most configuration
choices are simple yes-or-no choices. Interfaces haveatheflavor by default.

The calculated property can be used for options which should not be user-modifiable, but which instead are fixed
by the target hardware or determined from the current values of other options. In general calculated options should
be avoided, since they can be confusing to users who need to figure out whether or not a particular option can
actually be changed. There are a number of valid uses for calculated options, and quite a few invalid ones as well.
Thereference packagehould be consulted for further details. The property takesrdimary CDL expressions
argument, for example:

# A constant on some target hardware, perhaps user-modifiable on other

# targets.

cdl_option CYGNUM_HAL_RTC_PERIOD ({
display "Real-time clock period"
flavor data

calculated 12500



Chapter 3. The CDL Language

The calculated property cannot be used for packages or interfaces. The value of a package always corresponds
to the version of that package which is loaded, and this is under user control. Interfaces are implicitly calculated,
based on the number of active and enabled implementors.

The default_value property is similar to calculated, but only specifies a default value which users can modify. Again
this property is not relevant to packages or interfaces. A typical example would be:

cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
display "Include GDB multi-threading debug support"
requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT

}

The legal_values property imposes a constraint on the possible values of the data part of an option. Hence it is
only applicable to options with theata orbooldata flavors. It cannot be used for a package since the only valid
value for a package is its version number. The arguments to the legal_values property should co@&itutista
expression

cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET ({
display "Default Standard Time offset”
flavor data
legal_values -- -90000 to 90000
default_value -- 0

}

The active_if property does not relate directly to an option’s value, but rather to its active state. Usually this is
controlled via the configuration hierarchy: if tl&/GPKG_LIBC_STDIOcomponent is disabled then all options

below it are inactive and do not have any consequences. In some cases the hierarchy does not provide sufficient
control, for example an option should only be active if two disjoint sets of conditions are satisfied: the hierarchy
could be used for one of these conditions, and an additional active_if property could be used for the other one. The
arguments to active_if should constitut€BL goal expressian

# Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {
active_if CYGPKG_KERNEL_SYNCH

}

The implements property is related to the concep€0biL interfaces If an option is active and enabled and it
implements a particular interface then it contributee that interface’s value.

cdl_package CYGPKG_NET_EDB7XXX_ETH_DRIVERS {
display "Cirrus Logic ethernet driver"
implements CYGHWR_NET_DRIVERS
implements CYGHWR_NET_DRIVER_ETHO

33



Chapter 3. The CDL Language

34

The requires property is used to impose constraints on the user’s choices. For example it is unreasonable to expect
the C library to provide thread-safe implementations of certain functions if the underlying kernel support has been
disabled, or even if the kernel is not being used at all.

cdl_option CYGSEM_LIBC_PER_THREAD_ERRNO {

display "Per-thread errno"
doc ref/ecos-ref.15.html
requires CYGVAR_KERNEL_THREADS_DATA

default_value 1

}

The arguments to the requires property should B®&a goal expressian

Generating the Configuration Header Files

When creating or updating a build tree the component framework will also generate configuration header files,
one per package. By default it will generatedefine for each option, component or interface that is active and
enabled. For options with thiata or booldata flavors the#define  will use the option’s data part, otherwise it

will use the constant. Typical output would include:

#define CYGFUN_LIBC_TIME_POSIX 1
#define CYGNUM_LIBC_TIME_DST_DEFAULT_STATE -1

There are six properties which can be used to control the header file generation ptetiaesheadeno_defing
define_formatdefing if _define anddefine_proc

By default the component framework will generate a configuration header file for each package based on the pack-
age’s name: everything up to and including the first underscore is discarded, the rest of the name is lower-cased,
and a.h suffix is appended. For example the configuration header file for the kernel patkagG_KERNEL

is pkgconf/kernel.h . The define_header property can be used to specify an alternative filename. This applies
to all the components and options within a package, so it can only be used in the bodyl gfaakage com-

mand. For example the following specifies that the configuration header file for the SPARCIlite HAL package is
pkgconf/hal_sparclite.h

cdl_package CYGPKG_HAL_SPARCLITE ({
display "SPARCIite architecture"
parent CYGPKG_HAL
hardware
define_header hal_sparclite.h

Note: At present the main use for the define_header property is related to hardware packages, see the refer-
ence pages for more details.

The no_define property is used to suppress the generation of the defginké . This can be useful if an option’s
consequences are all related to the build process or to constraints, and the option is never actually checked in any



Chapter 3. The CDL Language

source code. It can also be useful in conjunction with the define, if_define or define_proc properties. The no_define
property does not take any arguments.

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data
legal_values { "RAM" "ROM" }
default_value {"RAM"}
no_define
define -file system.h CYG_HAL_STARTUP

}

This example also illustrates the define property, which can be used to genew#dina in addition to the
default one. It takes a single argument, the name of the symbol to be defined. It also takes options to control the
configuration header file in which the symbol should be defined and the format to be used.

The define_format property can be used to control how the value part of the defefile  gets formatted. For
example a format string 0bx%04x" could be used to generate a four-digit hexadecimal number.

The if_define property is intended for use primarily to control assertions, tracing, and similar functionality. It
supports a specific implementation model for these, allowing control at the grain of packages or even individual
source files. Theeference paggzovide additional information.

The define_proc property provides an escape mechanism for those cases where something special has to happen at
configuration header file generation time. It takes a single argument, a fragment of Tcl code, which gets executed
when the header file is generated. This code can output arbitrary data to the header file, or perform any other actions
that might be appropriate.

Controlling what gets Built

There are six properties which affect the build processnpile make make_objectlibrary, include_dir and
include_files The last three apply to a package as a whole, and can only occur in the bodyllofsckage
command.

Most of the source files that go into a package should simply be compiled with the appropriate compiler, selected
by the target architecture, and with the appropriate flags, with an additional set defined by the target hardware and
possible modifications on a per-package basis. The resulting object files will go into the libiaget.a ,
which can then be linked against application code. The compile property is used to list these source files:

cdl_package CYGPKG_ERROR {
display "Common error code support"
compile strerror.cxx
include_dir  cygl/error

}

The arguments to the compile property should be one or more source files. Typically most of the sources will be
needed for the package as a whole, and hence they will be listed in one or more compile properties in the body
of the cdl_package . Some sources may be specific to particular configuration options, in other words there is
no point in compiling them unless that option is enabled, in which case the sources should be listed in a compile
property in the correspondingll_option , cdl_component or cdl_interface body.

35



Chapter 3. The CDL Language

36

Some packages may have more complicated build requirements, for example they may involve a special target such
as a linker script which should not end up in the usual library, or they may involve special build steps for generating
an object file. The make and make_object properties provide support for such requirements, for example:

cdl_package CYGPKG_HAL_MN10300_AM33 {

display "MN10300 AM33 variant"
make {
<PREFIX>/lib/target.ld: <PACKAGE/src/mn10300_am33.1d

$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) \
$(CFLAGS) -0 $@ $<

@echo $@ " \" > $(notdir $@).deps

@tail +2 target.tmp >> $(notdir $@).deps

@echo >> $(notdir $@).deps

@rm target.tmp

}

For full details of custom build steps and the build process generallisapter 4

By default all object files go into the libratiptarget.a . Itis possible to override this at the package level using
the library property, but this should be avoided since it complicates application development: instead of just linking
with a single library for all eCos-related packages, it suddenly becomes necessary to link with several libraries.

The include_dir and include_files properties relate to a package’s exported header files. By default a package’s
header files will be exported to thestall/include directory. This is the desired behavior for some packages

like the C library, since headers lik&dio.n  should exist at that level. However if all header files were to end up

in that directory then there would be a significant risk of a name clash. Instead it is better for packages to specify
some sub-directory for their exported header files, for example:

cdl_package CYGPKG_INFRA {
display "Infrastructure”
include_dir  cyg/infra

}

The various header files exported by the infrastructure, for exatpgless.h andcyg_trac.h  will now end up
in theinstall/include/cyg/infra sub-directory, where a name clash is very unlikely.

For packages which follow théirectory layout conventionihe component framework will assume that the pack-
age'sinclude  sub-directory contains all exported header files. If this is not the case, for example because the
package is sufficiently simple that the layout convention is inappropriate, then the exported header files can be
listed explicitly in an include_files property.

Miscellaneous Properties

Thehardwareproperty is only relevant to packages. Some packages such as device drivers and HAL packages are
hardware-specific, and generally it makes no sense to add such packages to a configuration unless the corresponding
hardware is present on your target system. Typically hardware package selection happens automatically when you
select your target. The hardware property should be used to identify a hardware-specific package, and does not take
any arguments.



Option

Chapter 3. The CDL Language

cdl_package CYGPKG_HAL_MIPS {
display "MIPS architecture"
parent CYGPKG_HAL
hardware
include_dir  cyg/hal
define_header hal_mips.h

}

At present the hardware property is largely ignored by the component framework. This may change in future
releases.

Naming Convention

All the options in a given configuration live in the same namespace. Furthermore it is not possible for two separate
options to have the same name, because this would make any references to those options in CDL expressions
ambiguous. A naming convention exists to avoid problems. It is recommended that component writers observe
some or all of this convention to reduce the probability of name clashes with other packages.

There is an important restriction on option names. Typically the component framework will outpeftree  for

every active and enabled option, using the name as the symbol being defined. This requires that all names are valid
C preprocessor symbols, a limitation that is enforced even for options which have the no_define property. Prepro-
cessor symbols can be any sequence of lower case letterspper case letters:z, the underscore character

and the digit®0-9. The first character must be a non-digit. Using an underscore as the first character is discour-
aged, because that may clash with reserved language identifiers. In addition there is a convention that preprocessor
symbols only use upper case letters, and some component writers may wish to follow this convention.

A typical option name could be something like GSEM_KERNEL_SCHED_BITMAFhis name consists of several
different parts:

1. The first few characters, in this case the three lettG are used to identify the organization that produced
the package. For historical reasons packages produced by Red Hat tend to use tieypraftxer tharRHAT
Component writers should use their own prefix: even when cutting and pasting from an existing CDL script
the prefix should be changed to something appropriate to their organization.

It can be argued that a short prefix, often limited to upper case letters, is not sufficiently long to eliminate
the possibility of name clashes. A longer prefix could be used, for example one based on internet domain
names. However the C preprocessor has no concept of namespaapsrior directives, so it would always

be necessary to use the full option name in component source code which gets tedious - option nhames tend to
be long enough as it is. There is a small increased risk of name clashes, but this risk is felt to be acceptable.

2. The next three characters indicate the nature of the option, for example whether it affects the interface or just
the implementation. A list of common tags is given below.

3. TheKERNEL_SCHEpart indicates the location of the option within the overall hierarchy. In this case the option
is part of the scheduling component of the kernel package. Having the hierarchy details as part of the option
name can help in understanding configurable code and further reduces the probability of a name clash.

4. The final partBITMAP, identifies the option itself.

37



Chapter 3. The CDL Language

XXXARC_

XxXHWR_

XXXPKG_

XXXGLO_

xxXXDBG_

XXXTST_

XXXFUN_

XXXVAR_

XXXCLS_

XXXMFN_

38

The three-character tag is intended to provide some additional information about the nature of the option. There are
a number of pre-defined tags. However for many options there is a choice: options related to the platform should
normally useHWRbut numerical options should normally useN a platform-related numerical option such as the

size of an interrupt stack could therefore use either tag. There are no absolute rules, and it is left to component
writers to interpret the following guidelines:

The ARCtag is intended for options related to the processor architecture. Typically such options will only
occur in architectural or variant HAL packages.

TheHWRag is intended for options related to the specific target board. Typically such options will only occur
in platform HAL packages.

This tag is intended for packages or components, in other words options which extend the configuration
hierarchy. Arguably &0omMag would be more appropriate for components, but this could be confusing because
of the considerable number of computing terms that begin with com.

This is intended for global configuration options, especially preferences.

TheDBGtag indicates that the option is in some way related to debugging, for example it may enable assertions
in some part of the system.

This tag is for testing-related options. Typically these do not affect actual application code, instead they control
the interaction between target-side test cases and a host-side testing infrastructure.

This is for configuration options which affect the interface of a package. There are a number of related tag
which are also interface-relatedxFUN_ is intended primarily for options that control whether or not one or
more functions are provided by the package, but can also be used if none of the other interface-related tags is
applicable.

This is analogous tBUNbut controls the presence or absence of one or more variables or objects.

ThecLsStag is intended only for packages that provide an object-oriented interface, and controls the presence
or absence of an entire class.

This is also for object-orientated interfaces, and indicates the presence or absence of a member function rather
than an entire class.



XXXSEM_

XXXIMP_

XXXNUM_

XxXDAT_

XXXBLD_

XXXINT_

XXXPRI_

XXXSRC_

Chapter 3. The CDL Language

A SEMoption does not affect the interface (or if does affect the interface, this is incidental). Instead it is
used for options which have a fundamental effect on the semantic behavior of a package. For example the
choice of kernel schedulers is semantic in nature: it does not affect the interface, in particular the function
cyg_thread_create exists irrespective of which scheduler has been selected. However it does have a major
impact on the system’s behavior.

IMP is for implementation options. These do not affect either the interface or the semantic behavior (with
the possible exception of timing-related changes). A typical implementation option controls whether or not a
particular function or set of functions should get inlined.

This tag is for numerical options, for example the number of scheduling priority levels.

This is for data items that are not numerical in nature, for example a device name.

TheBLDtag indicates an option that affects the build process, for example compiler flag settings.

This should normally be used for CDL interfaces, which is a language construct that is largely independent
from the interface exported by a package via its header files. For more details of CDL interfatbs see
Section callednterfaces

This tag is not normally used for configuration options. Instead it is used by CDL scripts to pass additional
private information to the source code via the configuration header files, typically inside a define_proc prop-
erty.

This tag is not normally used for configuration options. Instead it can be used by package source code to
interact with such options, especially in the context of the if_define property.

There is one special case of a potential name clash that is worth mentioning here. When the component framework
generates a configuration header file for a given package, by default it will use a name derived from the package
name (the define_header property can be used to override this). The file name is constructed from the package
name by removing everything up to and including the first underscore, converting the remainder of the name to
lower case, and appendingra suffix. For example the kernel packaQgGPKG_KERNRWill involve a header file
pkgconf/kernel.h . If a configuration contained some other packag2PKG_KERNEthen this would attempt to

use the same configuration header file, with unfortunate effects. Case sensitivity could introduce problems as well,
S0 a packageyzpkg_kernel  would involve the same problem. Even if the header file names preserved the case
of the package name, not all file systems are case sensitive. There is no simple solution to this problem. Changing
the names of the generated configuration header files would involve a major incompatible change to the interface,
to solve a problem which is essentially hypothetical in nature.

39



Chapter 3. The CDL Language

An Introduction to Tcl

All CDL scripts are implemented as Tcl scripts, and are read in by running the data through a standard Tcl inter-
preter, extended with a small number of additional commands sucti_astion  andcdl_component . Often

it is not necessary to know the full details of Tcl syntax. Instead it is possible to copy an existing script, perform
some copy and paste operations, and make appropriate changes to hames and to various properties. However there
are also cases where an understanding of Tcl syntax is very desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
display "Externs for initialization"
flavor data
default_value {"static char fpooll[ 2000 ], \\\n\
fpool2[ 2000 ], \Wn\
fpool3[ 2000 ];"}

}

This causes thedl_option  command to be executed, which in turn evaluates its body in a recursive invocation of

the Tcl interpreter. When the default_value property is encountered the braces around the value part are processed
by the interpreter, stopping it from doing further processing of the braced contents (except for backslash processing
atthe end of a line, that is special). In particular it prevents command substitutijordod ] . A single argument

will be passed to the default_value command which expects a CDL expression, so the expression parsing code is
passed the following:

"static char fpooll[ 2000 ], \Wn fpool2[ 2000 ], \Wn fpool3[ 2000 ];"

The CDL expression parsing code will treat this as a simple string constant, as opposed to a more complicated
expression involving other options and various operators. The string parsing code will perform the usual backslash
substitutions so the actual default value will be:

static char fpooll[ 2000 ], \
fpool2[ 2000 ], \
fpool3[ 2000 J;

If the user does not modify the option’s value then the following will be generated in the appropriate configuration
header file:

#define CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS static char fpooll[ 2000 ], \
fpool2[ 2000 ], \
fpool3[ 2000 J;

Getting this desired result usually requires an understanding of both Tcl syntax and CDL expression syntax. Some-
times it is possible to substitute a certain amount of trial and error instead, but this may prove frustrating. It is also
worth pointing out that many CDL scripts do not involve this level of complexity. On the other hand, some of the
more advanced features of the CDL language involve fragments of Tcl code, for example the define_proc property.
To use these component writers will need to know about the full Tcl language as well as the syntax.

Although the current example may seem to suggest that Tcl is rather complicated, it is actually a very simple yet
powerful scripting language: the syntax is defined by just eleven rules. On occasion this simplicity means that Tcl's
behavior is subtly different from other languages, which can confuse newcomers.

40



Chapter 3. The CDL Language

When the Tcl interpreter is passed some data sugbu@sHello , it splits this data into a command and its
arguments. The command will be terminated by a newline or by a semicolon, unless one of the quoting mechanisms
is used. The command and each of its arguments are separated by white space. So in the following example:

puts Hello
set x 42

This will result in two separate commands being executed. The first commamntsisand is passed a single
argumentHello . The second command st and is passed two argumentsand42. The intervening newline
character serves to terminate the first command, and a semi-colon separator could be used instead:

puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

This is not valid Tcl. It is an attempt to invoke thet command with three arguments:Hello , andworld . The
set only takes two arguments, a variable name and a value, so it is necessary to combine the data into a single
argument by quoting:

set x "Hello world"

When the Tcl interpreter encounters the first quote character it treats all subsequent data up to but not including
the closing quote as part of the current argument. The quote marks are removed by the interpreter, so the second
argument passed to teet command is justello world  without the quote characters. This can be significant in

the context of CDL scripts. For example:

cdl_option CYG_HAL_STARTUP {

default_value "RAM"
}

The Tcl interpreter strips off the quote marks so the CDL expression parsing codeseiestead of' RAM".

It will treat this as a reference to some unknown optRmMrather than as a string constant, and the expression
evaluation code will use a value @fwhen it encounters an option that is not currently loaded. Therefore the option
CYG_HAL_STARTUENdSs up with a default value of Either braces or backslashes should be used to avoid this, for
exampledefault_value { "RAM" }

Note: There are long-term plans to implement some sort of CDL validation utility cdllint which could catch
common errors like this one.

A quoted argument continues until the closing quote character is encountered, which means that it can span multiple
lines. Newline or semicolon characters do not terminate the current command in such cases. description properties
usually make use of this:

cdl_package CYGPKG_ERROR {
description
This package contains the common list of error and

41



Chapter 3. The CDL Language

42

status codes. It is held centrally to allow

packages to interchange error codes and status
codes in a common way, rather than each package
having its own conventions for error/status

reporting. The error codes are modelled on the
POSIX style naming e.g. EINVAL etc. This package
also provides the standard strerror() function to
convert error codes to textual representation."

}

The Tcl interpreter supports much the same forms of backslash substitution as other common programming lan-
guages. Some backslash sequences sueh &gl be replaced by the appropriate character. The sequeneéll

be replaced by a single backslash. A backslash at the very end of a line will cause that backslash, the newline
character, and any white space at the start of the next line to be replaced by a single space. Hence the following
two Tcl commands are equivalent:

puts "Hello\nworld\n"
puts \
"Hello
world

If a description string needs to contain quote marks or other special characters then backslash escapes can be used.
In addition to quote and backslash characters, the Tcl interpreter treats square bracketbataeter, and braces
specially. Square brackets are used for command substitution, for example:

puts "The answer is [expr 6 * 9]"

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that should
be executed first, and the result of executing that is used when continuing to process the script. In this case the Tcl
interpreter will execute the commaagbr 6 * 9 , yielding a result of 42 and then the Tcl interpreter will execute

puts "The answer is 42" . It should be noted that the interpreter performs only one level of substitution: if the
result of performing command substitution performs further special characters such as square brackets then these
will not be treated specially.

Command substitution will not prove useful for many CDL scripts, except for e.g. a define_proc property which
involves a fragment of Tcl code. Potentially there are some interesting uses, for example to internationalize display
strings. However care does have to be taken to avoid unexpected command substitution, for example if an option
description involves square brackets then typically these would require backslash-escapes.

Thes$ character is used in Tcl scripts to perform variable substitution:

set x [expr 6 * 9]
puts "The answer is $x"

Variable substitution, like command substitution, is unlikely to prove useful for many CDL scripts except in the
context of Tcl fragments. If it is necessary to havke éharacter then a backslash escape may have to be used.

Braces are used to collect a sequence of characters into a single argument, just like quotes. The difference is that
variable, command and backslash substitution do not occur inside braces (with the sole exception of backslash
substitution at the end of a line). Therefore given a line in a CDL script such as:



Chapter 3. The CDL Language
default_value {"RAM"}

The braces are stripped off by the Tcl interpreter, leaviRrgm" which will be handled as a string constant by the
expression parsing code. The same effect could be achieved using one of the following:

default_value \"RAM\"
default_value "\"RAM\""

Generally the use of braces is less confusing. At this stage it is worth noting that the basic format of CDL data
makes use of braces:

cdl_option <name> {
3

Thecdl_opton command is passed two arguments, a name and a body, where the body consists of everything
inside the braces but not the braces themselves. This body can then be executed in a recursive invocation of the Tcl
interpreter. If a CDL script contains mismatched braces then the interpreter is likely to get rather confused and the
resulting diagnostics may be difficult to understand.

Comments in Tcl scripts are introduced by a hash chargactéowever, a hash character only introduces a comment
if it occurs where a command is expected. Consider the following:

# This is a comment
puts "Hello" # world

The first line is a valid comment, since the hash character occurs right at the start where a command name is
expected. The second line does not contain a comment. Instead it is an attempt to inyake tbemmand with

three argumentsiello , # andworld . These are not valid arguments for thes command so an error will be

raised. If the second line was rewritten as:

puts "Hello"; # world

then this is a valid Tcl script. The semicolon identifies the end of the current command, so the hash character occurs
at a point where the next command would start and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behavior. Consider the following:

cdl_option WHATEVER {
# This is a comment }
default_value 0

}

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose any
special difficulties. The opening brace is interpreted as the start of the next argument, which continues until a
closing brace is encountered. In this case the closing brace occurs on the second line, so the second argument passed
tocdl_option  is\n # This is a comment . This second argument is processed in a recursive invocation of

the Tcl interpreter and does not contain any commands, just a comment. Top-level script processing then resumes,
and the next command that is encounteredeifault_value . Since the parser is not currently processing a
configuration option this is an error. Later on the Tcl interpreter would encounter a closing brace by itself, which

is also an error.

43



Chapter 3.

Values

44

The CDL Language

For component writers who need more information about Tcl, especially about the language rather than
the syntax, various resources are available. A reasonable starting point is the Scriptics developer web site
(http://www.tcl.tk/scripting/).

and Expressions

It is fairly reasonable to expect that enabling or disabling a configuration option such as
CYGVAR_KERNEL_THREADS_DAifAsome way affects itwalue This will have an effect on any expressions

that reference this option such asquires CYGVAR_KERNEL_THREADS_DATA It will also affect the
consequences of that option: how it affects the build process and what happens to any constraints that
CYGVAR_KERNEL_THREADS_DAMAy impose (as opposed to constraints on this option imposed by others).

In a language like C the handling of variables is relatively straightforward. If a variagkts referenced in an
expression such as (x '= 0) , and that variable is not defined anywhere, then the code will fail to build,
typically with an unresolved error at link-time. Also in C a variakleoes not live in any hierarchy, so its value

for the purposes of expression evaluation is not affected by anything else. C variables also have a clear type such
asint orlong double

In CDL things are not so straightforward.

Option Values

There are four factors which go into an option’s value:

1. An option may or may not be loaded.

2. If the option is loaded, it may or may not be active.

3. Even if the option is active, it may or may not be enabled.

4. If the option is loaded, active and enabled then it will have some associated data which constitutes its value.

Is the Option Loaded?

At any one time a configuration will contain only a subset of all possible packages. In fact it is impossible to
combine certain packages in a single configuration. For example architectural HAL packages should contain a set
of options defining endianness, the sizes of basic data types and so on (many of which will of course be constant for
any given architecture). Any attempt to load two architectural HAL packages into a configuration will fail because

of the resulting name clash. Since CDL expressions can reference options in other packages, and often need to do
S0, it is essential to define the resulting behavior.

One complication is that the component framework does not know about every single option in every single
package. Obviously it cannot know about packages from arbitrary third parties which have not been installed.
Even for packages which have been installed, the current repository database does not hold details of
every option, only of the packages themselves. If a CDL expression contains a reference to some option
CYGSEM_KERNEL_SCHED_TIMESLIGBen the component framework will only know about this option if the
kernel package is actually loaded into the current configuration. If the package is not loaded then theoretically the
framework might guess that the option is somehow related to the kernel by examining the option name but this
would not be robust: the option could easily be part of some other package that violates the naming convention.



Chapter 3. The CDL Language

Assume that the user is building a minimal configuration which does not contain the kernel package, but does have
other packages which contain the following constraints:

requires CYGPKG_KERNEL
requires CYGPKG_KERNEL_THREADS_DATA
requires !CYGSEM_KERNEL_SCHED_TIMESLICE

Clearly the first constraint is not satisfied because the kernel is not loaded. The second constraint is also not
satisfied. The third constraint is trivially satisfied: if there is no kernel then the kernel’s timeslicing support cannot
possibly be enabled.

Any options which are not in the current configuration are handled as follows:

1. Any references to that option will evaluatedpsorequires |CYGSEM_KERNEL_SCHED_TIMESLICE will be
satisfied butequires CYGSEM_KERNEL_THREADS_DATAwill not be satisfied.

2. An option that is not loaded has no consequences on the build process. It cannot directly resuitdies any
fine’s  in a configuration header file, nor in any files being compiled. This is only reasonable: if the option
is not loaded then the component framework has no way of knowing about any compile or similar properties.
An option that is not loaded can have indirect consequences by being referenced in CDL expressions.

3. An option that is not loaded cannot impose any constraints on the rest of the configuration. Again this is the
only reasonable behavior: if the option is not loaded then any associated requires or legal_values properties
will not be known.

Is the Option Active

The next issue to consider is whether or not a particular option is active. Configuration options are organized
in a hierarchy of components and sub-components. For example the C library package contains a component
CYGPKG_LIBC_STDIOcontaining all the options related to standard 1/O. If a user disables the component as a
whole then all the options below it become inactive: it makes no sense to disable all stdio functionality and then
manipulate the buffer sizes.

Inactive is not quite the same as disabled, although the effects are similar. The value of an inactive option is
preserved. If the user modifies a buffer size option, then disables the whole stdio component, the buffer size value
remains in case the stdio component is re-enabled later on. Some tools such as the graphical configuration tool will
treat inactive options specially, for example such options may be grayed out.

The active or inactive state of an option may affect other packages. For example a package magpiseé the
function and require support for floating point conversions, a constraint that is not satisfied if the relevant option is
inactive. It is necessary to define exactly what it means for an option to be inactive:

1. An option is inactive if its parent is either inactive or disabled. For examag®&PKG_LIBC_STDIAs disabled
then all the options and sub-components become inactive; SMGEKG_LIBC_STDIO_FLOATING_POINTS
now inactive,CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINTs inactive as well.

2. Options may also be inactive as a result of an active_if property. This is useful if a particular option is only
relevant if two or more disjoint sets of conditions need to be satisfied, since the hierarchical structure can only
cope with at most one such set.

45



Chapter 3. The CDL Language

46

3.If an option is inactive then any references to that option in CDL expressions will evaluatelémce a con-
straint of the formrequires CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT is not satisfied if the entire
stdio component is disabled.

4. An option that is inactive has no consequences on the build procesgddfiee  will be generated. Any
compile or similar properties will be ignored.

5. An option that is inactive cannot impose any constraints on the rest of the configuration. For example
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINThas a dependencgquires CYGPKG_LIBM , but if all of
the stdio functionality is disabled then this constraint is ignored (although of course there may be other
packages which have a dependencyCGPKG_LIBM

Is the Option Enabled? What is the Data?

The majority of configuration options are boolean in nature, so the user can either enable or disable some
functionality. Some options are different. For exam@®GNUM_LIBC_STDIO_BUFSIZEis a number, and
CYGDAT_LIBC_STDIO_DEFAULT_CONSOLB a string corresponding to a device name. A few options like
CYGDAT _UITRON_TASK_EXTERNS&N get very complicated. CDL has to cope with this variety, and define the
exact behavior of the system in terms of constraints and build-time consequences.

In CDL the value of an option consists of two parts. There is a boolean part, controlling whether or not the option
is enabled. There is also a data part, providing additional information. For most options one of these parts is fixed,
as controlled by the option’s flavor property:

Flavor Enabled Data

none Always enabled 1, not modifiable
bool User-modifiable 1, not modifiable
data Always enabled User-modifiable
booldata User-modifiable User-modifiable

The effects of the boolean and data parts are as follows:

1.If an option is disabled, in other words if the boolean part is false, then any references to that option in CDL
expressions will evaluate tm This is the same behavior as for inactive options. The data part is not relevant.
Thenone anddata flavors specify that the option is always enabled, in which case this rule is not applicable.

2.If an option is enabled then any references to that option in CDL expressions will evaluate to the option’s data
part. For two of the flavorsyone andbool , this data part is fixed to the constantvhich generally has the
expected result.

3. If a component or package is disabled then all sub-components and options immediately below it in the hier-
archy are inactive. By a process of recursion this will affect all the nodes in the subtree.

4. 1f an option is disabled then it can impose no constraints on the rest of the configuration, in particular requires
and legal_values properties will be ignored. If an option is enabled then its constraints should be satisfied, or
the component framework will report various conflicts. Note that the legal_values constraint only applies to
the data part of the option’s value, so it is only useful withdhe andbooldata flavors. Options with the
none anddata flavors are always enabled so their constraints always have to be satisfied (assuming the option
is active).



Chapter 3. The CDL Language

5.1f an option is disabled then it has no direct consequences at build-timedefioe  will be generated, no
files will get compiled, and so on. If an option is active and enabled then all the consequences take effect.
The option name and data part are used to generatgitifiee in the appropriate configuration header file,
subject to various properties such as no_define, but the data part has no other effects on the build system.

By default all options and components have el flavor: most options are boolean in nature, so making this

the default allows for slightly more compact CDL scripts. Packages haveotiidéata flavor, where the data

part always corresponds to the version of the package that is loaded into the configuration: changing this value
corresponds to unloading the old version and loading in a different one.

CDL Flavors: The concept of CDL flavors tends to result in various discussions about why it is unnecessarily
complicated, and would it not have been easier to do ... However there are very good reasons why CDL works
the way it does.

The first common suggestion is that there is no need to have separate flavors bool , data , and so on. A boolean
option could just be handled as a data option with legal values 0 and 1. The counter arguments are as follows:

1. It would actually make CDL scripts more verbose. By default all options and components have the bool
flavor, since most options are boolean in nature. Without a bool flavor it would be necessary to indicate
explicitly what the legal values are somehow, e.g. with a legal_values property.

2. The boolean part of an option’s value has a very different effect from the data part. If an option is dis-
abled then it has no consequences at build time, and can impose no constraints. A data option always
has consequences and can impose constraints. To get the desired effect it would be necessary to add
CDL data indicating that a value of 0 should be treated specially. Arguably this could be made built-in
default behavior, although that would complicate options where 0 is a perfectly legal number, for example
CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET

3. There would no replacement for a booldata  option for which 0 is a valid value. Again some additional CDL
syntax would be needed to express such a concept.

Although initially it may seem confusing that an option’s value has both a boolean and a data part, it is an
accurate reflection of how configuration options actually work. The various alternatives would all make it harder
to write CDL scripts.

The next common suggestion is that the data part of a value should be typed in much the same way as C
or C++ data types. For example it should be possible to describe CYGNUM_LIBC_STDIO_BUFSIZEAS an integer
value, rather than imposing legal_values constraints. Again there are very good reasons why this approach
was not taken:

1. The possible legal values for an integer are rarely correct for a CDL option. A constraint such as
1 to OxTfffffff is a bit more accurate, although if this option indicates a buffer size it is still not
particularly good — very few targets will have enough memory for such a buffer. Forcing CDL writers to
list the legal_values constraints explicitly should make them think a bit more about what values are
actually sensible. For example CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSHTas legal values in the range
-90000 to 90000 , which helps the user to set a sensible value.

2. Not all options correspond to simple data types such as integers. CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE
is a C string, and would have to be expressed using something like char [] . This introduces plenty of
opportunities for confusion, especially since square brackets may get processed by the Tcl interpreter for
command substitution.

3. Some configuration options can get very complicated indeed, for example the default value of
CYGDAT_UITRON_TASK_INITIALIZERS is:

CYG_UIT_TASK( "t1", 1, taskl, &stackl, CYGNUM_UITRON_STACK_SIZE ), \
CYG_UIT_TASK( "t2", 2, task2, &stack2, CYGNUM_UITRON_STACK_SIZE ), \

47



Chapter 3. The CDL Language

48

CYG_UIT_TASK( "t3", 3, task3, &stack3, CYGNUM_UITRON_STACK_SIZE ), \
CYG_UIT_TASK( "t4", 4, taskd, &stackd, CYGNUM_UITRON_STACK_SIZE )

This would require CDL knowing about C macros, structures, arrays, static initializers, and so on. Adding
such detailed knowledge about the C language to the component framework is inappropriate.

4. CDL needs to be usable with languages other than C. At present this includes C++, in future it may include
languages such as Java. Each language adds new data types and related complications, for example C++
classes and inheritance. Making CDL support a union of all data types in all possible languages is not
sensible.

The CDL approach of treating all data as a sequence of characters, possibly constrained by a legal_values
property or other means, has the great advantage of simplicity. It also fits in with the Tcl language that underlies
CDL.

Some Examples

The following excerpt from the C library’s CDL scripts can be used to illustrate how values and flavors work in
practice:

cdl_component CYGPKG_LIBC_RAND {
flavor none
compile stdlib/rand.cxx

cdl_option CYGSEM_LIBC_PER_THREAD_RAND {
requires CYGVAR_KERNEL_THREADS_DATA
default_value 0

}

cdl_option CYGNUM_LIBC_RAND_SEED {
flavor data
legal_values 0 to OxT7fffffff
default_value 1

}

cdl_option CYGNUM_LIBC_RAND_TRACE_LEVEL ({
flavor data
legal_values 0 to 1
default_value 0

}

If the application does not require any C library functionality then it is possible to have a configuration where the
C library is not loaded. This can be achieved by starting with the minimal template, or by starting with another
template such as the default one and then explicitly unloading the C library package. If this package is not loaded
then any references to tl&rGPKG_LIBC_RANm@omponent or any of its options will have a valueofor the
purposes of expression evaluation. #ifine’'s  will be generated for the component or any of its options, and

the file stdlib/rand.cxx will not get compiled. There is nothing special about the C library here, exactly the
same would apply for say a device driver that does not correspond to any of the devices on the target hardware.



Chapter 3. The CDL Language

Assuming the C library is loaded, the next thing to consider is whether or not the component and its options are
active. The component is layered immediately below the C library package itself, so if the package is loaded then
it is safe to assume that the package is also enabled. Therefore the pat@8RXG_LIBC_RANIs active and
enabled, and in the absence of any active_if propettiesPKG_LIBC_RANWvill be active as well.

The componentYGPKG_LIBC_RANMas the flavonone . This means the component cannot be disabled. Therefore
all the options in this component have an active and enabled parent, and in the absence of any active_if properties
they are all active as well.

The component’s flavatione serves to group together all of the configuration options related to random number
generation. This is particularly useful in the context of the graphical configuration tool, but it also helps when it
comes to haming the options: all of the options begin W@ittGxxx_LIBC_RAND, giving a clear hint about both the
package and the component within that package. The flavor means that the component is always enabled and has
the valuel for the purposes of expression evaluation. There will always be a sidgiee of the form:

#define CYGPKG_LIBC_RAND 1

In addition the filestdlib/rand.cxx will always get built. If the component had the defaipdbl flavor then

users would be able to disable the whole component, and one less file would need to be built. However random
number generation is relatively simple, so the impact on eCos build times are small. Furthermore by default the
code has no dependencies on other parts of the system, so compiling the code has no unexpected side effects. Even
if it was possible to disable the component, the sensible default for most applications would still leave it enabled.
The net result is that the flavabne is probably the most sensible one for this component. For other components

the defaultbool flavor or one of the other flavors might be more appropriate.

Next consider optiolCYGSEM_LIBC_PER_THREAD_RANhich can be used to get a per-thread random number
seed, possibly useful if the application needs a consistent sequence of random numbers. In the absence of a flavor
property this option will be boolean, and the default_value property means that it is disabled by default — rea-
sonable since few applications need this particular functionality, and it does impose a constraint on the rest of the
system. If the option is left disabled then #define  will be generated, and if there were any compile or similar
properties these would not take effect. If the option is enabled titdafiae  will be generated, using the option’s

data part which is fixed at:

#define CYGSEM_LIBC_PER_THREAD_RAND 1

The CYGSEM_LIBC_PER_THREAD_RANPtion has a requires constraint GNGVAR_KERNEL_THREADS_DATRA

the C library option is enabled then the constraint should be satisfied, or else the configuration contains a conflict.
If the configuration does not include the kernel package theBVAR_KERNEL_THREADS_DAWAI evaluate to0

and the constraint is not satisfied. Similarly if the option is inactive or disabled the constraint will not be satisfied.

CYGNUM_LIBC_RAND_SEERIMJCYGNUM_LIBC_RAND_TRACE_LEVHEDth have thelata flavor, so they are always
enabled and the component framework will generate appropiatee’s

#define CYGNUM_LIBC_RAND_SEED 1
#define CYGNUM_LIBC_RAND_SEED 1

#define CYGNUM_LIBC_RAND_TRACE_LEVEL 0
#define CYGNUM_LIBC_RAND_TRACE_LEVEL_0

Neither option has a compile or similar property, but any such properties would take effect. Any references
to these options in CDL expressions would evaluate to the data part, so a hypothetical constraint of the form
{ requires CYGNUM_LIBC_RAND_SEED > 42 } would not be satisfied with the default values. Both options

use a simple constant for the default_value expression. It would be possible to use a more complicated expression,

49



Chapter 3. The CDL Language

50

for example the default faYGNUM_LIBC_RAND_TRACE_LEVEDuld be determined from some global debugging
option or from a debugging option that applies to the C library as a whole. Both options also have a legal_values
constraint, which must be satisfied since the options are active and enabled.

Note: The value 0 is legal for both CYGNUM_LIBC_RAND_SEEmMd CYGNUM_LIBC_RAND_TRACE_LEVERo0 in a CDL
expression there is no easy way of distinguishing between the options being absent or having that particular
value. This will be addressed by future enhancements to the expression syntax.

Ordinary Expressions

Expressions in CDL follow a conventional syntax, for example:

default_value CYGGLO_CODESIZE > CYGGLO_SPEED

default_value { (CYG_HAL_STARTUP == "RAM" &&
ICYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
ICYGINT_HAL_USE_ROM_MONITOR_UNSUPPORTED &&
ICYGSEM_HAL_POWERPC_COPY_VECTORS) ? 1 : 0 }

default_value { "\"/dev/serO\"" }

However there is a complication in that the various arguments to a default_value property will first get processed
by a Tcl interpreter, so special characters like quotes and square brackets may get processed. Such problems can
be avoided by enclosing non-trivial expressions in braces, as in the second example above. The way expression
parsing actually works is as follows:

1. The Tcl interpreter splits the line or lines into a command and its arguments. In the first default_value ex-
pression above the commanddisfault_value and there are three argument¥,GGLO_CODESIZE> and
CYGGLO_SPEEDN the second and third examples there is just one argument, courtesy of the braces.

2. Next option processing takes place, so any initial arguments that begin with a hyphen will be interpreted as
options. This can cause problems if the expression involves a negative number, so the special argoament
be used to prevent option processing on the subsequent arguments.

3. All of the arguments are now concatenated, with a single space in between each one. Hence the following two
expressions are equivalent, even though they will have been processed differently up to this point.

default_value CYGGLO_CODESIZE > CYGGLO_SPEED
default_value {CYGGLO_CODESIZE > CYGGLO_SPEED}

4. The expression parsing code now has a single string to process.

CDL expressions consist of four types of element: references to configuration options, constant strings, integers,
and floating point numbers. These are combined using a conventional set of operators: the unary eperatars

I'; the arithmetic operators, -, *, / and% the shift operatorsc< and >>; the comparison operatoss,, !=, <,

<=, > and>=; the bitwise operator&,  and| ; the logical operator&& and|| ; the string concatenation operator

.; and the ternary conditional operator? B : C. There is also support for some less widely available operators

for logical equivalence and implication, and for a set of function-style operations. Bracketed sub-expressions are
supported, and the operators have the usual precedence:



Chapter 3. The CDL Language

Priority Operators Category
16 references, constants basic elements
15 f(a, b, c) function calls
14 ~ bitwise not
14 ! logical not
14 - arithmetic negation
13 * | % multiplicative arithmetic
12 + - additive arithmetic and string
concatenation
11 << >> bitwise shifts
10 <= < > >= inequality
9 = I= comparison
8 & bitwise and
7 A bitwise xor
6 | bitwise or
5 && logical and
4 I logical or
3 xor, eqv logical equivalance
2 implies logical implication
1 ?: conditional

Function calls have the usual format of a name, an opening bracket, one or more arguments separated by commas,
and a closing bracket. For example:

requires { lis_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti") }

Functions will differ in the number of arguments and may impose restrictions on some or all of their arguments.
For example it may be necessary for the first argument to be a reference to a configuration option. The available
functions are described the Section calle@unctions

The logicalxor operator evaluates to true if either the left hand side or the right hand side but not both evaluate
to true The logicakqgv operator evaluates to true if both the left and right hand sides evaluate to true, or if both
evaluate to false. Thimplies operator evaluates to true either if the left hand side is false or if the right hand side
is true, in other word@ implies B has the same meaning'as|| B . An example use would be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }

This constraint would be satisfied if either the support for a main stack size is disabled, or if that stack is at least
16K. However if such a stack were in use but was too small, a conflict would be raised.

A valid CDL identifier in an expression, for examply GGLO_SPEEiIll be interpreted as a reference to a con-
figuration option by that name. The option does not have to be loaded into the current configuration. When the
component framework evaluates the expression it will substitute in a suitable value that depends on whether or not
the option is loaded, active, and enabled. The exact rules are descrihedSaction calle@®ption Values

51



Chapter 3. The CDL Language

52

A constant string is any sequence of characters enclosed in quotes. Care has to be taken that these quotes are not
stripped off by the Tcl interpreter before the CDL expression parser sees them. Consider the following:

default_value "RAM"

The quote marks will be stripped before the CDL expression parser sees the data, so the expression will be inter-
preted as a reference to a configuration optam There is unlikely to be such an option, so the actual default
value will beo. Careful use of braces or other Tcl quoting mechanisms can be used to avoid such problems.

String constants consist of the data inside the quotes. If the data itself needs to contain quote characters then
appropriate quoting is again necessary, for example:

default_value { "\"/dev/serO\"" }

An integer constant consists of a sequence of digits, optionally preceeded with the- amargperators. As usual

the sequencex or 0X can be used for hexadecimal data, and a leadimglicates octal data. Internally the com-
ponent framework uses 64-bit arithmetic for integer data. If a constant is too large then double precision arithmetic
will be used instead. Traditional syntax is also used for double precision numbers, for egarmpme2 or-3E6 .

Of course this is not completely accurate: CDL is not a typed language, all data is treated as if it were a string. For
example the following two lines are equivalent:

requires CYGNUM_UITRON_SEMAS > 10
requires { CYGNUM_UITRON_SEMAS > "10" }

When an expression gets evaluated the operators will attempt appropriate conversionscarhparison oper-

ator can be used on either integer or double precision numbers, so it will begin by attempting a string to integer
conversion of both operands. If that fails it will attempt string to double conversions. If that fails as well then the
component framework will report a conflict, an evaluation exception. If the conversions from string to integer are
successful then the result will be either the stringr the stringl, both of which can be converted to integers or
doubles as required.

It is worth noting that the expressi@¥YGNUM_UITRON_SEMASI10 is hot ambiguous. CDL identifiers can never
begin with a digit, so it is not possible fao to be misinterpreted as a reference to an identifier instead of as a
string.

Of course the implementation is slightly different again. The CDL language definition is such that all data is
treated as if it were a string, with conversions to integer, double or boolean as and when required. The implemen-
tation is allowed to avoid conversions until they are necessary. For example Qy{@NUM_UITRON_SEMAS 10

the expression parsing code will perform an immediate conversion from string to integer, storing the integer rep-
resentation, and there is no need for a conversion by the comparison operator when the expression gets evaluated.
Given{ CYGNUM_UITRON_SEMAS "10" } the parsing code will store the string representation and a conver-

sion happens the first time the expression is evaluated. All of this is an implementation detail, and does not affect
the semantics of the language.

Different operators have different requirements, for example the bitwise or operator only makes sense if both
operands have an integer representation. For operators which can work with either integer or double precision
numbers, integer arithmetic will be preferred.

The following operators only accept integer operands: unghjtwise not), the shift operators< and>>, and
the bitwise operator&, | and”.

The following operators will attempt integer arithmetic first, then double precision arithmetic: untry arith-
metic operators, -, *, /, and% and the comparision operatots <=, > and>=.



Chapter 3. The CDL Language

The equality== and inequality'= operators will first attempt integer conversion and comparison. If that fails
then double precision will be attempted (although arguably using these operators on double precision data is not
sensible). As a last resort string comparison will be used.

The operators, && and|| all work with boolean data. Any string that can be converted to the integerthe
double0.0 is treated as false, as is the empty string or the constant $siteg . Anything else is interpreted as
true. The result is eitheror 1.

The conditional operatar : will interpret its first operand as a boolean. It does not perform any processing on the
second or third operands.

In practice it is rarely necessary to worry about any of these details. In nearly every case CDL expressions just
work as expected, and there is no need to understand the full details.

Note: The current expression syntax does not meet all the needs of component writers. Some future enhance-
ments will definitely be made, others are more controversial. The list includes the following:

1. An option’s value is determined by several different factors: whether or not it is loaded, whether or not
it is active, whether or not it is enabled, and the data part. Currently there is no way of querying these
individually. This is very significant in the context of options with the bool or booldata flavors, because
there is no way of distinguishing between the option being absent/inactive/disabled or it being enabled with
a data field of 0. There should be unary operators that allow any of the factors to be checked.

2. Only the == and != operators can be used for string data. More string-related facilities are needed.
3. An implies operator would be useful for many goal expression, where A implies B is equivalentto !A ||B

4. Similarly there is inadequate support for lists. On occasion it would be useful to write expressions involving
say the list of implementors of a given CDL interface, for example a sensible default value could be the first
implementor. Associated with this is a need for an indirection operator.

5. Arguably extending the basic CDL expression syntax with lots of new operators is unnecessary, instead
expressions should just support Tcl command substitution and then component writers could escape into
Tcl scripts for complicated operations. This has some major disadvantages. First, the inference engine
would no longer have any sensible way of interpreting an expression to resolve a conflict. Second, the
component framework’s value propagation code keeps track of which options get referenced in which
expressions and avoids unnecessary re-evaluation of expressions; if expressions can involve arbitrary Tcl
code then there is no simple way to eliminate unnecessary recalculations, with a potentially major impact
on performance.

Note: The current implementation of the component framework uses 64 bit arithmetic on all host platforms.
Although this is adequate for current target architectures, it may cause problems in future. At some stage it is
likely that an arbitrary precision integer arithmetic package will be used instead.

Functions

CDL expressions can contain calls to a set of built-in functions using the usual syntax, for example;

requires { lis_substr(CYGBLD_GLOBAL_CFLAGS, "-fno-rtti") }

53



Chapter 3. The

The

get_data(option)

is_active(option)

CDL Language

available function calls are as follows:

This function can be used to obtain just the data part of a loaded configuration option, ignoring other factors
such as whether or not the option is active and enabled. It takes a single argument which should be the name
of a configuration option. If the specified option is not loaded in the current configuration then the function
returns 0, otherwise it returns the data part. Typically this function will only be used in conjunction with
is_active  andis_enabled for fine-grained control over the various factors that make up an option’s value.

This function can be used to determine whether or not a particular configuration option is active. It takes

a single argument which should be the name of an option, and returns a boolean. If the specified option is
not loaded then the function will return false. Otherwise it will consider the state of the option’s parents and

evaluate any active_if properties, and return the option’s current active state. A typical use might be:

requires { is_active(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE) implies
(CYGNUM_LIBC_MAIN_DEFAULT_STACK_SIZE >= (16 * 1024)) }

In other words either the specified configuration option must be inactive, for example because the current
application does not use any related C library or POSIX functionality, or the stack size must be at least 16K.

The configuration system’s inference engine can attempt to satisfy constraints inveldittige  in various
different ways, for example by enabling or disabling parent components, or by examining active_if properties
and manipulating terms in the associated expressions.

is_enabled(option)

is_loaded(option)

54

This function can be used to determine whether or not a particular configuration option is enabled. It takes
a single argument which should be the name of an option, and returns a boolean. If the specified option is
not loaded then the function will return false. Otherwise it will return the current boolean part of the option’s
value. The option’s active or inactive state is ignored. Typically this function will be used in conjunction with
is_active  and possiblyet_data to provide fine-grained control over the various factors that make up an
option’s value.

This function can be used to determine whether or not a particular configuration option is loaded. It takes a
single argument which should be the name of an option, and returns a boolean. If the argument is a package
then thes_loaded function provides little or no extra information, for example the following two constraints

are usually equivalent:

requires { CYGPKG_KERNEL }
requires { is_loaded(CYGPKG_KERNEL) }

However if the specified package is loaded but re-parented below a disabled component, or inactive as a result
of an active_if property, then the first constraint would not be satisfied but the second constraint would. In
other words thas_loaded makes it possible to consider in isolation one of the factors that are considered
when CDL expressions are evaluated.

The configuration system’s inference engine will not automatically load or unload packages to satisfy
is_loaded constraints.



Chapter 3. The CDL Language

is_substr(haystack, needle)

This can be used to check whether or not a particular string is present in another string. It is used mainly for
manipulating compiler flags. The function takes two arguments, both of which can be arbitrary expressions,
and returns a boolean.

is_substr  has some understanding of word boundaries. If the second argument starts with a space character
then that will match either a real space or the start of the string. Similarly if the second argument ends with
a space character then that will match a real space or the end of the string. For example, all of the following
conditions are satisfied:

is_substr("abracadabra”, "abra")

is_substr("abracadabra”, " abra")

is_substr("hocus pocus”, " pocus")
is_substr("abracadabra”, "abra ")

The first is an exact match. The second is a match because the leading space matches the start of the string.
The third is an exact match, with the leading space matching an actual space. The fourth is a match because
the trailing space matches the end of the string. However, the following condition is not satisfied.

is_substr("abracadabra”, " abra ")

This fails to match at the start of the string because the trailing space is not matched by either a real space or
the end of the string. Similarly it fails to match at the end of the string.

If a constraint involvings_substr s not satisfied and the first argument is a reference to a configuration op-
tion, the inference engine will attempt to modify that option’s value. This can be achieved either by appending
the second argument to the current value, or by removing all occurrences of that argument from the current
value.

requires { lis_substr(CYGBLD_GLOBAL_CFLAGS, " -fno-rtti ") }
requires { is_substr(CYGBLD_GLOBAL_CFLAGS, " -frtti ") }

When data is removed the leading and trailing spaces will be left. For example, given an initial value of
<CYGBLD_GLOBAL_CFLAGS -g -fno-rtti -O2 the result will be.g -02 rather thang-02 .

If exact matches are needed, the funciorsubstr  can be used instead.

is_xsubstr(haystack, needle)

This function checks whether or not the pattern string is an exact substring of the string being searched.
It is similar tois_substr  but uses exact matching only. In other words, leading or trailing spaces have
to match exactly and will not match the beginning or end of the string being searched. The function takes
two arguments, both of which can be arbitrary expressions, and returns a boolean. The difference between
is_substr  andis_xsubstr is illustrated by the following examples:

cdl_option MAGIC {

flavor data
default_value { "abracadabra" }

}

requires { is_substr(MAGIC, " abra") }
requires { is_xsubstr(MAGIC, " abra") }

55



Chapter 3. The CDL Language

The first goal will be satisfied because the leading space in the pattern matches the beginning of the string.
The second goal will not be satisfied initialy because there is no exact match, so the inference engine is likely
to update the value 0fiIAGICto abracadabra abra  which does give an exact match.

version_cmp(A, B)

56

This function is used primarily to check that a sufficiently reagsrsionof some other package is being used.

It takes two arguments, both of which can be arbitrary expressions. In practice usually one of the arguments
will be a reference to a package and the other will be a constant version string. The return value is -1 if the first
argument is a more recent version then the second, 0 if the two arguments correspond to identical versions,
and 1 if the first argument is an older version. For example the following constraint can be used to indicate
that the current package depends on kernel functionality that only became available in version 1.3:

requires { version_cmp(CYGPKG_KERNEL, "v1.3") <= 0 }

Note: At this time it is not possible to define new functions inside a CDL script. Instead functions can only be
added at the C++ level, usually by extending libcdl itself. This is partly because there is more to CDL functions
than simple evaluation: associated with most functions is support for the inference engine, so that if a constraint
involving a function is not currently satisfied the system may be able to find a solution automatically.

Goal Expressions

The arguments to certain properties, notably requires and active_if, constitute a goal expression. As with an ordi-
nary expression, all of the arguments get combined and then the expression parser takes over. The same care has
to be taken with constant strings and anything else that may get processed by the Tcl interpreter, so often a goal
expression is enclosed entirely in braces and the expression parsing code sees just a single argument.

A goal expression is basically just a sequence of ordinary expressions, for example:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
ICYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
ICYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

This consists of three separate expressions, all of which should evaluate to a non-zero result. The same expression
could be written as:

requires { CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS &&
ICYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT &&
ICYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT }

Alternatively the following would have much the same effect:

requires CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
requires ICYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
requires |CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT



Chapter 3. The CDL Language

Selecting between these alternatives is largely a stylistic choice. The first is slightly more concise than the others.
The second is more likely to appeal to mathematical purists. The third is more amenable to cutting and pasting.

The result of evaluating a goal expression is a boolean. If any part of the goal expression evaluates to ttte integer
or an equivalent string then the result is false, otherwise it is true.

The term “goal expression” relates to the component framework’s inference engine: it is a description of a goal that
should be satisfied for a conflict-free configuration. If a requires constraint is not satisfied then the inference engine
will examine the goal expression: if there is some way of changing the configuration that does not introduce new
conflicts and that will cause the goal expression to evaluate to true, the conflict can be resolved.

The inference engine works with one conflict and hence one goal expression at a time. This means that there can
be slightly different behavior if a constraint is specified using a single requires property or several different ones.
Given the above example, suppose that none of the three conditions are satisfied. If a single goal expression is used
then the inference engine might be able to satisfy only two of the three parts, but since the conflict as a whole
cannot be resolved no part of the solution will be applied. Instead the user will have to resolve the entire conflict. If
three separate goal expressions are used then the inference engine might well find solutions to two of them, leaving
less work for the user. On the other hand, if a single goal expression is used then the inference engine has a bit
more information to work with, and it might well find a solution to the entire conflict where it would be unable

to find separate solutions for the three parts. Things can get very complicated, and in general component writers
should not worry about the subtleties of the inference engine and how to manipulate its behavior.

It is possible to write ambiguous goal expressions, for example:
requires CYGNUM_LIBC_RAND_SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL 5
This could be parsed in two ways:

requires ((CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL)> 5)
requires CYGNUM_LIBC_RAND_SEED && ((-CYGNUM_LIBC_RAND_TRACE_LEVEL)> 5)

The goal expression parsing code will always use the largest ordinary expression for each goal, so the first inter-
pretation will be used. In such cases it is a good idea to use brackets and avoid possible confusion.

List Expressions

The arguments to the legal_values property constitute a goal expression. As with an ordinary and goal expressions,
all of the arguments get combined and then the expression parser takes over. The same care has to be taken with
constant strings and anything else that may get processed by the Tcl interpreter, so often a list expression is enclosed
entirely in braces and the expression parsing code sees just a single argument.

Most list expressions take one of two forms:

legal_values <exprl > <expr2 > <expr3 > ...
legal_values <exprl > to <expr2 >

exprl , expr2 and so on are ordinary expressions. Often these will be constants or references to calculated options
in the architectural HAL package, but it is possible to use arbitrary expressions when necessary. The first syntax
indicates a list of possible values, which need not be numerical. The second syntax indicates a numerical range:
both sides of theo must evaluate to a numerical value; if either side involves a floating point number then any
floating point number in that range is legal; otherwise only integer values are legal; ranges are inclusigea so

57



Chapter 3. The CDL Language

valid value given a list expressianto ; if one or both sides of the does not evaluate to a numerical value then
this will result in a run-time conflict. The following examples illustrate these possibilities:

legal_values { "red" "green" "blue" }
legal_values 1 2 4 8 16
legal_values 1 to CYGARC_MAXINT
legal_values 1.0 to 2.0

It is possible to combine the two syntaxes, for example:

legal_values 1 2 4 to CYGARC_MAXINT -1024 -20.0 to -10

This indicates three legal valugés2 and-1024 , one integer rangé to CYGARC_MAXINT and one floating point
range-20.0 to -10.0 . In practice such list expressions are rarely useful.

The identifierto is not reserved, so it is possible to have a configuration option with that name (although it violates
every naming convention). Using that option in a list expression may however give unexpected results.

The graphical configuration tool uses the legal_values list expression to determine how best to let users manipulate
the option’s value. Different widgets will be appropriate for different listy, $@d" "green" "blue" } might

involve a pull-down option menu, andto 16 could involve a spinner. The exact way in which legal_values lists

get mapped on to GUI widgets is not defined and is subject to change at any time.

As with goal expressions, list expressions can be ambiguous. Consider the following hypothetical example:
legal_values CYGNUM_LIBC_RAND SEED -CYGNUM_LIBC_RAND_TRACE_LEVEL

This could be parsed in two ways:

legal_values (CYGNUM_LIBC_RAND_SEED - CYGNUM_LIBC_RAND_TRACE_LEVEL)
legal_values (CYGNUM_LIBC_RAND_SEED) (-CYGNUM_LIBC_RAND_TRACE_LEVEL)

Both are legal. The list expression parsing code will always use the largest ordinary expression for each element, so
the first interpretation will be used. In cases like this it is a good idea to use brackets and avoid possible confusion.

Interfaces

For many configurability requirements, options provide sufficient expressive power. However there are times when

a higher level of abstraction is appropriate. As an example, suppose that some package relies on the presence of
code that implements the standard kernel scheduling interface. However the requirement is no more stringent than
this, so the constraint can be satisfied by the mlqueue scheduler, the bitmap scheduler, or any additional schedulers
that may get implemented in future. A first attempt at expressing the dependency might be:

requires CYGSEM_KERNEL_SCHED _MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint will work with the current release, but it is limited. Suppose there is a new release of the kernel
which adds another scheduler such as a deadline scheduler, or suppose that there is a new third party package which
adds such a scheduler. The package containing the limited constraint would now have to be updated and another
release made, with possible knock-on effects.

58



Chapter 3. The CDL Language

CDL interfaces provide an abstraction mechanism: constraints can be expressed in terms of an abstract con-
cept, for example “scheduler”, rather than specific implementations suclYy@SEM_KERNEL_SCHED_MLQUEUE
andCYGSEM_KERNEL_SCHED_BITMARasically an interface is a calculated configuration option:

cdl_interface CYGINT_KERNEL_SCHEDULER {
display "Number of schedulers in this configuration”

}
The individual schedulers can then implement this interface:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
display "Multi-level queue scheduler"”
default_value 1
implements CYGINT_KERNEL_SCHEDULER

}

cdl_option CYGSEM_KERNEL_SCHED_BITMAP {
display "Bitmap scheduler"
default_value 0
implements CYGINT_KERNEL_SCHEDULER

}

Future schedulers can also implement this interface. The value of an interface, for the purposes of expression
evaluation, is the number of active and enabled options which implement this interface. Packages which rely on
the presence of a scheduler can impose constraints such as:

requires CYGINT_KERNEL_SCHEDULER

If none of the schedulers are enabled, or if the kernel package is not loaded;aexitT_KERNEL_SCHEDULER
will evaluate too. If at least one scheduler is active and enabled then the constraint will be satisfied.

Because interfaces have a calculated value determined by the implementors, the default_value and calculated prop-
erties are not applicable and should not appear in the bodycdif mterface command. Interfaces have the

data flavor by default, but théool andbooldata flavors may be specified insteadb8ol interface is disabled

if there are no active and enabled implementors, otherwise it is enabledbldhta interface is disabled if there

are no active and enabled implementors, otherwise it is enabled and has a value corresponding to the number of
these implementors. Other properties such as requires and compile can be used as normal.

Some component writers will not want to use interfaces in this way. The reasoning is that their code will only
have been tested with the existing schedulers, so the requires constraint needs to be expressed in terms of those
schedulers; it is possible that the component will still work with a new scheduler, but there are no guarantees. Other
component writers may take a more optimistic view and assume that their code will work with any scheduler until
proven otherwise. It is up to individual component writers to decide which approach is most appropriate in any
given case.

One common use for interfaces is to describe the hardware functionality provided by a given target. For example
the CDL scripts for a TCP/IP package might want to know whether or not the target hardware has an ethernet
interface. Generally it is not necessary for the TCP/IP stack to know exactly which ethernet hardware is present,
since there should be a device driver which implements the appropriate functionality. In CDL terms the device

59



Chapter 3. The CDL Language

drivers should implement an interfac& GHWR_NET_DRIVER&nNd the CDL scripts for the TCP/IP stack can use
this in appropriate expressions.

Note: Using the term interface for this concept is sometimes confusing, since the term has various other mean-
ings as well. In practice, it is often correct. If there is a configuration option that implements a given CDL inter-
face, then usually this option will enable some code that provides a particular interface at the C or C++ level. For
example an ethernet device driver implements the CDL interface CYGHWR_NET_DRIVER&Nd also implements a
set of C functions that can be used by the TCP/IP stack. Similarly CYGSEM_KERNEL_SCHED_MLQUIoplements
the CDL interface CYGINT_KERNEL_SCHEDULEmd also provides the appropriate scheduling functions.

Updating the ecos.db database

60

The current implementation of the component framework requires that all packages be present in a single com-
ponent repository and listed in that repository’s ecos.db database. This is not generally a problem for application
developers who can consider the component repository a read-only resource, except when adding or removing
packages via the administration tool. However it means that component writers need to do their development work
inside a component repository as well, and update the database with details of their new package or packages. Fu-
ture enhancements to the component framework may allow new components to be developed outside a repository.

Like most files related to the component framework, the ecos.db database is actually a Tcl script. Typical package
entries would look like this:

package CYGPKG_LIBC {

alias { "C library" libc clib clibrary }

directory language/c/libc

script  libc.cdl
description

This package enables compatibility with the 1ISO C standard - ISO/IEC

9899:1990. This allows the user application to use well known standard

C library functions, and in eCos starts a thread to invoke the user

function main()"

}

package CYGPKG_IO_PCI {
alias { "PCI configuration library" io_pci }
directory io/pci
script  io_pci.cdl
hardware
description "
This package contains the PCI configuration library.”

}

The package command takes two arguments, a name and a body. The name must be the same as in the
cdl_package command in the package’s top-level CDL script. The body can contain the following five
commandsalias , directory , script , hardware anddescription



alias

directory

script

hardware

description

Notes

Chapter 3. The CDL Language

Each package should have one or more aliases. The first alias is typically used when listing the known pack-
ages, because a string likelibrary  is a bit easier to read and understand tbaGPKG_LIBC The other

aliases are not used for output, but are accepted on input. For example the ecosconfig command-line tool will
acceptadd libc as an option, as well ag&ld CYGPKG_LIBC

This is used to specify the location of the package relative to the root of the component repository. It should
be noted that in the current component framework this location cannot be changed in subsequent releases of
the package: if for some reason it is desirable to install a new release elsewhere in the repository, all the old
versions must first be uninstalled; the database cannot hold two separate locations for one package.

Thescript command specifies the location of the package’s top-level CDL script, in other words the one
containing thecdl_package definition. If the package follows thdirectory layout conventionthen this

script will be in thecdl sub-directory, otherwise it will be relative to the package’s top-level directory. Again
once a release has been made this file should not change in later releases. In practice the top-level script is
generally named after the package itself, so changing its name is unlikely to be useful.

Packages which are tied to specific hardware, for example device drivers and HAL packages, should indicate
this in both thecdl_package command of the CDL script and in the database entry.

This should give a brief description of the package. Typically the text for the description property in the
cdl_package command will be re-used.

Note: Most of the information in the ecos.db file could be obtained by a relatively simple utility. This would
be passed a single argument identifying a package’s top-level CDL script. The directory path relative to the
component repository root could be determined from the filename. The hame, description ~ and hardware fields
could be obtained from the script’s cdl_package command. The display property would supply the first alias,
additional aliases could be obtained by extending the syntax of that property or by other means. Something
along these lines may be provided by a future release of the component framework.

Currently the ecos.db database also holds information about the various targets. When porting to a new target it
will be necessary to add information about the target to the database, as well as the details of the new platform
HAL package and any related packages.

Itis possible that some versions of the Tcl interpreter will instead produce a result of 54 when asked to multiply
six by nine. Appropriate reference documentation (http://www.douglasadams.com/creations/hhgg.html) should
be consulted for more information on why 42 is in fact the correct answer.

61



Chapter 3. The CDL Language

62



Chapter 4. The Build Process

Some CDL properties describe the consequences of manipulating configuration options. There are two main types
of consequences. Typically enabling a configuration option results in one or#efiiee’s  in a configuration

header file, and properties that affect this include define, define_proc and no_define. Enabling a configuration
option can also affect the build process, primarily determining which files get built and added to the appropriate
library. Properties related to the build process include compile and make. This chapter describes the whole build
process, including details such as compiler flags and custom build steps.

Part of the overall design of the eCos component framework is that it can interact with a number of different build
systems. The most obvious of these is GNU make:the component framework can generate one or more makefiles,
and the user can then build the various packages simply by invoking make. However it should also be possible to
build eCos by other means: the component framework can be queried about what is involved in building a given
configuration, and this information can then be fed into the desired build system. Component writers should be
aware of this possibility. Most packages will not be affected because the compile property can be used to provide
all the required information, but care has to be taken when writing custom build steps.

Build Tree Generation

It is necessary to create an eCos configuration before anything can be built. With some tools such as the graphical
configuration tool this configuration will be created in memory, and it is not essential to producesastc

savefile first (although it is still very desirable to generate such a savefile at some point, to allow the configuration
to be re-loaded later on). With other tools the savefile is generated first, for exampleasiognfig new , and

then a build tree is generated uskwsconfig tree . The savefile contains all the information needed to recreate

a configuration.

An eCos build actually involves three separate trees. The component repository acts as the source tree, and for
application developers this should be considered a read-only resource. The build tree is where all intermediate
files, especially object files, are created. The install tree is where the main lititaryet.a , the exported

header files, and similar files end up. Following a successful build it is possible to take just the install tree and use
it for developing an application: none of the files in the component repository or the build tree are needed for that.
The build tree will be needed again only if the user changes the configuration. However the install tree does not
contain copies of all of the documentation for the various packages, instead the documentation is kept only in the
component repository.

By default the build tree, the install tree, and thes.ecc  savefile all reside in the same directory tree. This is not
a requirement, both the install tree and the savefile can be anywhere in the file system.

It is worth noting that the component framework does not separate theraskehndmake install — stages. A
build always populates the install tree, and arake install ~ step would be redundant.

The install tree will always begin with two directoriéaclude for the exported header files afid for the

main librarylibtarget.a and other files such as the linker script. In addition there will be a subdireictory
clude/pkgconf  containing the configuration header files, which are generated or updated at the same time the
build tree is created or updated. More details of header file generation are given below. Additiodel subdi-
rectories such as/s andcyg/kernel  will be created during the first build, when each package’s exported header
files are copied to the install tree. The install tree may also end up with additional subdirectories during a build, for
example as a result of custom build steps.

63



Chapter 4. The Build Process

The component framework does not define the structure of the build tree, and this may vary between build systems.
It can be assumed that each package in the configuration will have its own directory in the build tree, and that this
directory will be used for storing the package’s object files and as the current directory for any build steps for that
package. This avoids problems when custom build steps from different packages generate intermediate files which
happen to have the same name.

Some build systems may allow application developers to copy a source file from the component repository to the
build tree and edit the copy. This allows users to experiment with small changes, for example to add a couple
of lines of debugging to a package, without having to modify the master copy in the component repository which
could be shared by several projects or several people. Functionality such as this is transparent to component writers,
and it is the responsibility of the build system to make sure that the right thing happens.

Note: There are some unresolved issues related to the build tree and install tree. Specifically, when updating an
existing build or install tree, what should happen to unexpected files or directories? Suppose the user started
with a configuration that included the math library, and the install tree contains header files include/math.h
and include/sys/ieeefp.h . The user then removed the math library from the configuration and is updating
the build tree. It is now desirable to remove these header files from the install tree, so that if any application
code still attempts to use the math library this will fail at compile time rather than at link time. There will also be
some object files in the existing libtarget.a library which are no longer appropriate, and there may be other
files in the install tree as a result of custom build steps. The build tree will still contain a directory for the math
library, which no longer serves any purpose.

However, it is also possible that some of the files in the build tree or the install tree were placed there by the
user, in which case removing them automatically would be a bad idea.

At present the component framework does not keep track of exactly what should be present in the build and
install trees, so it cannot readily determine which files or library members are obsolete and can safely be
removed, and which ones are unexpected and need to be reported to the user. This will be addressed in a
future release of the system.

Configuration Header File Generation

64

Configuration options can affect a build in two main ways. First, enabling a configuration option or other CDL
entity can result in various files being built and added to a library, thus providing functionality to the application
code. However this mechanism can only operate at a rather coarse grain, at the level of entire source files. Hence
the component framework also generates configuration header files containing mainly C prepratgissor
directives. Package source code can thietiude the appropriate header files and é#e, #ifdef and#ifndef

directives to adapt accordingly. In this way configuration options can be used to enable or disable entire functions
within a source file or just a single line, whichever is appropriate.

The configuration header files end up in thelude/pkgconf subdirectory of the install tree. There will be
one header file for the system as a whelaconf/system.n  , and there will be additional header files for each
package, for examplekgconf/kernel.h . The header files are generated when creating or updating the build and
install trees, which needs to happen after every change to the configuration.

The component framework processes each package in the configuration one at a time. The exact order in which
the packages are processed is not defined, so the order in wddthe's  will end up in the globalpkg-
conf/system.h ~ header may vary. However for any given configuration the order should remain consistent until



Chapter 4. The Build Process

packages are added to or removed from the system. This avoids unnecessary changes to the global header file and
hence unnecessary rebuilds of the packages and of application code because of header file dependency handling.

Within a given package the various components, options and interfaces will be processed in the order in which
they were defined in the corresponding CDL scripts. Typically the data in the configuration headers consists only

of a sequence ofdefine’s  so the order in which these are generated is irrelevant, but some properties such as
define_proc can be used to add arbitrary data to a configuration header and hence there may be dependencies on
the order. It should be noted that re-parenting an option below some other package has no effect on which header
file will contain the correspondingdefine : the preprocessor directives will always end up in the header file for

the package that defines the option, or in the global configuration header.

There are six properties which affect the process of generating header ddése headerno_defing
define_formatdefing if_defing anddefine_proc

The define_header property can only occur in the bodyodf @ackage command and specifies the name of the
header file which should contain the package’s configuration data, for example:

cdl_package  <some_package > {

define_header xyzzy.h

}

Given such a define_header property the component framework will use thikgiitnfixyzzy.h for the pack-
age’s configuration data. If a package does not have a define_header property then a suitable file name is constructed
from the package’s name. This involves:

1. All characters in the package name up to and including the first underscore are removed. For exagnple
PKG_KERNEIs converted t&KERNEL andCYGPKG_HAL_ARId converted taHAL_ARM

2. Any upper case letters in the resulting string will be converted to lower case, yieldingeengl and
hal_arm .

3. A .h suffix is appended, yielding e.gernel.h  andhal_arm.h

Because of the naming restrictions on configuration options, this should result in a valid filename. There is a small
possibility of a file name class, for examp® GPKG_PLUGENACYGPKG_plugh would both end up trying to use

the same header fil&kgconfiplugh.nh  , but the use of lower case letters for package names violates the naming
conventions. It is not legal to use the define_header property to put the configuration data for several packages in a
single header file. The resulting behaviour is undefined.

Once the name of the package’s header file has been determined and the file has been opened, the various compo-
nents, options and interfaces in the package will be processed starting with the package itself. The following steps
are involved:

1. If the current option or other CDL entity is inactive or disabled, the option is ignored for the purposes of header
file generation#define’s  are only generated for options that are both active and enabled.

2.The next step is to generate a defatdefine for the current option. If this option has a no_define prop-
erty then the defaultdefine is suppressed, and processing continues for define, if_define and define_proc
properties.

a. The header file appropriate for the defatttfine is determined. For edl_package this will be pkg-
conf/system.nh , for any other option this will be the package’s own header file. The intention here is that

65



Chapter 4. The Build Process

66

packages and application code can always determine which packages are in the configurgtion by
clude’ing pkgconf/system.h . The C preprocessor lacks any facilities for including a header file only
if it exists, and taking appropriate action otherwise.

. For options with the flavorsool or none, a single#define  will be generated. This takes the form:

#define  <option > 1
For example:
#define CYGFUN_LIBC_TIME_POSIX 1

Package source code can check whether or not an option is active and enabled by usifigfthe
#ifndef  or #if defined(...) directives.

. For options with the flavorgata orbooldata , either one or twerdefine’s  will be generated. The first

of these may be affected by a define_format property. If this property is not defined then txfinst
will take the form:

#define  <option > <value >

For example:
#define CYGNUM_LIBC_ATEXIT_HANDLERS 32
Package source code can examine this value usingfthdirective, or by using the symbol in code such
as:
for (i = 0; i < CYGNUM_LIBC_ATEXIT_HANDLERS; i++) {

}

It must be noted that thedefine  will be generated only if the corresponding option is both active and en-
abled. Options with theata flavor are always enabled but may not be active. Code like the above should
be written only if it is known that the symbol will always be defined, for example if the corresponding
source file will only get built if the containing component is active and enabled. Otherwise the use of
additional#ifdef  or similar directives will be necessary.

.If there is a define_format property then this controls how the option’s value will appear in the header

file. Given a format string such as08x and a value 42, the component framework will execute the Tcl
commandormat %08x 42 and the result will be used for thelefine’s  value. It is the responsibility

of the component writer to make sure that this Tcl command will be valid given the format string and the
legal values for the option.

.In addition a seconddefine may or may not be generated. This will take the form:

#define  <option >_<value >

For example:

#define CYGNUM_LIBC_ATEXIT_HANDLERS_32

The #define  will be generated only if it would result in a valid C preprocessor symbol. If the value
is a string such a¥dev/ser0" then the#define would be suppressed. This secantdfine is not

particularly useful for numerical data, but can be valuable in other circumstances. For example if the legal
values for an optiolxXX_COLORarered , green andblue then code like the following can be used:

#ifdef XXX_COLOR_red



Chapter 4. The Build Process

#endif
#ifdef XXX_COLOR_green

#endif
#ifdef XXX_COLOR_blue

#endif

The expression syntax provided by the C preprocessor is limited to numerical data and cannot perform
string comparisons. By generating twiefine’s  in this way it is possible to work around this limitation

of the C preprocessor. However some care has to be taken: if a component writer also defined a configu-
ration optionXXX_COLOR_greenthen there will be confusion. Since such a configuration option violates
the naming conventions, the problem is unlikely to arise in practice.

3. For some options it may be useful to generate one or more additidefle’s  or, in conjunction with the
no_define property, to define a symbol with a name different from the option’s name. This can be achieved
with the define property, which takes the following form:

define [-file= <filename >] [-format=  <format >] <symbol >
For example:

define FOPEN_MAX
This will result in something like:

#define FOPEN_MAX 8
#define FOPEN_MAX_8

The specified symbol must be a valid C preprocessor symbol. Normalldtiee will end up in the same
header file as the default one, in other wopttgconf/system.h in the case of adl_package , or the
package’s own header file for any other option. Tiie option can be used to change this. At present the
only legal value isystem.h , for example:

define -file=system.h <symbol >

This will cause thetdefine to end up in the global configuration header rather than in the package’s own
header. Use of this facility should be avoided since it is very rarely necessary to make options globally visible.

The define property takes another optigormat , to provide a format string.
define -format=%08x <symbol >

This should only be used for options with theta or booldata flavor, and has the same effect as the de-
fine_format property has on the defatdiefine

define properties are processed in the same way the detwfite . For options with thebool or none
flavors a singletdefine  will be generated using the value For options with thelata or booldata flavors
either one or twatdefine’s  will be generated.

4. After processing all define properties, the component framework will look for any if_define properties. These
take the following form:

if_define [-file= <filename >] <symboll > <symbol2 >

67



Chapter 4. The Build Process

68

For example:
if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS

The following will be generated in the configuration header file:

#ifdef CYGSRC_KERNEL
# define CYGDBG_USE_ASSERTS
#endif

Typical kernel source code would begin with the following construct:

#define CYGSRC_KERNEL 1
#include  <pkgconf/kernel.h >
#include  <cygl/infra/cyg_ass.h >

The infrastructure header filecyg/infra/cyg ass.h only checks for symbols such as
CYGDBG_USE_ASSERTand has no special knowledge of the kernel or any other package. The if_define
property will only affect code that defines the symimmGSRC_KERNELso typically only kernel source

code. If the option is enabled then assertion support will be enabled for the kernel source code only. If the
option is inactive or disabled then kernel assertions will be disabled. Assertions in other packages are not
affected. Thus the if_define property allows control over assertions, tracing, and similar facilities at the level
of individual packages, or at finer levels such as components or even single source files if desired.

Note: Current eCos packages do not yet make use of this facility. Instead there is a single global config-
uration option CYGDBG_USE_ASSERMhich is used to enable or disable assertions for all packages. This
issue should be addressed in a future release of the system.

As with the define property, the if_define property takes an opfien with a single legal valusystem.h
This allows the output to be redirectedpkpconf/system.h if and when necessary.

. The final property that is relevant to configuration header file generation is define_proc. This takes a single

argument, a Tcl fragment that can add arbitrary data to the global hgagenf/system.h and to the pack-

age's own header. When the define_proc script is invoked two variables will be set up to allow access to these
headerstdl_header will be a channel to the package’s own header file, for examideonf/kernel.h ;
cdl_system_header  will be a channel tgkgconf/system.h . A typical define_proc script will use the Tcl

puts command to output data to one of these channels, for example:

cdl_option <name> {

define_proc {
puts $::cdl_header "#define XXX 1"
}

Note: In the current implementation the use of define_proc is limited because the Tcl script cannot access
any of the configuration data. Therefore the script is limited to writing constant data to the configuration
headers. This is a major limitation which will be addressed in a future release of the component framework.



Chapter 4. The Build Process

Note: Generating C header files with #define’s  for the configuration data suffices for existing packages written
in some combination of C, C++ and assembler. It can also be used in conjunction with some other languages,
for example by first passing the source code through the C preprocessor and feeding the result into the ap-
propriate compiler. In future versions of the component framework additional programming languages such as
Java may be supported, and the configuration data may also be written to files in some format other than C
preprocessor directives.

Note: At present there is no way for application or package source code to get hold of all the configuration
details related to the current hardware. Instead that information is spread over various different configuration
headers for the HAL and device driver packages, with some of the information going into pkgconf/system.h

It is possible that in some future release of the system there will be another global configuration header file
pkgconf/hardware.h which either contains the configuration details for the various hardware-specific packages
or which #include’s  all the hardware-specific configuration headers. The desirability and feasibility of such a
scheme are still to be determined. To avoid future incompatibility problems as a result of any such changes,
it is recommended that all hardware packages (in other packages containing the hardware property) use the
define_header property to specify explicitly which configuration header should be generated.

The system.h Header

Typically configuration header files aténclude’d  only by the package’s source code at build time, or by a
package’s exported header files if the interface provided by the package may be affected by a configuration option.
There should be no need for application code to know the details of individual configuration options, instead the
configuration should specifically meet the needs of the application.

There are always exceptions. Application code may want to adapt to configuration options, for example to do
different things for ROM and RAM booting systems, or when it is necessary to support several different target

boards. This is especially true if the code in question is really re-usable library code which has not been converted
to an eCos package, and hence cannot use any CDL facilities.

A major problem here is determining which packages are in the configuration: attemptiingidide a header

file such agpkgconfineth  whenitis not known for certain that that particular package is part of the configuration
will result in compilation errors. The global header filegconf/system.h serves to provide such information,

so application code can use techniques like the following:

#include  <pkgconf/system.h >
#ifdef CYGPKG_NET

# include  <pkgconf/net.h >
#endif

This will compile correctly irrespective of the eCos configuration, and subsequent code c#fdaise or similar
directives onrCYGPKG_NE®r any of the configuration options in that package.

In addition to determining whether or not a package is present, the global configuration header file can also be
used to find out the specific version of a package that is being used. This can be useful if a more recent version
exports additional functionality. It may also be necessary to adapt to incompatible changes in the exported interface
or to changes in behaviour. For each package the configuration system will typidetihe three symbols, for
example for a V1.3.1 release:

#define CYGNUM_NET_VERSION_MAJOR 1

69



Chapter 4. The Build Process

#define CYGNUM_NET_VERSION_MINOR 3
#define CYGNUM_NET_VERSION_RELEASE 1

There are a number of problems associated with such vetdigine’s . The first restriction is that the package
must follow the standard naming conventions, so the package name must be of thexeK@a_yyy . The three
characters immediately preceding the first underscore mut@eand will be replaced withUmwvhen generating
the versior#define’s . If a package does not follow the naming convention then no vetgleine’s  will be
generated.

Assuming the package does follow the naming conventions, the configuration tools will always generate three
version#define’s  for the major, minor, and release numbers. The symbol names are obtained from the package
name by replacin@KkGwith NUMand appendingVERSION_MAJOR_VERSION_MINORand_VERSION_RELEASE

It is assumed that the resulting symbols will not clash with any configuration option names. The values for the
#define’s  are determined by searching the version string for sequences of digits, optionally preceded by a minus
sign. It is possible that some or all of the numbers are absent in any given version string, in whiah wésbe

used in thetdefine . For example, given a version string\f.12beta , the major version number is the minor
number is12, and the release number-is. Given a version string dfeta all three numbers would be set+D.

There is special case code for the versiament , which typically corresponds to a development version obtained

via anonymous CVS or similar means. The configuration system has special built-in knowledge of this version, and
will assume it is more recent than any specific release number. The global configuration header defines a special
symbolCYGNUM_VERSION_CURREMNA this will be used as the major version number when versioent  of

a package is used:

#define CYGNUM_VERSION_CURRENT 0x7fffff00

#define CYGNUM_INFRA_VERSION_MAJOR CYGNUM_VERSION_CURRENT
#define CYGNUM_INFRA_VERSION_MINOR -1
#define CYGNUM_INFRA_VERSION_RELEASE -1

The large number used f@YGNUM_VERSION_CURRESITould ensure that major version comparisons work as
expected, while still allowing for a small amount of arithmetic in case that proves useful.

It should be noted that this implementation of versidafine’s  will not cope with all version number schemes.
However for many cases it should suffice.

Building eCos

70

The primary goal of an eCos build is to produce the libidutgrget.a . A typical eCos build will also generate

a number of other targetextras.o , startup codevectors.o , and a linker script. Some packages may cause
additional libraries or targets to be generated. The basic build process involves a number of different phases with
corresponding priorities. There are a number of predefined priorities:

Priority |Action

0 [Export header files
100 [Process compile properties
and most make_object custom build steps
200 |Generate libraries




Chapter 4. The Build Process

Priority |Action
300 [Process make custom build steps

Generation of thextras.o file, the startup code and the linker script actually happens via make custom build
steps, typically defined in appropriate HAL packages. The component framework has no special knowledge of
these targets.

By default custom build steps for a make_object property happen during the same phase as most compilations, but
this can be changed usinggiority option. Similarly custom build steps for a make property happen at the end

of a build, but this can also be changed witkpdority option. For example a priority of 50 can be used to run

a custom build step between the header file export phase and the main compilation phase. Custom build steps are
discussed in more detail below.

Some build systems may run several commands of the same priority in parallel. For example files listed in compile
properties may get compiled in parallel, concurrently with make_object custom build steps with default priorities.
Since most of the time for an eCos build involves processing compile properties, this allows builds to be speeded
up on suitable host hardware. All build steps for a given phase will complete before the next phase is started.

Updating the Build Tree

Some build systems may involve a phase before the header files get exported, to update the build and install trees
automatically when there has been a change to the configuration saeefilecc . This is useful mainly for
application developers using the command line tools: it would allow users to create the build tree only once, and
after any subsequent configuration changes the tree would be updated automatically by the build system. The
facility would be analogous to theenable-maintainer-mode option provide by the autoconf and automake
programs. At present no eCos build system implements this functionality, but it is likely to be added in a future
release.

Exporting Public Header Files

The first compulsory phase involves making sure that there is an up to date set of header files in the install tree.
Each package can contain some number of header files defining the exported interface. Applications should only
use exported functionality. A package can also contain some number of private header files which are only of
interest to the implementation, and which should not be visible to application code. The various packages that go
into a particular configuration can be spread all over the component repository. In theory it might be possible to
make all the exported header files accessible by having a lengtineader file search path, but this would be
inconvenient both for building eCos and for building applications. Instead all the relevant header files are copied to
a single location, thaaclude  subdirectory of the install tree. The process involves the following:

1.The install tree, for example /usr/local/ecosfinstall , and its include subdirectory
Jusr/local/ecos/install/include will typically be created when the build tree is generated or updated.
At the same time configuration header files will be written to tikgconf subdirectory, for example
lusr/local/ecos/include/pkgconf , S0 that the configuration data is visible to all the packages and to
application code that may wish to examine some of the configuration options.

2. Each package in the configuration is examined for exported header files. The exact order in which the packages
are processed is not defined, but should not matter.

a.If the package has anclude_filesproperty then this lists all the exported header files:

71



Chapter 4. The Build Process

72

cdl_package <some_package > {

include_files headerl.h header2.h

}
If no arguments are given then the package does not export any header files.

cdl_package <some_package > {

include_files
}
The listed files may be in ainclude subdirectory within the package’s hierarchy, or they may be rel-
ative to the package’s toplevel directory. The include_files property is intended mainly for very simple
packages. It can also be useful when converting existing code to an eCos package, to avoid rearranging
the sources.

b. If there is no include_files property then the component framework will look fafcdude subdirectory
in the package, as per the layout conventions. All files, including those in subdirectories, will be treated
as exported header files. For example, the math library package containacfilgs/math.h and
include/sys/ieeefp.h , both of which will be exported to the install tree.

c.As a last resort, if there is neither an include_files property nan@nde subdirectory, the component
framework will search the package’s toplevel directory and all of its subdirectories for files with one of
the following suffixes:h , .hxx ,.inl  or.inc . All such files will be interpreted as exported header files.

This last resort rule could cause confusion for packages which have no exported header files but which
do contain one or more private header files. For example a typical device driver simply implements an
existing interface rather than define a new one, so it does not need to export a header file. However it may
still have one or more private header files. Such packages should use an include_files property with no
arguments.

3. If the package has one or more exported header files, the next step is to determine where the files should end

up. By default all exported header files will just end up relative to the install tiegigle subdirectory.
For example the math libraryisath.n header would end up dssr/local/ecos/include/math.h ,and
the sys/ieeefp.h header would end up asst/local/ecos/include/sys/ieeefp.h . This behaviour
is correct for packages like the C library where the interface is defined by appropriate standards. For other
packages this behaviour can lead to file name clashes, andcibde_dirproperty should be used to avoid
this:
cdl_package CYGPKG_KERNEL {
include_dir cyg/kernel

}
This means that the kernel's exported header filelude/kapi.h should be copied to
Jusr/local/ecos/include/cyg/kernel/kapi.h , Where it is very unlikely to clash with a header file

from some other package.

4. For typical application developers there will be little or no need for the installed header files to change after

the first build. Changes will be necessary only if packages are added to or removed from the configuration. For



Chapter 4. The Build Process

component writers, the build system should detect changes to the master copy of the header file source code
and update the installed copies automatically during the next build. The build system is expected to perform a
header file dependency analysis, so any source files affected should get rebuilt as well.

5.Some build systems may provide additional support for application developers who want to make minor
changes to a package, especially for debugging purposes. A header file could be copied from the compo-
nent repository (which for application developers is assumed to be a read-only resource) into the build tree and
edited there. The build system would detect a more recent version of such a header file in the build tree and
install it. Care would have to be taken to recover properly if the modified copy in the build tree is subsequently
removed, in order to revert to the original behaviour.

6. When updating the install treeiisclude  subdirectory, the build tree may also perform a clean-up operation.
Specifically, it may check for any files which do not correspond to known exported header files and delete
them.

Note: At present there is no defined support in the build system for defining custom build steps that generate
exported header files. Any attempt to use the existing custom build step support may fall foul of unexpected
header files being deleted automatically by the build system. This limitation will be addressed in a future release
of the component framework, and may require changing the priority for exporting header files so that a custom
build step can happen first.

Compiling

Once there are up to date copies of all the exported header files in the build tree, the main build can proceed. Most
of this involves compiling source files listed in compile properties in the CDL scripts for the various packages, for
example:

cdl_package CYGPKG_ERROR {
display "Common error code support"
compile strerror.cxx

}

compile properties may appear in the body oflapackage |, cdl_component ,cdl_option  orcdl_interface

If the option or other CDL entity is active and enabled, the property takes effect. If the option is inactive or disabled
the property is ignored. It is possible for a compile property to list multiple source files, and it is also possible for
a given CDL entity to contain multiple compile properties. The following three examples are equivalent:

cdl_option <some_option > {

compile filel.c file2.c file3.c

}
cdl_option <some_option > {
compile filel.c

compile file2.c
compile file3.c

73



Chapter 4. The Build Process

74

cdl_option <some_option > {

compile filel.c file2.c
compile file3.c

}

Packages that follow the directory layout conventions should have a subdireetqrgnd the component frame-
work will first look for the specified files there. Failing that it will look for the specified files relative to the pack-
age’s root directory. For example if a package contains a sourcsréiteor.cxx then the following two lines

are equivalent:

compile strerror.cxx
compile src/strerror.cxx

In the first case the component framework will find the file immediately in the paclkagesubdirectory. In the
second case the framework will first look for a fée/src/strerror.cxx , and then forstr/strerror.cxx
relative to the package’s root directory. The result is the same.

The file names may be relative paths, allowing the source code to be split over multiple directories. For example if
a package contains a fibec/sync/mutex.cxx then the corresponding CDL entry would be:

compile sync/mutex.cxx

All the source files relevant to the current configuration will be identified when the build tree is generated or
updated, and added to the appropriate makefile (or its equivalent for other build systems). The actual build will
involve a rule of the form:

<object file > : <source file >
$(CC) -c $(INCLUDE_PATH) $(CFLAGS) -0 $@ $<

The component framework has built-in knowledge for processing source files written in C, C++ or assembler.
These should have.a, .cxx and.S suffix respectively. The current implementation has no simple mechanism for
extending this with support for other languages or for alternative suffixes, but this should be addressed in a future
release.

The compiler command that will be used is something tike-elf-gcc . This consists of a command prefix, in

this caserm-elf , and a specific command suchgas . The command prefix will depend on the target architecture

and is controlled by a configuration option in the appropriate HAL package. It will have a sensible default value for
the current architecture, but users can modify this option when necessary. The command prefix cannot be changed
on a per-package basis, since it is usually essential that all packages are built with a consistent set of tools.

The$(INCLUDE_PATH) header file search path consists of at least the following:

1. Theinclude directory in the install tree. This allows source files to access the various header files exported
by all the packages in the configuration, and also the configuration header files.

2. The current package’s root directory. This ensures that all files in the package are accessible at build time.

3. The current package'sc subdirectory, if it is present. Generally all files to be compiled are located in or
below this directory. Typically this is used to access private header files containing implementation details
only.



Chapter 4. The Build Process

The compiler flags$(CFLAGS) are determined in two steps. First the appropriate HAL package will provide a
configuration option defining the global flags. Typically this includes flags that are needed for the target processor,
for example-mcpu=arm9 , various flags related to warnings, debugging and optimization, and flags such as
finit-priority which are needed by eCos itself. Users can modify the global flags option as required. In addition

it is possible for existing flags to be removed from and new flags to be added to the current set on a per-package
basis, again by means of user-modifiable configuration options. More details are given below.

Component writers can assume that the build system will perform full header file dependency analysis, including
dependencies on configuration headers, but the exact means by which this happens is implementation-defined.
Typical application developers are unlikely to modify exported or private header files, but configuration headers
are likely to change as the configuration is changed to better meet the needs of the application. Full header file
dependency analysis also makes things easier for the component writers themselves.

The current directory used during a compilation is an implementation detail of the build system. However it can be
assumed that each package will have its own directory somewhere in the build tree, to prevent file name clashes,
that this will be the current directory, and that intermediate object files will end up here.

Generating the Libraries

Once all the compile and make_object properties have been processed and the required object files have been
built or rebuilt, these can be collected together in one or more libraries. The archiver will be the ar command
corresponding to the current architecture, for example powerpc-eabi-ar. By default al of the object files will end
up in a single libraryibtarget.a . This can be changed on a per-package basis usiripthey property in the

body of the correspondingll_package command, for example:

cdl_package = <SOME_PACKAGE {

library libSomePackage.a

}

However using different libraries for each package should be avoided. It makes things more difficult for application
developers since they now have to link the application code with more libraries, and possibly even change this set of
libraries when packages are added to or removed from the configuration. The use of a singlédibrgaya

avoids any complications.

It is also possible to change the target library for individual files, usitigrary ~ option with the corresponding
compile or make_object property. For example:

compile -library=libSomePackage.a hello.c
make_object -library=libSomePackage.a {

}

Again this should be avoided because it makes application development more difficult. There is one special library
which can be used freelibextras.a , which is used to generate thetras.o  file as described below.

The order in which object files end up in a library is not defined. Typically each library will be created directly in
the install tree, since there is little point in generating a file in the build tree and then immediately copying it to the
install tree.

75



Chapter 4. The Build Process

76

The extras.o file

Package sources files normally get compiled and then added to a library, by defagtt.a , Which is then

linked with the application code. Because of the usual rules for linking with libraries, augmented by the use of
link-time garbage collection, this means that code will only end up in the final executable if there is a direct or
indirect reference to it in the application. Usually this is the desired behaviour: if the application does not make
any use of say kernel message boxes, directly or indirectly, then that code should not end up in the final executable
taking up valuable memory space.

In a few cases it is desirable for package code to end up in the final executable even if there are no direct or indirect
references. For example, device driver functions are often not called directly. Instead the application will access
the device via the stringfdev/xyzzy" and call the device functions indirectly. This will be impossible if the
functions have been removed at link-time.

Another example involves static C++ objects. It is possible to have a static C++ object, preferably with a suitable
constructor priority, where all of the interesting work happens as a side effect of running the constructor. For
example a package might include a monitoring thread or a garbage collection thread created from inside such a
constructor. Without a reference by the application to the static object the latter will never get linked in, and the
package will not function as expected.

A third example would be copyright messages. A package vendor may want to insist that all products shipped using
that package include a particular message in memory, even though many users of that package will object to such
a restriction.

To meet requirements such as these the build system provides support fomardde , which always gets
linked with the application code via the linker script. Because it is an object file rather than a library everything
in the file will be linked in. Theextras.o  file is generated at the end of a build from a librébgxtras.a  , so
packages can put functions and variables in suitable source files and add them to that library explicitly:

compile -library=libextras.a xyzzy.c
compile xyzzy_ support.c

In this examplexyzzy.o will end up inlibextras.a , and hence irextras.o and in the final executable.
xyzzy_support.o  Wwill end up inlibtarget.a as usual, and is subject to linker garbage collection.

Compilers and Flags

Caution

Some of the details of compiler selection and compiler flags described below are subject to
change in future revisions of the component framework, although every reasonable attempt
will be made to avoid breaking backwards compatibility.

The build system needs to know what compiler to use, what compiler flags should be used for different stages of the
build and so on. Much of this information will vary from target to target, although users should be able to override
this when appropriate. There may also be a need for some packages to modify the compiler flags. All platform
HAL packages should define a number of options with well-known names, along the following lines (any existing
platform HAL package can be consulted for a complete example):

cdl_component CYGBLD_GLOBAL_OPTIONS {
flavor none



Chapter 4. The Build Process
parent CYGPKG_NONE
cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {

flavor data
default_value { "arm-elf" }

}

cdl_option CYGBLD_GLOBAL_CFLAGS {
flavor data
default_value "-Wall -g -02 ..."

}

cdl_option CYGBLD_GLOBAL_LDFLAGS {
flavor data
default_value "-g -nostdlib -WI,--gc-sections ..."

}

The CYGBLD_GLOBAL_OPTIONSomponent serves to collect together all global build-related options. It has the
flavor none since disabling all of these options would make it impossible to build anything and hence is not
useful. It is parented immediately below the root of the configuration hierarchy, thus making sure that it is readily
accessible in the graphical configuration tool and, for command line users,doothecc  save file.

Note: Currently the parent property lists a parent of CYGPKG_NONEather than an empty string. This could be
unfortunate if there was ever a package with that name. The issue will be addressed in a future release of the
component framework.

The optionCYGBLD_GLOBAL_COMMAND_PRE@efines which tools should be used for the current target. Typically

this is determined by the processor on the target hardware. In some cases a given target board may be able to support
several different processors, in which case the default_value expression could select a different toolchain depending
on some other option that is used to control which particular proceSS¥@BLD_GLOBAL_COMMAND_PRERBX
modifiable rather than calculated, so users can override this when necessary.

Given a command prefix such agn-elf , all C source files will be compiled witlrm-elf-gcc  , all C++ sources

will be built usingarm-elf-g++ , andarm-elf-ar  will be used to generate the library. This is in accordance with

the usual naming conventions for GNU cross-compilers and similar tools. For the purposes of custom build steps,
tokens such as(CcC) will be set toarm-elf-gcc

The next optionCYGBLD_GLOBAL_CFLAG$ used to provide the initial value &{CFLAGS). Some compiler

flags such aswall and-g are likely to be used on all targets. Other flags suchmapu=arm7tdmi  will be
target-specific. Again this is a modifiable option, so the user can switch fromCgayo -Os if desired. The
optionCYGBLD_GLOBAL_LDFLAGServes the same purpose $8tDFLAGS) and linking. It is used primarily when
building test cases or possibly for some custom build steps, since building eCos itself generally involves building
one or more libraries rather than executables.

Some packages may wish to add certain flags to the global set, or possibly remove some flags. This can be achieved
by having appropriately named options in the package, for example:

s



Chapter 4. The Build Process

cdl_component CYGPKG_KERNEL_OPTIONS {
display "Kernel build options"
flavor none

cdl_option CYGPKG_KERNEL_CFLAGS_ADD {
display "Additional compiler flags"
flavor data
default_value { "™ }

}

cdl_option CYGPKG_KERNEL_CFLAGS_REMOVE {
display "Suppressed compiler flags"
flavor data
default_value { ™ }

}

cdl_option CYGPKG_KERNEL_LDFLAGS_ADD {
display "Additional linker flags"
flavor data
default_value { ™ }

}

cdl_option CYGPKG_KERNEL_LDFLAGS_REMOVE {
display "Suppressed linker flags"
flavor data
default_value { ™ }

}

In this example the kernel does not modify the global compiler flags by default, but it is possible for the users to
modify the options if desired. The value $CFLAGS) that is used for the compilations and custom build steps in
a given package is determined as follows:

1. Start with the global settings fro@YGBLD_GLOBAL_CFLAG®r exampleg -02 .

2.Remove any flags specified in the per-packageAGS_REMOVaption, if any. For example #02 should be
removed for this package th&(CFLAGS) would now have a value of jusj .

3. Then concatenate the flags specified by the per-packrigeGS_ADmption, if any. For example HOs should
be added for the current package then the final valla@HLAGS) will be -g -Os .

$(LDFLAGS) is determined in much the same way.

Note: The way compiler flags are handled at present has numerous limitations that need to be addressed in
a future release, although it should suffice for nearly all cases. For the time being custom build steps and in
particular the make_object property can be used to work around the limitations.

Amongst the issues, there is a specific problem with package encapsulation. For example the math library
imposes some stringent requirements on the compiler in order to guarantee exact IEEE behavior, and may

78



Chapter 4. The Build Process

need special flags on a per-architecture basis. One way of handling this is to have CYGPKG_LIBM_CFLAGS_ADD
and CYGPKG_LIBM_CFLAGS_REMOWuEfault_value expressions which depend on the target architecture, but such
expressions may have to updated for each new architecture. An alternative approach would allow the architec-
tural HAL package to modify the default_value expressions for the math library, but this breaks encapsulation.

A third approach would allow some architectural HAL packages to define one or more special options with
well-known names, and the math library could check if these options were defined and adjust the default val-
ues appropriately. Other packages with floating point requirements could do the same. This approach also has
scalability issues, in particular how many such categories of options would be needed? It is not yet clear how
best to resolve such issues.

Note: When generating a build tree it would be desirable for the component framework to output details of the
tools and compiler flags in a format that can be re-used for application builds, for example a makefile fragment.
This would make it easier for application developers to use the same set of flags as were used for building
eCos itself, thus avoiding some potential problems with incompatible compiler flags.

Custom Build Steps

Caution

Some of the details of custom build steps as described below are subject to change in future
revisions of the component framework, although every reasonable attempt will be made to
avoid breaking backwards compatibility.

For most packages simply listing one or more source files in a compile property is sufficient. These files will
get built using the appropriate compiler and compiler flags and added to a library, which then gets linked with
application code. A package that can be built in this way is likely to be more portable to different targets and
build environments, since it avoids build-time dependencies. However some packages have special needs, and the
component framework supports custom build steps to allow for these needs. There are two properties related to
this, make and make_object, and both take the following form:

make {
<target_filepath > : <dependency_filepath > .
<command>

}

Although this may look like makefile syntax, and although some build environments will indeed involve generating
makefiles and running make, this is not guaranteed. It is possible for the component framework to be integrated
with some other build system, and custom build steps should be written with that possibility in mind. Each custom
build step involves a target, some number of dependency files, and some number of commands. If the target is not
up to date with respect to one or more of the dependencies then the commands need to be executed.

a.Only one target can be specified. For a make_object property this target must be an object file. For a make
property it can be any file. In both cases it must refer to a physical file, the use of phony targets is not supported.

79



Chapter 4. The Build Process

80

The target should not be an absolute path name. If the generated file needs to end up in the install tree then this
can be achieved using<PREFIX> token, for example:

make {
<PREFIX>/lib/mytarget : ...

}

When the build tree is generated and the custom build step is added to the makefile (or whatever build system
is used)<PREFIX> will be replaced with the absolute path to the install tree.

b. All the dependencies must also refer to physical files, not to phony targets. These files may be in the source

tree. The<PACKAGE token can be used to indicate this: when the build tree is generated this token will be
replaced with the absolute path to the package’s root directory in the component repository, for example:

make_object {
Xyzzy.o : <PACKAGE/src/xyzzy.c

If the component repository was installed/isr/local/ecos and this custom build step existed in version
1 5 of the kernel<PACKAGE would be replaced witkusr/local/ecos/packages/kernel/ivl_5

Alternatively the dependencies may refer to files that are generated during the build. These may be object files
resulting from compile properties or other make_object properties, or they may be other files resulting from a
make property, for example:
compile plugh.c
make_object {
xyzzy.o : plugh.o

.No other token or makefile variables may be used in the target or dependency file names. Also conditionals

such asfneq and similar makefile functionality must not be used.

d. Similarly the list of commands must not use any makefile conditionals or similar functionality. A number of

tokens can be used to provide access to target-specific or environmental data. Note that these tokens look like
makefile variables, unlike thePREFIX> and <PACKAGE tokens mentioned earlier:

Token Purpose Example value
S(AR) the GNU archiver mips-tx39-elf-ar
$(CC) the GNU compiler sh-elf-gcc
$(CFLAGS) compiler flags -02 -Wall
S(COMMAND_PREFIX) the triplet prefix mn10300-elf-
S(INCLUDE_PATH> header file search path -1. -Isrc/misc

repository

S(LDFLAGS) linker flags -nostdlib -WI,-static
$(OBJCOPY) the objcopy utility arm-elf-objcopy
B(PREFIX) location of the install tree homef/fred/ecos-install
S(REPOSITORY) location of the component homef/fred/ecos/packages




Chapter 4. The Build Process

In addition commands in a custom build step may refer to the target and the dependenciggusing”
ands$*, all of which behave as per GNU make syntax. The commands will execute in a suitable directory in
the build tree.

e.The current directory used during a custom build step is an implementation detail of the build system. However
it can be assumed that each package will have its own directory somewhere in the build tree, to prevent file
name clashes, and that this will be the current directory. In addition any object files generated as a result of
compile properties will be located here as well, which is useful for custom build steps that depend fie a
previously generated.

Any temporary files created by a custom build step should be generated in the build tree (in or under the
current directory). Such files should be givertrap file extension to ensure that they are deleted during a
make clean or equivalent operation.

If a package contains multiple custom build steps with the same priority, it is possible that these build steps
will be run concurrently. Therefore these custom build steps must not accidentally use the same file names for
intermediate files.

f. Care has to be taken to make sure that the commands in a custom build step will run on all host platforms,
including Windows NT as well as Linux and other Unix systems. For example, all file paths should use forward
slashes as the directory separator. It can be assumed that Windows users will have a full set of CygWin
tools installed and available on the path. The GNU coding standards (http://www.gnu.org/prep/standards.html)
provide some useful guidelines for writing portable build rules.

g. A custom build step must not make any assumptions concerning the version of another package. This enforces
package encapsulation, preventing one package from accessing the internals of another.

h. No assumptions should be made about the target platform, unless the package is inherently specific to that
platform. Even then it is better to use the various tokens whenever possible, rather than hard-coding in details
such as the compiler. For example, given a custom build step such as:

arm-elf-gcc -¢c -mcpu=arm7di -0 $@ $ <
Even if this build step will only be invoked on ARM targets, it could cause problems. For example the toolchain

may have been installed using a prefix other thamelf . Also, if the user changes the compiler flags then
this would not be reflected in the build step. The correct way to write this rule would be:

$(CC) -c $(CFLAGS) -0 3@ $ <
Some commands such as the compiler, the archiver, and objcopy are required sufficiently often to warrant their

own tokens, for exampl&CC) and$(OBJCOPY). Other target-specific commands are needed only rarely and
the $(COMMAND_PREFIX}oken can be used to construct the appropriate command name, for example:

$(COMMAND_PREFIX)size $< > $@

. Custom build steps should not be used to build host-side executables, even if those executables are needed to
build parts of the target side code. Support for building host-side executables will be added in a future version
of the component framework, although it will not necessarily involve these custom build steps.

By default custom build steps defined in a make_object property have a priority of 100, which means that they
will be executed in the same phase as compilations resulting from a compile property. It is possible to change the
priority using a property option, for example:

81



Chapter 4. The Build Process

82

make_object -priority 50 {

}

Specifying a priority smaller than a 100 means that the custom build step happens before the normal compilations.
Priorities between 100 and 200 happen after normal compilations but before the libraries are archived together.
make_object properties should not specify a priority of 200 or later.

Custom build steps defined in a make property have a default priority of 300, and so they will happen after the
libraries have been built. Again this can be changed usipgaity property option.

Startup Code

Linking an application requires the application code, a linker script, the eCos library or librariestriso

file, and some startup code. Depending on the target hardware and how the application gets booted, this startup
code may do little more than branchingrtain() , or it may have to perform a considerable amount of hardware
initialization. The startup code generally lives in a fikxtors.o  which is created by a custom build step in a

HAL package. As far as application developers are concered the existence of this file is largely transparent, since
the linker script ensures that the file is part of the final executable.

This startup code is not generally of interest to component writers, only to HAL developers who are referred to
one of the existing HAL packages for specific details. Other packages are not expected to modify the startup in any
way. If a package needs some work performed early on during system initialization, before the application’s main
entry point gets invoked, this can be achieved using a static object with a suitable constructor priority.

Note: It is possible that the extras.o  support, in conjunction with appropriate linker script directives, could be
used to eliminate the need for a special startup file. The details are not yet clear.

The Linker Script

Caution

This section is not finished, and the details are subject to change in a future release. Arguably
linker script issues should be documented in the HAL documentation rather than in this guide.

Generating the linker script is the responsibility of the various HAL packages that are applicable to a given target.
Developers of components other than HAL packages need not be concerned about what is involved. Developers of
new HAL packages should use an existing HAL as a template.

Note: It may be desirable for some packages to have some control over the linker script, for example to add
extra alignment details for a particular section. This can be risky because it can result in subtle portability
problems, and the current component framework has no support for any such operations. The issue may be
addressed in a future release.



Chapter 4. The Build Process

Building Test Cases

Caution

The support in the current implementation of the component framework for building and
running test cases is limited, and should be enhanced considerably in a future version. Com-
patibility with the existing mechanisms described below will be maintained if possible, but
this cannot be guaranteed.

Whenever possible packages should be shipped with one or more test cases. This allows users to check that all
packages function correctly in their particular configuration and on their target, which may be custom hardware
unavailable to the package developer. The component framework needs to provide a way of building such test
cases. For example, if a makefile system is used then there coulchlie atests  target to build the test cases,

or possibly anake check target to build and run the test cases and process all the results. Unfortunately there are
various complications.

Not every test case will be applicable to every configuration. For example if the user has disabled the C library’s
CYGPKG_LIBC_STDICcomponent then there is no point in building or running any of the test cases for that com-
ponent. This implies that test cases need to be associated with configuration options somehow. It is possible for the
test case to use one or matitlef  statements to check whether or not it is applicable in the current configuration,
and compile to a null program when not applicable. This is inefficient because the test case will still get built and
possibly run, even though it will not provide any useful information.

Many packages involve direct interaction with hardware, for example a serial line or an ethernet interface. In such
cases it is only worthwhile building and running the test if there is suitable software running at the other end of the
serial line or listening on the same ethernet segment, and that software would typically have to run on the host. Of
course the serial line in question may be hooked up to a different piece of hardware which the application needs
to talk to, so disconnecting it and then hooking it up to the host for running some tests may be undesirable. The
decision as to whether or not to build the test depends not just on the eCos configuration but also on the hardware
setup and the availability of suitable host software.

There are different kinds of tests, and it is not always desirable to run all of them. For example a package may
contain a number of stress tests intended to run for long periods of time, possibly days or longer. Such tests should
certainly be distinguished somehow from ordinary test cases so that users will not run them accidentally and wonder
how long they should wait for pass message before giving up. Stress tests may also have dependencies on the
hardware configuration and on host software, for example a hetwork stress test may require lots of ethernet packets.

In the current implementation of the component framework these issues are not yet addressed. Instead there is only
very limited support for building test cases. Any package can define a calculated configuration option of the form
CYGPKG<package-name >_TESTS whose value is a list of test cases. The calculated property can involve an
expression so it is possible to adapt to a small number of configuration options, but this quickly becomes unwieldy.
A typical example would be:

cdl_option CYGPKG_UITRON_TESTS {

display "ulTRON tests"

flavor data

no_define

calculated { "tests/testl tests/test2 tests/test3 \
tests/test4 tests/test5 tests/test6 tests/test7 \
tests/test8 tests/test9 tests/testcxx tests/testcx2 \
tests/testcx3 tests/testcx4 tests/testcx5 \
tests/testcx6 tests/testcx7 tests/testcx8 \

83



Chapter 4. The Build Process

84

tests/testcx9 tests/testintr" }
description
This option specifies the set of tests for the ulTRON compatibility layer."

}

This implies that there is a filests/testl.c Or tests/test1.cxx in the package’s directory. The commands
that will be used to build the test case will take the form:

$(CC) -c $(INCLUDE_PATH) $(CFLAGS) -0 <build path >/testl.o \
<source path >/tests/testl.c
$(CC) $(LDFLAGS) -0 <install path >/tests/testl <build_path  >/testl.0

The variables$(CC) and so on are determined in the same way as for custom build steps. The various paths and the
current directory will depend on the exact build system being used, and are subject to change. As usual the sources
in the component repository are treated as a read-only resources, intermediate files live in the build tree, and the
desired executables should end up in the install tree.

Each test source file must be self-contained. It is not possible at present to build a little per-package library that can
be used by the test cases, or to link together several object files to produce a single test executable. In some cases it
may be possible tginclude source code from a shared file in order to avoid unnecessary code replication. There

is no support for manipulating compiler or linker flags for individual test cases: the flags that will be used for all
files are$(CFLAGS) and$(LDFLAGS), as per custom build steps. Note that it is possible for a package to define op-
tions of the formCYGPKG<PACKAGE-NAME_LDFLAGS_AD@NACYGPKG<PACKAGE-NAME_LDFLAGS_REMOVE

These will affect test cases, but in the absence of custom build steps they will have no other effect on the build.



Chapter 5. CDL Language Specification

This chapter contains reference information for the main CDL commaddsption , cdl_component
cdl_package and cdl_interface , followed by the various properties such as active_if and compile in
alphabetical order.

cdl_option

Name

Command cdl_option ~— Define a single configuration option

Synopsis
cdl_option <name> {

}

Description

The option is the basic unit of configurability. Generally each option corresponds to a single user choice. Typically
there is a certain amount of information associated with an option to assist the user in manipulating that option,
for example a textual description. There will also be some limits on the possible values that the user can choose,
S0 an option may be a simple yes-or-no choice or it may be something more complicated such as an array size or a
device name. Options may have associated constraints, so if that option is enabled then certain conditions have to
satisfied elsewhere in the configuration. Options usually have direct consequences such as prepdetiessor
symbols in a configuration header file.

cdl_option isimplemented as a Tcl command that takes two arguments, a name and a body. The name must be a
valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a non-
digit character; identifiers beginning with an underscore should normally be avoided because they may clash with
system packages or with identifiers reserved for use by the compiler. Within a single configuration, names must
be unique. If a configuration contained two packages which defined the sameGx@ityP_SOME_OPTIQNaNy
references to that entity in a requires property or any other expression would be ambiguous. Itis possible for a given
name to be used by two different packages if those packages should never be loaded into a single configuration.
For example, architectural HAL packages are allowed to re-use names because a single configuration cannot target
two different architectures. For a recommended naming conventiotheegection calledPackage Contents and
Layoutin Chapter 2

The second argument tal_option  is a body of properties, typically surrounded by braces so that the Tcl inter-
preter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter,
extended with additional commands for the various properties that are allowed ingidemion . The valid
properties are:

85



cdl_option

active_if

calculated

compile

default_value

define

define_format

define_proc

description

display

doc

flavor

if_define

implements

legal_values

make

86

Allow additional control over the active state of this option.

The option’s value is not directly user-modifiable, it is calculated using a suitable CDL expression.

List the source files that should be built if this option is active and enabled.

Provide a default value for this option using a CDL expression.

Specify additionakdefine symbols that should go into the owning package’s configuration header file.

Control how the option’s value will appear in the configuration header file.

Use a fragment of Tcl code to output additional data to configuration header files.

Provide a textual description for this option.

Provide a short string describing this option.

The location of on-line documentation for this option.

Specify the nature of this option.

Output a common preprocessor construct to a configuration header file.

Enabling this option provides one instance of a more general interface.

Impose constraints on the possible values for this option.

An additional custom build step associated with this option, resulting in a target that should not go directly
into a library.



cdl_option

make_object

An additional custom build step associated with this option, resulting in an object file that should go into a

library.
no_define
Suppress the normal generation of a preprocegsgine symbol in a configuration header file.
parent
Control the location of this option in the configuration hierarchy.
requires
List constraints that the configuration should satisfy if this option is active and enabled.
Example
cdl_option CYGDBG_INFRA_DEBUG_PRECONDITIONS {
display "Preconditions”
default_value 1
description

This option allows individual control of preconditions.
A precondition is one type of assert, which it is
useful to control separately from more general asserts.
The function is CYG_PRECONDITION(condition,msg)."

See Also

Commandtdl_component , commandtdl_package , commandtdl_interface

87



cdl_option

88



cdl_component

active_if

calculated

Name

Command cdl_component — Define a component, a collection of configuration options

Synopsis
cdl_component  <name> {

}

Description

A component is a configuration option that can contain additional options and sub-components. The body of a
cdl_component can contain the same properties as that aflaoption . There is an additional property, script
which allows configuration data to be split into multiple files. It is also possible for a component body to include
cdl_component ,cdl_option  andcdl_interface entities that should go below this component in the configu-
ration hierarchy.

cdl_component is implemented as a Tcl command that takes two arguments, a name and a body. The name must
be a valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a
non-digit character; identifiers beginning with an underscore should normally be avoided because they may clash
with system packages or with identifiers reserved for use by the compiler. Within a single configuration, names must
be unique. If a configuration contained two packages which defined the sameGf@tityP_SOME_OPTIQNNY
references to that entity in a requires property or any other expression would be ambiguous. Itis possible for a given
name to be used by two different packages if those packages should never be loaded into a single configuration. For
example, architectural HAL packages are allowed to re-use certain names because a single configuration cannot
target two different architectures. For a recommended naming conventitimes8ection calleébackage Contents

and Layoutin Chapter 2

The second argument tall_component is a body of properties and other commands, typically surrounded by
braces so that the Tcl interpreter treats it as a single argument. This body will be processed by a recursive invocation
of the Tcl interpreter, extended with additional commands for the various properties that are allowed inside a
cdl_component . The valid commands are:

Allow additional control over the active state of this component.

The component’s value is not directly user-modifiable, it is calculated using a suitable CDL expression.

cdl_component

Define a sub-component.

89



cdl_component

cdl_interface

Define an interface which should appear immediately below this component in the configuration hierarchy.

cdl_option

Define a configuration option which should appear immediately below this component in the configuration
hierarchy.

compile
List the source files that should be built if this component is active and enabled.

default_value

Provide a default value for this component using a CDL expression.

define

Specify additionakdefine symbols that should go into the owning package’s configuration header file.

define_format

Control how the component’s value will appear in the configuration header file.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.
description

Provide a textual description for this component.
display

Provide a short string describing this component.
doc

The location of on-line documentation for this component.
flavor

Specify the nature of this component.
if_define

Output a common preprocessor construct to a configuration header file.
implements

Enabling this component provides one instance of a more general interface.
legal_values

Impose constraints on the possible values for this component.

90



cdl_component

make

An additional custom build step associated with this component, resulting in a target that should not go directly
into a library.

make_object

An additional custom build step associated with this component, resulting in an object file that should go into

a library.
no_define

Suppress the normal generation of a preprocessiine symbol in a configuration header file.
parent

Control the location of this component in the configuration hierarchy.
requires

List constraints that the configuration should satisfy if this component is active and enabled.
script

Include additional configuration information from another CDL script

Example

cdl_component CYGDBG_USE_ASSERTS {

display "Use asserts"

default_value 1

description
If this component is enabled, assertions in the code are
tested at run-time. Assert functions (CYG_ASSERT()) are
defined in ’include/cyg/infra/cyg_ass.h’ within the ’install’
tree. If the component is disabled, these result in no
additional object code and no checking of the asserted
conditions.”

script assert.cdl

See Also

Commanddl_option , commanctdl_package , commanctdl_interface

91



cdl_component

92



cdl_package

flavor

Name

Command cdl_package — Define a package, a component that can be distributed

Synopsis
cdl_package <name> {

}

Description

A package is a unit of distribution. It is also a configuration option in that users can choose whether or not a
particular package is loaded into the configuration, and which version of that package should be loaded. It is also
a component in that it can contain additional components and options in a hierarchy.

The top-level CDL script for a package should begin wittda package command. This can contain most of

the properties that can be used irdh opton  command, and a number of additional ones which apply to a
package as a whole. It is also possible to incloglecomponent |, cdl_interface andcdl_option ~ commands

in the body of a package. However all configuration entities that occur at the top level of the script containing the
cdl_package command are automatically placed below that package in the configuration hierarchy, so putting
them inside the body has no effect.

The following properties cannot be used in the body edlapackage command:

Packages always have the flavobldata

default_value

The value of a package is its version number. This is specified at the time the package is loaded into the
configuration, and cannot be calculated afterwards. Typically the most recent version of the package will be

loaded.

legal_values
The legal values list for a given package is determined by which versions of that package are installed in the
component repository, and cannot be further constrained in the CDL scripts.

calculated
The value of a package is always selected at the time that it is loaded into the configuration, and cannot be
re-calculated afterwards.

script

This would be redundant since the CDL script containingcthepackage command acts as that package’s
script.

93



cdl_package

cdl_package isimplemented as a Tcl command that takes two arguments, a name and a body. The name must be
a valid C preprocessor identifier: a sequence of upper or lower case letters, digits or underscores, starting with a
non-digit character; identifiers beginning with an underscore should normally be avoided because they may clash
with system packages or with identifiers reserved for use by the compiler. Packages should always have unique
names within a given component repository. For a recommended naming conventios Seetion calle®ackage
Contents and Layouh Chapter 2

The second argument ¢dl_package is a body of properties and other commands, typically surrounded by braces
so that the Tcl interpreter treats it as a single argument. This body will be processed by a recursive invocation
of the Tcl interpreter, extended with additional commands for the various properties that are allowed inside a
cdl_package . The valid commands are:

active_if
Allow additional control over the active state of this package.

cdl_component

Define a component which should appear immediately below this package in the configuration hierarchy.

cdl_interface

Define an interface which should appear immediately below this package in the configuration hierarchy.

cdl_option

Define an option which should appear immediately below this package in the configuration hierarchy.
compile

List the source files that should be built for this package.
define

Specify additionaltdefine  symbols that should go into the package’s configuration header file.

define_format

Control how the package’s value will appear in the global configuration headgkdienf/system.h

define_header

Specify the configuration header file that will be generated for this package.

define_proc

Use a fragment of Tcl code to output additional data to configuration header files.
description

Provide a textual description for this component.
display

Provide a short string describing this component.

94



doc

hardware

if_define

implements

include_dir

include_files

library

make

make_object

no_define

parent

requires

cdl_package

The location of on-line documentation for this component.

This package is tied to specific hardware.

Output a common preprocessor construct to a configuration header file.

Enabling this component provides one instance of a more general interface.

Specify the desired location of this package’s exported header files in the install tree.

List the header files that are exported by this package.

Specify which library should contain the object files generated by building this package.

An additional custom build step associated with this component, resulting in a target that should not go directly
into a library.

An additional custom build step associated with this component, resulting in an object file that should go into
a library.

Suppress the normal generation of the packagelsine in the global configuration header file
pkgconf/system.h

Control the location of this package in the configuration hierarchy.

List constraints that the configuration should satisfy if this package is active.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure”
include_dir  cyglinfra
description "

95



cdl_package

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \

dummyxxmain.cxx null.cxx simple.cxx fancy.cxx buffer.cxx \
diag.cxx tcdiag.cxx memcpy.c memset.c delete.cxx

See Also

Commandctdl_option , commanddl_component , commanctdl_interface

96



cdl_interface

Name

Command cdl_interface — Define an interface, functionality that can be provided by a number of different
implementations.

Synopsis
cdl_interface <name> {

}

Description

An interface is a special type of calculated configuration option. It provides an abstraction mechanism that is
often useful in CDL expressions. As an example, suppose that some package relies on the presence of code that
implements the standard kernel scheduling interface. However the requirement is no more stringent than this, so
the constraint can be satisfied by the mlqueue scheduler, the bitmap scheduler, or any additional schedulers that
may get implemented in future. A first attempt at expressing the dependency might be:

requires CYGSEM_KERNEL_SCHED_MLQUEUE || CYGSEM_KERNEL_SCHED_BITMAP

This constraint is limited, it may need to be changed if a new scheduler were to be added to the system. Interfaces
provide a way of expressing more general relationships:

requires CYGINT_KERNEL_SCHEDULER

The interfaceCYGINT_KERNEL_SCHEDULERimplementedy both the mlqueue and bitmap schedulers, and may

be implemented by future schedulers as well. The value of an interface is the number of implementors that are
active and enabled, so in a typical configuration only one scheduler will be in use and the value of the interface
will be 1. If all schedulers are disabled then the interface will have a vakred the requires constraint will not be
satisfied.

Some component writers may prefer to use the first requires constraint on the grounds that the code will only have
been tested with the mlqueue and bitmap schedulers and cannot be guaranteed to work with any new schedulers.
Other component writers may take a more optimistic view and assume that their code will work with any scheduler
until proven otherwise.

Interfaces must be defined in CDL scripts, just like options, components and packages. This involves the command
cdl_interface which takes two arguments, a name and a body. The name must be a valid C preprocessor identi-
fier: a sequence of upper or lower case letters, digits or underscores, starting with a non-digit character; identifiers
beginning with an underscore should normally be avoided because they may clash with system packages or with
identifiers reserved for use by the compiler. Within a single configuration, names must be unique. If a configuration
contained two packages which defined the same e@tityiMP_SOME_OPTIQNany references to that entity in a
requires property or any other expression would be ambiguous. It is possible for a given hame to be used by two
different packages if those packages should never be loaded into a single configuration. For example, architectural
HAL packages are allowed to re-use names because a single configuration cannot target two different architectures.
For a recommended naming convention $eeSection calle®ackage Contents and LayadatChapter 2

97



cdl_interface

The second argument tall_interface is a body of properties, typically surrounded by braces so that the Tcl
interpreter treats it as a single argument. This body will be processed by a recursive invocation of the Tcl interpreter,
extended with additional commands for the various properties that are allowed irgid@t@rface . The valid
properties are a subset of those fada option

active_if

compile

define

define_format

define_proc

description

display

doc

flavor

if _define

implements

legal_values

98

Allow additional control over the active state of this interface.

List the source files that should be built if this interface is active.

Specify additionakdefine symbols that should go into the owning package’s configuration header file.

Control how the interface’s value will appear in the configuration header file.

Use a fragment of Tcl code to output additional data to configuration header files.

Provide a textual description for this interface.

Provide a short string describing this interface.

The location of on-line documentation for this interface.

Interfaces have theata flavor by default, but they can also be given il or booldata flavor when
necessary. Aool interface is disabled if there are no active and enabled implementors, otherwise itis enabled.
A booldata interface is also disabled if there are no active and enabled implementors, otherwise it is enabled
and the data is a number corresponding to the number of these implementors.

Output a common preprocessor construct to a configuration header file.

If this interface is active it provides one instance of a more general interface.

Interfaces always have a small numerical value. The legal_values can be used to apply additional constraints
such as an upper limit.



cdl_interface

make
An additional custom build step associated with this option, resulting in a target that should not go directly
into a library.
make_object
An additional custom build step associated with this option, resulting in an object file that should go into a
library.
no_define
Suppress the normal generation of a preprocessiine symbol in a configuration header file.
parent
Control the location of this option in the configuration hierarchy.
requires
List constraints that the configuration should satisfy if this option is active and enabled.
A number of properties are not applicable to interfaces:
calculated

Interfaces are always calculated, based on the number of active and enabled entities that implement the inter-
face.

default_value

Interface values are calculated so a default_value property would be meaningless.
Interfaces are not containers, so they cannot hold other entities such as options or components.

A commonly used constraint on interface values takes the form:

requires CYGINT_KERNEL_SCHEDULER ==

This constraint specifies that there can be only one scheduler in the system. In some circumstances it is possible
for the configuration tools to detect this pattern and act accordingly, so for example enabling the bitmap scheduler
would automatically disable the miqueue scheduler.

Example
cdl_interface CYGINT_KERNEL_SCHEDULER {

display "Number of schedulers in this configuration”
requires 1 == CYGINT_KERNEL_SCHEDULER

See Also

Propertyimplementscommanctdl_option . commanctdl_component , commanddl_package

99



cdl_interface

100



active_if

Name
Property active_if — Allow additional control over the active state of an option or other CDL entity.
Synopsis
cdl_option <name> {
active_if <condition >
}
Description

Configuration options or other entities may be either active or inactive. Typically this is controlled by the option’s
location in the overall hierarchy. Consider the optityGDBG_INFRA_DEBUG_PRECONDITIQN#hich exists below

the componentYGDBG_USE_ASSERIf the whole component is disabled then the options it contains are inactive:
there is no point in enabling preconditions unless there is generic assertion support; any requires constraints asso-
ciated with preconditions are irrelevant; any compile property or other build-related property is ignored.

In some cases the hierarchy does not provide sufficient control over whether or not a particular option should be
active. For example, the math library could have support for floating point exceptions which is only worthwhile

if the hardware implements appropriate functionality, as specified by the architectural HAL. The relevant math
library configuration options should remain below tt'eGPKG_LIBMpackage in the overall hierarchy, but should

be inactive unless there is appropriate hardware support. In cases like this an active_if property is appropriate.

Another common use of active_if properties is to avoid excessive nesting in the configuration hierarchy. If some
option B is only relevant if option A is enabled, it is possible to turn A into a component that contains B. How-
ever adding another level to the hierarchy for a component which will contain just one entry may be considered
excessive. In such cases it is possible for B to have an active_if dependency on A.

active_if takes a goal expression as argument. For details of goal expression syrifae Seetion calledoal
Expressiongn Chapter 3In most cases the goal expression will be very simple, often involving just one other op-
tion, but more complicated expressions can be used when appropriate. It is also possible to have multiple active_if
conditions in a single option, in which case all of the conditions have to be satisfied if the option is to be active.

The active_if and requires properties have certain similarities, but they serve a different purpose. Suppose there
are two options A and B, and option B relies on functionality provided by A. This could be expressed as either
active_if A or asrequires A . The points to note are:

- If active_if A isused and A is disabled or inactive, then graphical tools will generally prevent any attempt at
modifying B. For example the text for B could be grayed out, and the associated checkbutton (if B is a boolean
option) would be disabled. If the user needs the functionality provided by option B then it is necessary to go to
option A first and manipulate it appropriately.

- If requires A is used and A is disabled or inactive, graphical tools will still allow B to be manipulated and
enabled. This would result in a new conflict which may get resolved automatically or which may need user
intervention.

101



active_if

102

. If there are hardware dependencies then an active_if condition is usually the preferred approach. There is no
point in allowing the user to manipulate a configuration option if the corresponding functionality cannot possibly
work on the currently-selected hardware. Much the same argument applies to coarse-grained dependencies, for
example if an option depends on the presence of a TCP/IP stack thetivanif CYGPKG_NET condition is
appropriate: it may be possible to satisfy the condition, but it requires the fairly drastic step of loading another
package; further more, if the user wanted a TCP/IP stack in the configuration then it would probably have been
loaded already.

. If option B exists to provide additional debugging information about the functionality provided by A then again
an active_if constraint is appropriate. There is no point in letting users enable extra debugging facilities for a
feature that is not actually present.

- The configuration system’s inference engine will cope equally well with active_if and requires properties. Sup-
pose there is a conflict because some third option depends on B. H#cBvis if A then the inference engine
will attempt to make A active and enabled, and then to enable B if necessargdfizs A then the inference
engine will attempt to enable B and resolve the resulting conflict by causing A to be both active and enabled.
Although the inference occurs in a different order, in most cases the effect will be the same.

Example

# Do not provide extra semaphore debugging if there are no semaphores
cdl_option CYGDBG_KERNEL_INSTRUMENT_BINSEM {
active_if CYGPKG_KERNEL_SYNCH

}

# Avoid another level in the configuration hierarchy
cdl_option CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE_RELAY {
active_if CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INHERITANCE_SIMPLE

}

# Functionality that is only relevant if another package is loaded
cdl_option CYGSEM_START_UITRON_COMPATIBILITY {
active_if CYGPKG_UITRON

}

# Check that the hardware or HAL provide the appropriate functionality
cdl_option CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT {
active_if CYGINT_HAL_DEBUG_GDB_STUBS_BREAK

See Also

Propertyrequires



calculated

flavor

flavor

flavor

flavor

Name

Property calculated — Used if the current option’s value is not user-modifiable, but is calculated using a
suitable CDL expression.

Synopsis

cdl_option <name> {
calculated <expression >

Description

In some cases it is useful to have a configuration option whose value cannot be modified directly by the user. This
can be achieved using a calculated, which takes a CDL expression as argumgin¢ (Seetion calle®rdinary
Expressiongn Chapter Jor a description of expression syntax). The configuration system evaluates the expression
when the current package is loaded and whenever there is a change to any other option referenced in the expression.
The result depends on the option’s flavor:

none
Options with this flavor have no value, so the calculated property is not applicable.
bool
If the expression evaluates to a non-zero result the option is enabled, otherwise it is disabled.
booldata
If the result of evaluating the expression is zero then the option is disabled, otherwise the option is enabled
and its value is the result.
data

The value of the option is the result of evaluating the expression.

There are a number of valid uses for calculated options, and there are also many cases where some other CDL
facility would be more appropriate. Valid uses of calculated options include the following:

+ On some target hardware a particular feature may be user-configurable, while on other targets it is fixed. For
example some processors can operate in either big-endian or little-endian mode, while other processors do not
provide any choice. It is possible to have an opttfGARC_BIGENDIAMWhich is calculated in some architectural
HAL packages but user-modifiable in others.

« Calculated options can provide an alternative way for one package to affect the behavior of another one. Suppose
a package may provide two possible implementations, a preferred one involving self-modifying code and a
slower alternative. If the system involves a ROM bootstrap then the slower alternative must be used, but it

103



calculated

would be inappropriate to modify the startup option in every HAL to impose constraints on this package. Instead

it is possible to have a calculated option whose valug @'G_HAL_STARTUP == "ROM" } and which has
appropriate consequences. Arguably this is a spurious example, and it should be a user choice whether or not to
use self-modifying code with a default_value basedc®e_HAL_STARTUFbut that is for the component writer

to decide.

« Sometimes it should be possible to perform a particular test at compile-time, for example by using a C prepro-
cessomrif construct. However the preprocessor has only limited functionality, for example it cannot perform
string comparisons. CDL expressions are more powerful.

« Occasionally a particular sub-expression may occur multiple times in a CDL script. If the sub-expression is
sufficiently complex then it may be worthwhile to have a calculated option whose value is the sub-expression,
and then reference that calculated option in the appropriate places.

Alternatives to using calculated options include the following:

- CDL interfacesare a form of calculated option intended as an abstraction mechanism. An interface can be used
to express the concept afly scheduleras opposed to a specific one such as the bitmap scheduler.

- If a calculated option would serve only to add additional information to a configuration header file, it may be
possible to achieve the same effect usirdpéine_progroperty or one of the other properties related to header
file generation.

Tip: If the first entry in a calculated expression is a hegative number, for example calculated -1 then this can
be misinterpreted as an option instead of as part of the expression. Currently the calculated property does not
take any options, but this may change in future. Option processing halts at the sequence -- , so the desired
value can be expressed safely using calculated -- -1

Warning

Some of the CDL scripts in current eCos releases make excessive use of calculated options.
This is partly because the recommended alternatives were not always available at the time
the scripts were written. It is also partly because there is still some missing functionality, for
example define_proc properties cannot yet access the configuration data so it may be nec-
essary to use calculated properties to access the data and perform the desired manipulation
via a CDL expression. New scripts should use calculated options only in accordance with the
guidelines.

Note: For options with the booldata flavor the current CDL syntax does not allow the enabled flag and the value
to be calculated separately. Functionality to permit this may be added in a future release.

Note: It has been suggested that having options which are not user-modifiable is potentially confusing, and that
a top-level cdl_constant  command should be added to the language instead of or in addition to the calculated
property. Such a change is under consideration. However because the value of a calculated option can depend
on other options, it is not necessarily constant.

104



calculated

Example
# A constant on some target hardware, perhaps user-modifiable on other
# targets.
cdl_option CYGNUM_HAL_RTC_PERIOD {
display "Real-time clock period"
flavor data
calculated 12500
}
See Also

Propertiedefault_valueflavorandlegal _values

105



calculated

106



compile

Name

Property compile — List the source files that should be built if this option is active and enabled.

Synopsis

cdl_option <name> {
compile [-library=libxxx.a] <list of files >

Description

The compile property allows component developers to specify source files which should be compiled and added
to one of the target libraries. Usually each source file will end up the likitateyget.a . It is possible for
component writers to specify an alternative library for an entire package usinidpitiug property. Alternatively

the desired library can be specified on the compile line itself. For example, to add a particular source file to the
libextras.a library the following could be used:

cdl_package CYGPKG_IO_SERIAL {

compile -library=libextras.a common/tty.c

}

Details of the build process including such issues as compiler flags and the order in which things happen can be
found inChapter 4

compile properties can occur in any adl_option , cdl_component , cdl_package or cdl_interface A
compile property has effect if and only if the entity that contains it is active and enabled. Typically the body
of acdl_package will define any source files that need to be built irrespective of individual options, and each
cdl_component , cdl_option , andcdl_interface will define source files that are more specific. A single com-
pile property can list any number of source files, all destined for the same librauy. dption  or other entity

can contain multiple compile properties, each of which can specify a different library. It is possible for a given
source file to be specified in compile properties for several different options, in which case the source file will get
built if any of these options are active and enabled.

If the package follows thdirectory layout conventionthen the configuration tools will search for the specified
source files first in therc  subdirectory of the package, then relative to the package directory itself.

Note: A shortcoming of the current specification of compile properties is that there is no easy way to specify
source files that should be built unless an option is enabled. It would sometimes be useful to be able to say: “if
option A is enabled then compile file x.c , otherwise compile file y.c . There are two simple ways of achieving
this:

« Always compile y.c , typically by listing it in the body of the cdl_package , but use #ifndef A to produce an
empty object file if option A is not enabled. This has the big disadvantage that the file always gets compiled
and hence for some configurations builds will take longer than necessary.

107



compile

108

» Use a calculated option whose value is !A, and have a compile y.c  property in its body. This has the big
disadvantage of adding another calculated option to the configuration.

It is likely that this will be resolved in the future, possibly by using some sort of expression as the argument to
a compile property.

Note: Currently it is not possible to control the priority of a compile property, in other words the order in which
a file gets compiled relative to other build steps. This functionality might prove useful for complicated packages
and should be added.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure”
include_dir  cyg/infra
description "

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

compile startup.cxx prestart.cxx pkgstart.cxx userstart.cxx \
dummyxxmain.cxx memcpy.c memset.c delete.cxx \
diag.cxx tcdiag.cxx

See Also

Propertiesnake make_objecandlibrary.



default_value

Name
Property default_value — Provide a default value for this option using a CDL expression.
Synopsis
cdl_option <name> {
default_value <expression >
}
Description

The default_value property allows the initial value of a configuration option to depend on other configuration
options. The arguments to the property should be a CDL expressiothes&ection calle@®rdinary Expressions
in Chapter Jor the syntactic details. In many cases a simple constant value will suffice, for example:

cdl_component CYGPKG_KERNEL_EXCEPTIONS {
default_value 1
cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {

default_value 0

}

However it is also possible for an option’s default value to depend on other options. For example the common HAL
package provides some support functions that are needed by the eCos kernel, but are unlikely to be useful if the
kernel is not being used. This relationship can be expressed using:

cdl_option CYGFUN_HAL_COMMON_KERNEL_SUPPORT {

default_value CYGPKG_KERNEL
}

If the kernel is loaded then this HAL option is automatically enabled, although the user can still disable it explicitly
should this prove necessary. If the kernel is not loaded then the option is disabled, although it can still be enabled
by the user if desired. default_value expressions can be more complicated than this if appropriate, and provide a
very powerful facility for component writers who want their code to “just do the right thing” in a wide variety of
configurations.

The CDL configuration system evaluates the default_value expression when the current package is loaded and
whenever there is a change to any other option referenced in the expression. The result depends on the option’s
flavor:

109



default_value

flavor none

Options with this flavor have no value, so the default_value property is not applicable.

flavor bool

If the expression evaluates to a non-zero result the option is enabled by default, otherwise it is disabled.

flavor booldata
If the result of evaluating the expression is zero then the option is disabled, otherwise the option is enabled
and its value is the result.

flavor data
The default value of the option is the result of evaluating the expression.

A cdl_option  or other entity can have at most one default_value property, and it is illegal to have both a calculated
and a default_value property in one body. If an option does not have either a default_value or a calculated property
and it does not have the flavosne then the configuration tools will assume a default value expression of

On occasion it is useful to have a configuration opt#iomhich has both a requires constraint on some other option

B and a default_value expression®flf option B is not enabled thea will also be disabled by default and no
conflict arises. IB is enabled then also becomes enabled and again no conflict arises. If a user attempts to enable
B but notA then there will be a conflict. Users should be able to deduce that the two options are closely interlinked
and should not be manipulated independently except in very unusual circumstances.

Tip: If the first entry in a default_value expression is a negative number, for example default_value -1 then
this can be misinterpreted as an option instead of as part of the expression. Currently the default_value property
does not take any options, but this may change in future. Option processing halts at the sequence -- , so the
desired value can be expressed safely using default_value -- -1

Note: In many cases it would be useful to calculate default values using some global preferences, for example:
cdl_option CYGIMP_LIBC_STRING_PREFER_SMALL_TO_FAST {

default_value CYGGLO_CODESIZE > CYGGLO_SPEED
}

Such global preference options do not yet exist, but are likely to be added in a future version.

Note: For options with the booldata flavor the current syntax does not allow the default values of the enabled
flag and the value to be controlled separately. Functionality to permit this may be added in a future release.

Example

cdl_option CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT {
display "Include GDB multi-threading debug support"

110



requires CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
default_value CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
description "

This option enables some extra HAL code which is needed
to support multi-threaded source level debugging.”

See Also

Propertiecalculatedflavor andlegal_values

default_value

111



default_value

112



define

flavor none

flavor bool

Name

Property define — Specify additionakdefine symbols that should go into the owning package’s
configuration header file.

Synopsis
cdl_option <name> {
define [-file= <filename >] [-format=  <format >] <symbol >
}
Description

Normally the configuration system generates a siddégine for each option that is active and enabled, with the
defined symbol being the name of the option. Thaksdine’s  go to the package’s own configuration header file,
for examplepkgconf/kernel.h for kernel configuration options. For the majority of options this is sufficient.
Sometimes it is useful to have more control over whidhfine’s  get generated.

The define property can be used to generate an additiefine if the option is both active and enabled, for
example:

cdl_option CYGNUM_LIBC_STDIO_FOPEN_MAX {

define FOPEN_MAX
}

If this option is given the value 40 then the followirtgefine’s  will be generated in the configuration header
pkgconf/libc.h

#define CYGNUM_LIBC_STDIO_FOPEN_MAX 40
#define FOPEN_MAX 40

The defauli#define can be suppressed if desired using the no_define property. This is useful if the symbol should

only be defined impkgconf/system.h and not in the package’s own configuration header file. The value that will
be used for thigdefine is the same as for the default one, and depends on the option’s flavor as follows:

Options with this flavor are always enabled and have no value, so the constdhibe used.

If the option is disabled then nalefine  will be generated. Otherwise the constantill be used.

flavor booldata

If the option is disabled then nalefine  will be generated. Otherwise the option’s current value will be used.

113



define

flavor data

114

The option’s current value will be used.

For active options with theata flavor, and for active and enabled options with bleeldata  flavor, either one or
two #define’s  will be generated. These take the following forms:

#define  <symbol > <value >
#define  <symbol >_<value >

For the firstudefine it is possible to control the format used for the value usinfp@anat= <format > option.
For example, the following can be used to output some configuration data as a C string:

cdl_option <name> {

define -format="\\\"%s\\"" <symbol >

}

The implementation of this facility involves concatenating the Tcl comnfamaat , the format string, and the
string representation of the option’s value, and evaluating this in a Tcl interpreter. Therefore the format string will
be processed twice by a Tcl parser, and appropriate care has to be taken with quoting.

The secondtdefine  will be generated only if is a valid C preprocessor macro symbol. By default the symbols
generated by define properties will end up in the package’s own configuration header filgileTheoption

can be used to specify an alternative destination. At the time of writing the only valid alternative definition is
-file=system.h , which will send the output to the global configuration headelpfiteonf/system.h

Caution

Care has to be taken with the -format  option. Because the Tcl interpreter’s format command
is used, this property is subject to any problems with the implementation of this in the Tcl
library. Generally there should be no problems with string data or with integers up to 32 bits,
but there may well be problems if 64-bit data is involved. This issue may be addressed in a
future release.

Example

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data

legal_values {'RAM" "ROM" }
default_value {"RAM"}

no_define

define -file=system.h CYG_HAL_STARTUP



define

See Also

Propertieglefine_formatdefine_headedefine_procif _defineandno_define

115



define

116



define_format

Name
Property define_format — Control how an option’s value will appear in the configuration header file.
Synopsis
cdl_option <name> {
define_format <format string >
}
Description

For active options with thelata flavor, and for active and enabled options with tlweldata flavor, the con-
figuration tools will normally generate twalefine’s  in the package’s configuration header file. These take the
following forms:

#define <name> <value >
#define <name>_<value >

The define_format property can be used to control exactly what appears as the value for the firstfethese
fine’'s . For example, the following can be used to output some configuration data as a C string:

cdl_option <name> {

define -format="\\\"%s\\"" <symbol >

}

The implementation of define_format involves concatenating the Tcl comfaamat |, the format string, and the
string representation of the option’s value, and evaluating this in a Tcl interpreter. Therefore the format string will
be processed twice by a Tcl parser, and appropriate care has to be taken with quoting.

The secondtdefine  will be generated only if is a valid C preprocessor macro symbol, and is not affected by
the define_format property. Also, the property is only relevant for options withdfae or booldata  flavor, and

cannot be used in conjunction with the no_define property since it makes no sense to specify the format if no
#define is generated.

Caution

Because the Tcl interpreter’s format command is used, this property is subject to any prob-
lems with the implementation of this in the Tcl library. Generally there should be no problems
with string data or with integers up to 32 bits, but there may well be problems if 64-bit data is
involved. This issue may be addressed in a future release.

117



define_format

Example

cdl_option CYGNUM_UITRON_VER_ID {
display "OS identification”
flavor data

legal_values 0 to OXFFFF

default_value 0

define_format "0x%04x"

description
This value is returned in the 'id’
field of the T_VER structure in
response to a get ver() system call."

See Also

Propertieglefing define_headedefine_procif _defineandno_define

118



define_header

Name

Property define_header — Specify the configuration header file that will be generated for a given
package.

Synopsis

cdl_package <name> {
define_header <file name >

Description

When the configuration tools generate a build tree, one of the steps is to output each package’s configuration data
to a header file. For example the kernel's configuration data gets outpkgdanf/kernel.h . This allows each
package’s source code#include the appropriate header file and adapt to the choices made by the user.

By default the configuration tools will synthesize a file name from the package name. This involves removing any
prefix such a&€YGPKG, up to and including the first underscore, and then converting the remainder of the hame to
lower case. In some cases it may be desirable to use a different header file, for example an existing package may
have been ported to eCos and the source code may alt@athde a particular file for configuration data. In

such cases a define_header property can be used to specify an alternative filename.

The define_header property can only be used in the bodycdf package command. It applies to a package
as a whole and cannot be used at a finer grain. The name specified in a define_header property will always be
interpreted as relative to theclude/pkgconf sub-directory of the install tree.

Note: For hardware-specific packages such as device drivers and HAL packages, the current scheme of gen-
erating a configuration header file name based on the package name may be abandoned. Instead all hardware
packages would send their configuration data to a single header file, pkgconf/hardware.h . This would make it
easier for code to obtain details of the current hardware, but obviously there are compatibility issues. For now
it is recommended that all hardware packages specify their configuration header file explicitly.

Example

cdl_package CYGPKG_HAL_ARM {
display "ARM architecture"
parent CYGPKG_HAL
hardware

include_dir  cyg/hal
define_header hal_arm.h

119



define_header

See Also

Propertieglefing define_formatdefine_procif _defing no_defineandhardware

120



define_proc

Name

Property define_proc — Use a fragment of Tcl code to output additional data to configuration header
files.

Synopsis

cdl_option <name> {
define_proc <Tcl script >

Description

For most configuration options it is sufficient to have an entry in the configuration header file of the form:
#define  <name> <value >

In some cases it is desirable to perform some more complicated processing when generating a configuration header
file. There are a number of CDL properties for this, including define_format and if_define. The most flexible is
define_proc: this allows the component writer to specify a Tcl script that gets invoked whenever the configuration
system generates the header file for the owning package. The script can output anything to the header file, for
example it could generate a C data structure based on various configuration values.

At the point that the define_proc script is invoked there will be two channels to open files, accessible via Tcl
variables:cdl_header is a channel to the current package’s own header file for exapkpt@nf/kernel.h ;
cdl_system_header  is a channel to the global configuration fijggconf/system.h . A typical define_proc

script will use theputs command to output data to one of these channels.

define_proc properties only take effect if the current option is active and enabled. The default behavior of the
configuration system for an option with theol flavor corresponds to the following define_proc:

cdl_option XXX {

define_proc {
puts $cdl_header "#define XXX 1"
}

Warning

In the current implementation it is not possible for a define_proc property to examine the cur-
rent values of various configuration options and adapt accordingly. This is a major limitation,
and will be addressed in future versions of the configuration tools.

121



define_proc

122

Example

cdl_package CYGPKG_HAL_ARM_PID {

"ARM PID evaluation board"
CYGPKG_HAL_ARM
define_header hal_arm_pid.h

display
parent

include_dir

hardware

cyg/hal

define_proc {
$::cdl_system_header "#define CYGBLD_HAL_TARGET_H <pkgconf/hal_arm.h >"

puts
puts
puts
puts
puts
puts
puts

See Also

$::cdl_system_|

$::cdl_header
$::cdl_header
$::cdl_header
$::cdl_header
$::cdl_header

header "#define CYGBLD_HAL_PLATFORM_H <pkgconf/hal_arm_pid.h >"
"#define HAL_PLATFORM_CPU \"ARM 7TDMI\"™

"#define HAL_PLATFORM_BOARD \"PID\""

"#define HAL_PLATFORM_EXTRA \"\""

Propertieglefing define_formatdefine_headeif defineandno_define



description

Name
Property description — Provide a textual description for an option.
Synopsis
cdl_option <name> {
description <text >
}
Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than somethiaydike
PKG_LIBC_TIME_ZONES the description property gives a longer description, typically a paragraph or so; the doc
property specifies the location of additional on-line documentation related to a configuration option. In the context
of a graphical tool the display string will be the primary way for users to identify configuration options; the de-
scription paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requests it.

At present there is no way of providing any sort of formatting mark-up in a description. It is possible that future
versions of the configuration tools will provide some control over the way the description text gets rendered.

Example

cdl_option CYGDBG_INFRA_DEBUG_TRACE_MESSAGE ({

display "Use trace text"

default_value 1

description "
All trace calls within eCos contain a text message
which should give some information about the circumstances.
These text messages will end up being embedded in the
application image and hence there is a significant penalty
in terms of image size.
It is possible to suppress the use of these messages by
disabling this option.
This results in smaller code size, but there is less
human-readable information available in the trace output,
possibly only filenames and line numbers."

123



description

See Also
Propertieglisplayanddoc

124



display

Name

Property display — Provide a short string describing this option.

Synopsis

cdl_option <name> {
display  <string >

Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than somethiaydike
PKG_LIBC_TIME_ZONES the description property gives a longer description, typically a paragraph or so; the doc
property specifies the location of additional on-line documentation related to a configuration option. In the context
of a graphical tool the display string will be the primary way for users to identify configuration options; the de-
scription paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requests it.

Example

cdl_option CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE {
display "Message box queue size"
flavor data

legal_values 1 to 65535

default_value 10

description "
This configuration option controls the number of messages
that can be queued in a message box before a non-blocking
put() operation will fail or a blocking put() operation will
block. The cost in memory is one pointer per message box for
each possible message.”

See Also

Propertieglescriptionanddoc

125



display

126



doc

Name

Property doc — The location of online-documentation for a configuration option.

Synopsis

cdl_option <name> {
doc <URL;>

Description

Users can only be expected to manipulate configuration options sensibly if they are given sufficient informa-
tion about these options. There are three properties which serve to explain an option in plain text: the display
property gives a textual alias for an option, which is usually more comprehensible than somethiaydike
PKG_LIBC_TIME_ZONES the description property gives a longer description, typically a paragraph or so; the doc
property specifies the location of additional on-line documentation related to a configuration option. In the context
of a graphical tool the display string will be the primary way for users to identify configuration options; the de-
scription paragraph will be visible whenever the option is selected; the on-line documentation will only be accessed
when the user explicitly requests it.

The documentation may be an absolute URL, but more generally the on-line documentation will be shipped with
the package and can be accessed via a relative URL. If the package follodisstittery layout conventionthen

the configuration tools will search for the specified html file first in dhe subdirectory of the package, then
relative to the package directory itself. The URL may containcharacter to specify an anchor within a page.

Warning

At the time of writing the eCos packages in the standard distribution do not conform to
the directory layout conventions when it comes to the documentation. Instead of organizing
the documentation on a per-package basis and placing it in the corresponding doc sub-
directories, all the documentation is kept in a central location. This should get addressed
in a future release of the system. Third party component writers should follow the layout
conventions.

Example

cdl_package CYGPKG_KERNEL {
display "eCos kernel"
doc ref/lecos-ref.4.html
include_dir  cyg/kernel
description

This package contains the core functionality of the eCos
kernel. It relies on functionality provided by various HAL

127



doc
packages and by the eCos infrastructure. In turn the eCos

kernel provides support for other packages such as the device
drivers and the ulTRON compatibility layer.”

See Also

Propertiedescriptionanddisplay:.

128



flavor

Name

Property flavor — Specify the nature of a configuration option.

Synopsis

cdl_option <name> {
flavor <flavor >

Description

The state of a CDL configuration option is a somewhat complicated concept. This state determines what happens
when a build tree is generated: it controls what files get built and wdedihe’s  end up in configuration header
files. The state also controls the values used during expression evaluation. The key concepts are:

1. An option may or may not be loaded into the current configuration. However it is still possible for packages to
reference options which are not loaded in a requires constraint or other expression. If an option is not loaded
then it will have no direct effect on the build process, andlill be used for expression evaluation.

2.Even if an option is loaded it may still be inactive. Usually this is controlled by the option’s location in the
configuration hierarchy. If an option’s parent is active and enabled then the option will normally be active.
If the parent is either inactive or disabled then the option will be inactive. For example, if kernel timeslicing
is diabled then the optio@YGNUM_KERNEL_SCHED_TIMESLICE_TICKSirrelevant and must have no effect.
The active_if property can be used to specify additional constraints. If an option is inactive then it will have
no direct effect on the build process, in other words it will not cause any files to get badefime’s  to be
generated. For the purposes of expression evaluation an inactive option has a @alue of

3. An option may be enabled or disabled. Most options are boolean in nature, for example a particular function
may get inlined or it may involve a full procedure call. If an option is disabled then it has no direct effect on
the build process, and for the purposes of expression evaluation it has a value of 0.

4. An option may also have additional data associated with it, for example a numerical value used to control the
size of an array.

Most options are boolean in nature and do not have any additional associated data. For some options only the data
part makes sense and users should be unable to manipulate the enabled/disabled part of the state. For a compara-
tively small number of options it makes sense to have the ability to disable that option or to enable it and associate
data as well. Finally, when constructing an option hierarchy it is occasionally useful to have entities which serve
only as placeholders. The flavor property can be used to control all this. There are four possible values. It should
be noted that the active or inactive state of an option takes priority over the flavor: if an option is inactive then no
#define’s  will be generated and any build-related properties such as compile will be ignored.

129



flavor

flavor none

flavor bool

flavor data

flavor booldata

Thenone is intended primarily for placeholder components in the hierarchy, although it can be used for other
purposes. Options with this flavor are always enabled and do not have any additional data associated with
them, so there is no way for users to modify the option. For the purposes of expression evaluation an option
with flavor none always has the value. Normal#define processing will take place, so typically a single
#define  will be generated using the option name and a value &imilarly build-related properties such as
compile will take effect.

Boolean options can be either enabled or disabled, and there is no additional data associated with them. If
a boolean option is disabled then nadefine will be generated and any build-related properties such as
compile will be ignored. For the purposes of expression evaluation a disabled option has the. Ve
boolean option is enabled then normtdkfine processing will take place, all build-related properties take
effect, and the option’s value will be

Options with this flavor are always enabled, and have some additional data associated with them which can be
edited by the user. This data can be any sequence of characters, although in practice the legal_values property
will often be used to impose constraints. In appropriate contexts such as expressions the configuration tools
will attempt to interpret the data as integer or floating point numbers. Since an option withtdhédlavor

cannot be disabled, normidefine processing takes place and the data will be used for the value. Similarly

all build-related properties take effect, and the option’s value for the purposes of expression evaluation is the
data.

This combines theool anddata flavors. The option may be enabled or disabled, and in addition the option
has some associated data. If the option is disabled thexdefme will be generated, the build-related
properties have no effect, and for the purposes of expression evaluation the option’s galéithis option is
enabled then &define  will be generated using the data as the value, all build-related properties take effect,
and the option’s value for the purposes of expression evaluation is the data lkégal data then it is not
possible to distinguish this case from the option being disabled or inactive.

Options and components have tiw! flavor by default, but this can be changed as desired. Packages always have
thebooldata flavor, and this cannot be changed. Interfaces havedtae flavor by default, since the value of an
interface is a count of the number of active and enabled interfaces, but they can be givesi thoe booldata

flavors.

Note: The expression syntax needs to be extended to allow the loaded, active, enabled and data aspects of
an option’s state to be examined individually. This would allow component writers to distinguish between a
disabled booldata option and an enabled one which has a value of 0. Such an enhancement to the expression
syntax may also prove useful in other circumstances.

Example

cdl_component CYGPKG_LIBM_COMPATIBILITY {

130



cdl_component CYGNUM_LIBM_COMPATIBILITY {
flavor booldata

cdl_option CYGNUM_LIBM_COMPAT_DEFAULT {
flavor data

}

cdl_component CYGPKG_LIBM_TRACE {
flavor bool

See Also

Propertiecalculateddefault_valueandlegal values

flavor

131



flavor

132



hardware

Name
Property hardware — Specify that a package is tied to specific hardware.
Synopsis
cdl_option <name> {
active_if <condition >
}
Description

Some packages such as device drivers and HAL packages are hardware-specific, and generally it makes no sense to
add such packages to a configuration unless the corresponding hardware is present on your target system. Typically

hardware package selection happens automatically when you select your target. The hardware property can be used
in the body of acdl_package command to indicate that the package is hardware-specific.

Note: At the time of writing the hardware property is largely ignored by the configuration tools, but this may
change in future. Amongst other possible changes, for hardware-specific packages such as device drivers
and HAL packages, the current scheme of generating a configuration header file name based purely on the
package name may be abandoned. Instead all hardware packages would send their configuration data to a
single header file, pkgconf/hardware.h . This would make it easier for code to obtain details of the current
hardware, but obviously there are compatibility issues. For now it is recommended that all hardware packages
specify their configuration header file explicitly.

Example

cdl_package CYGPKG_HAL_ARM ({
display "ARM architecture"
parent CYGPKG_HAL
hardware

include_dir  cyg/hal
define_header hal_arm.h

See Also

Propertydefine_headeand commanddi_package

133



hardware

134



if _define

Name

Property if_define — Output a common preprocessor construct to a configuration header file.

Synopsis

cdl_option <name> {
if_define [-file= <filename >] <symboll > <symbol2 >

Description

The purpose of the if_define property is best explained by an example. Suppose you want finer-grained control over
assertions, say on a per-package or even a per-file basis rather than globally. The assertion macros can be defined
by an exported header file in an infrastructure package, using code like the following:

#ifdef CYGDBG_USE_ASSERTS

# define CYG_ASSERT( _bool_, msg_ ) \
CYG_MACRO_START \
if (! (_bool_)) \

CYG_ASSERT_DOCALL( _msg_ ); \

CYG_MACRO_END

#else

# define CYG_ASSERT( _bool , msg_ ) CYG_EMPTY_STATEMENT

#endif

Assuming this header file iginclude’d  directly or indirectly by any code which may need to be built with
assertions enabled, the challenge is now to control whether @Y@bBG_USE_ASSERTSdefined for any given
source file. This is the purpose of the if_define property:

cdl_option CYGDBG_KERNEL_USE_ASSERTS {

if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
requires CYGDBG_INFRA_ASSERTION_SUPPORT

}
If this option is active and enabled then the kernel’s configuration header file would end up containing the following:

#ifdef CYGSRC_KERNEL
# define CYGDBG_USE_ASSERTS 1
#endif

Kernel source code can now begin with the following construct:
#define CYGSRC_KERNEL 1

#include  <pkgconf/kernel.h >
#include  <cyglinfra/cyg_ass.h >

135



if _define

136

The configuration option only affects kernel source code, assuming nothing#edgiee's  the symbol
CYGSRC_KERNELf the per-package assertion option is disabled theGDBG_USE_ASSERTEIl not get defined.

If the option is enabled thedYGDBG_USE_ASSERTEI get defined and assertions will be enabled for the kernel
sources. It is possible to use the same mechanism for other facilities such as tracing, and to apply it at a finer grain
such as individual source files by having multiple options with if _define properties and multiple symbols such as
CYGSRC_KERNEL_SCHED_BITMAP_CXX

The if_define property takes two arguments, both of which must be valid C preprocessor symbols. If the current
option is active and enabled then three lines will be output to the configuration header file:

#ifdef ~ <symboll >
# define  <symbol2 >
#endif

If the option is inactive or disabled then these lines will not be output. By default the current package’s configuration
header file will be used, but it is possible to specify an alternative destination usileg a option. At present the

only legitimate alternative destinationdggstem.h , the global configuration header. if _define processing happens
in addition to, not instead of, the nornialefine  processing or the handling of other header-file related properties.

Note: The infrastructure in the current eCos release does not yet work this way. In future it may do so, and the
intention is that suitable configuration options get generated semi-automatically by the configuration system
rather than having to be defined explicitly.

Tip: As an alternative to changing the configuration, updating the build tree, and so on, it is possible to enable
assertions by editing a source file directly, for example:

#define CYGSRC_KERNEL 1

#define CYGDBG_USE_ASSERTS 1
#include  <pkgconf/kernel.h >
#include  <cyg/infra/cyg_ass.h >

The assertion header file does not care whether CYGDBG_USE_ASSERTS#define'd  via a configuration option
or by explicit code. This technique can be useful to component writers when debugging their source code,
although care has to be taken to remove any such #define’s  later on.

Example

cdl_option CYGDBG_KERNEL_USE_ASSERTS {
display "Assertions in the kernel package"

if_define CYGSRC_KERNEL CYGDBG_USE_ASSERTS
requires CYGDBG_INFRA_ASSERTION_SUPPORT



if _define

See Also

Propertieglefine define_formatdefine_headedefine_proandno_define

137



if _define

138



implements

Name

Property implements — Enabling this option provides one instance of a more general interface.

Synopsis

cdl_option <name> {
implements  <interface >

Description

The CDL interface concept provides an abstraction mechanism that can be useful in many different circumstances.
Essentially an interface is a calculated option whose value is the number of active and enabled options which
implement that interface. For example the interfa¥&INT_KERNEL_SCHEDULHRaS a value corresponding to the
number of schedulers in the system, typically just one.

The implements property takes a single argument, which should be the name of an interface. This interface may
be defined in the same package as the implementor or in some other package. In the latter case it may sometimes
be appropriate for the implementor or the implementor’'s package to have a requires property for the package
containing the interface. An option may contain multiple implements properties. It is possible for an option to
implement a given interface multiple times, and on occasion this is actually useful.

Example

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
display "Multi-level queue scheduler"”
default_value 1
implements CYGINT_KERNEL_SCHEDULER

See Also

Commanctd|_interface

139



implements

140



include_dir

Name

Property include_dir — Specify the desired location of a package’s exported header files in the install
tree.

Synopsis

cdl_package <name> {
include_dir <sub-directory >

Description

Most packages export one or more header files defining their public interface. For example the C library exports
header files such asdio.h andctype.h . If the package follows thdirectory layout conventionthen the ex-

ported header files will normally be found in the packagetide sub-directory. Alternatively the include_files
property can be used to specify which header files should be exported.

By default a package’s exported header files will be copied tantt@le  sub-directory of the install tree. This

is correct for packages like the C library because that is the correct location for files sstdlv.as . However

to reduce the probability of name clashes it is desirable for packages to use different sub-directories, for example
infrastructure header files get copiedrtdude/cyg/infra rather than to the top-levelclude directory itself.

It would be possible to replicate these sub-directories in each package’s source tree, such that the infrastructure
header file sources lived include/cyg/infra in the source tree as well as in the install tree. This would make
things more difficult for the package developers. Instead it is possible to specify the desired install tree sub-directory
using an include_dir property, for examphelude_dir cyg/infra

The include_dir property can only be used in the body efilapackage command, since it applies to all of
the header files exported by a package, and only one include_dir property can be used. If there is no include_dir
property then exported header files will end up in the top-lemtide directory of the install tree.

Example

cdl_package CYGPKG_INFRA {
display "Infrastructure”
include_dir  cyg/infra
description

Common types and useful macros.
Tracing and assertion facilities.
Package startup options."

141



include_dir

See Also

Propertyinclude_filesand commandd!_package

142



include_files

Name
Property include_files — List the header files that are exported by a package.
Synopsis
cdl_package <name> {
include_files <filel > ..
}
Description

Most packages export one or more header files defining their public interface. For example the C library exports
header files such asdio.h andctype.h . If the package follows thdirectory layout conventionthen the ex-

ported header files will normally be found in the packagetide sub-directory. For packages which do not fol-

low these conventions, typically simple ones for which a complicated sub-directory hierarchy is undesirable, there
has to be an alternative way of specifying which header file or files define the public interface. The include_files
property provides support for this.

By default, if a package does not haveiatiude  subdirectory and it does not have an include_files property then
all files with a suffix of.n , .hxx ,.inl  or.inc will be treated as public header files. However some of these may
be private files containing implementation details. If there is an include_files property then only the files listed in
that property will be exported.

If a package should not export any header files but does contain private implementation headers, an include_files
property with no arguments should be used.

Example

cdl_package @ <SOME_PACKAGE {

include_dir <some directory >
include_files interface.h

}

cdl_package = <ANOTHER_PACKAGE{

include_files

See Also

Propertyinclude_dir and commanddi_package

143



include_files

144



legal_values

Name
Property legal values — Impose constraints on the possible values for an option.
Synopsis
cdl_option <name> {
legal_values <list expression >
}
Description

Options with thedata or booldata flavors can have an arbitrary sequence of characters as their data. In nearly all
cases some restrictions have to be imposed, for example the data should correspond to a number within a certain
range, or it should be one of a small number of constants. The legal_values property can be used to impose such
constraints. The arguments to the property should be a CDL list expressidhesgection calletlist Expressions

in Chapter Jor the syntactic details. Common examples include:

legal_values 0 to OxT7fff
legal_values 9600 19200 38400
legal_values { "RAM" "ROM" }

The legal_values property can only be used for options withitite or booldata flavors, since it makes little
sense to further constrain the legal values of a boolean option. An option can have at most one legal_values property.

Tip: If the first entry in a legal_values list expression is a negative number, for example legal_values -1 to 1
then this can be misinterpreted as an option instead of as part of the expression. Currently the legal_values
property does not take any options, but this may change in future. Option processing halts at the sequence -- ,
so the desired range can be expressed safely using legal_values -- -1 to 1

Note: Architectural HAL packages should provide constants which can be used in legal_values list expressions.
For example it should be possible to specify a numeric range such as 0 to CYGARC_MAXINT rather than hard-
wiring numbers such as ox7fffffff which may not be valid on all targets. Current HAL packages do not define
such constants.

Note: The legal_values property is restricted mainly to numerical ranges and simple enumerations, and cannot
cope with more complicated data items. Future versions of the configuration system will provide additional data
validation facilities, for example a check_proc property which specifies a Tcl script that can be used to perform
the validation.

145



legal_values

Example
cdl_option CYGNUM_LIBC_TIME_STD_DEFAULT_OFFSET ({
display "Default Standard Time offset”
flavor data
legal_values -- -90000 to 90000
default_value -- 0
description "

This option controls the offset from UTC in
seconds when in local Standard Time. This
value can be positive or negative. It

can also be set at run time using the
cyg_libc_time_setzoneoffsets() function."

See Also

Propertiecalculateddefault_valueandflavor.

146



library

Name

Property library — Specify which library should contain the object files generated by building this
package.

Synopsis

cdl_package <name> {
library <library name >

Description

By default all object files that get built for all packages end up in a single libiatarget.a . This makes things

easier for the typical application developer because it is only necessary to link with a single library, rather than
with separate libraries for each package. It is possible to specify an alternative library for specific files as an option
to the compile and make_object properties, and there is one lilivexyas.a which serves a specific purpose

in the build system. The library property allows an alternative library to be specified for all the object files that will
be generated for a given package.

The use of the library property should be avoided, since it makes things more difficult for application developers.
The property is intended only for special cases, for example if there are legal objections to mingling object files
from different packages in a single library. It could also be used to work around name clash problems if two
packages happen to define an exported symbol with the same name, but any attempt to use multiple libraries in this
way is error-prone and should be avoided.

The library property takes a single argument, the name of a library, which should follow the standard naming
convention ofib <something >.a . A library property can only occur in the body ofcdl_package command

and applies to all object files generated for that package (except where explicitly overwritten-itithryg:

option to one of the build-related properties)c#_package body can contain at most one library property.

Example

cdl_package @ <SOME_PACKAGE {

library libSomePackage.a

See Also

Propertiecompile make andmake_objectcommandtd|_package

147



library

148



make

Priority O

Name

Property make — Define an additional custom build step associated with an option, resulting in a target that
should not go directly into a library.

Synopsis

cdl_option <name> {
make [-priority= <pri >] {
<custom build step >

}

Description

When building an eCos configuration the primary target is a single liblatyget.a . In some cases it is
necessary to build some additional targets. For example architectural HAL packages typically build a linker script
and some start-up code. Such additional targets can be specified by a make property. Any option can have one or
more make properties, although typically such properties only occur in the bodydbbackage command.

The make property takes a single argument, which resembles a makefile rule: it consists of a target, a list of depen-
dencies, and one or more commands that should be executed. However the argument is not a makefile fragment,
and custom build steps may get executed in build environments that do not involve make. For full details of custom
build steps sethe Section calle€ustom Build Stepis Chapter 4

Warning

The exact syntax and limitations of custom build steps have not yet been finalized, and are
subject to change in future versions of the configuration tools.

The make property takes an optional priority argument indicating the order in which build steps take place. This
priority complements the dependency list, and avoids problems with packages needing to know details of custom
build steps in other packages (which may change between releases). The defined order is:

The header files exported by the current set of packages are copied to the appropriate pladedidethe
subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of package and appli-
cation source modules caused by header file dependencies.

Note: A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a change to the ecos.ecc configuration savefile.

149



make

Priority 100
All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless theieriga  option.
Priority 200
The libraries now get built using the appropriate object files.
Priority 300

150

Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then it
should be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an object
file prior to its incorporation into a library then a priority between 100 and 200 should be used.

Example

cdl_package CYGPKG_HAL_MN10300_AM33 {
display "MN10300 AM33 variant"
parent CYGPKG_HAL_MN10300
implements CYGINT_HAL_MN10300_VARIANT
hardware

include_dir  cyg/hal

define_header hal_mn10300_am33.h

description
The MN10300 AM33 variant HAL package provides generic
support for this processor architecture. It is also
necessary to select a specific target platform HAL
package.”

make {
<PREFIX>/lib/target.Id: <PACKAGE/src/mn10300_am33.d
$(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -0 $@ $ <
@echo $@ " \\" > $(notdir $@).deps
@tail +2 target.tmp >> $(notdir $@).deps
@echo >> $(notdir $@).deps
@rm target.tmp

See Also

Propertiecompile make_objecandlibrary.



make_object

Name

Property make_object — Define a custom build step, resulting in an object file that should go into a
library.

Synopsis

cdl_option <name> {
make_object [-library= <library ~ >] [-priority= <pri >] {
<custom build step >

}

Description

When building an eCos configuration the primary target is a single libitateyget.a . Most of the object files

which go into this library will be generated as a result of compile properties. Occasionally it may be necessary
to have special build steps for a given object file, and this can be achieved with a make_object property. The use
of this property should be avoided whenever possible because it greatly increases the risk of portability problems,
both on the host side because of possible problems with the tools, and on the target side because a custom build
step may not allow adequately for the wide variety of architectures supported by eCos.

The make_object property takes a single argument, which resembles a makefile rule: it consists of a target, a list of
dependencies, and one or more commands that should be executed. The target should be an object file. However the
make_object argument is not a makefile fragment, and custom build steps may get executed in build environments
that do not involve make. For full details of custom build stepsise&ection calle@ustom Build Stepas Chapter

4.

Warning

The exact syntax and limitations of custom build steps have not yet been finalized, and may
change in future versions of the configuration tools.

The make_object property takes an optional library argument. If no library is specified then the default library
for the current package will be used, which will igarget.a unless thesdl_package command contains a
library property.

The make_object property also takes an optional priority argument indicating the order in which build steps take
place. This priority complements the dependency list, and avoids problems with packages needing to know details
of custom build steps in other packages (which may change between releases). The defined order is:

151



make_object

Priority O
The header files exported by the current set of packages are copied to the appropriate pladediddethe
subdirectory of the install tree. Any unnecessary copies are avoided, to prevent rebuilds of package and appli-
cation source modules caused by header file dependencies.
Note: A possible future enhancement of the build system may result in the build and install trees being
updated automatically if there has been a change to the ecos.ecc configuration savefile.
Priority 100
All files specified in compile properties will get built, producing the corresponding object files. In addition
any custom build steps defined by make_object properties get executed, unless theieriiga  option.
Priority 200
The libraries now get built using the appropriate object files.
Priority 300

Any custom build steps specified by make properties now get executed, unless the priority for a particular
build step is changed from its default.

For example, if a custom build step needs to take place before any of the normal source files get compiled then it
should be given a priority somewhere between 0 and 100. If a custom build step involves post-processing an object
file prior to its incorporation into a library then a priority between 100 and 200 should be used. It is not sensible
to have a priority above 200, since that would imply building an additional object file for a library that has already
been created.

Example
cdl_option XXX {
make_object {
parser.o: parser.y

yacc $ <
$(CC) $(CFLAGS) -0 $@ y.tab.c

See Also

Propertiecompile makeandlibrary.

152



no_define

Name

Property no_define — Suppress the normal generation of a preprocesssine symbol in a
configuration header file.

Synopsis

cdl_option <name> {
no_define

Description

By default all active and enabled properties result in either one or#tigéne'd  symbols in the package’s
configuration header file, and this is one of the main ways in which options can affect packages at build-time. It is
possible to suppress the defattdefine’s by specifying a no_define property in the body of an option or other
CDL entity. This property takes no arguments and should occur only once in a given body.

The no_define property is frequently used in conjunction with one of the other header-file related properties such
as define. If one of the other properties is used to export the required information to a configuration header file
then often there is little point in exporting the defatdefine as well — in fact there could be a name clash.

The no_define property can also be useful if the sole purpose of an option is to affect which files get built, and the
default#define would never get tested in any source code. However in such cases the #dédéndt is mostly
harmless and there is little to be gained by suppressing it.

Example

cdl_component CYG_HAL_STARTUP {
display "Startup type"
flavor data

legal_values { "RAM" "ROM" }
default_value {"RAM"}

no_define

define -file system.h CYG_HAL_STARTUP

See Also

Propertiegdefine define_formatdefine_headedefine_proandif_define

153



no_define

154



parent

Name

Property parent — Control the location of an option in the configuration hierarchy.

Synopsis

cdl_option <name> {
parent <component or package >

Description

Configuration options live in a hierarchy of packages and components. By default a given option’s position in the
hierarchy is a simple consequence of its position within the CDL scripts. Packages are generally placed at the
top-level of the configuration. Any components or options that are defined at the same levetdisptiukage

command in a package’s top-level CDL script are placed immediately below that package in the hierarchy. Any
options or components that are defined in the body @fi @ackage or cdl_component command, or that are

read in as a result of processing a component’s script property, will be placed immediately below that package or
component in the hierarchy.

In some circumstances it is useful to specify an alternative position in the hierarchy for a given option. For example
it is often convenient to re-parent device driver packages belo@PKG_lOin the configuration hierarchy, thus
reducing the number of packages at the top level of the hierarchy and making navigation easier. The parent property
can be used to achieve this.

The parent property takes a single argument, which should be the name of a package or component. The body of a
cdl_option  or other CDL entity can contain at most one parent property.

Although the parent property affects an option’s position in the overall hierarchy and hence whether or not that
option is active, a re-parented option still belongs to the package that defines it. By defatdetieys ~ will be

exported to that package’s configuration header file. Any compile properties can only reference source files present
in that package, and it is not directly possible to cause some file in another package to be built by re-parenting.

As a special case, if an empty string is specified for the parent then the option is placed at the top of the hierarchy,
ahead of any packages which are not explicitly re-parented in this way. This facility is useful for configuration
options such as global preferences and default compiler flags.

Tip: If an option is re-parented somewhere below another package and that other package is not actually
loaded, the option is an orphan and its active/inactive state is undefined. In such cases it is a good idea for
the owning package to require the presence of the other one. Unfortunately this technique does not work if a
package as a whole is reparented below another one that has not been loaded: the package is orphaned so it
may be automatically inactive, and hence any requires properties would have no effect.

155



parent

Example

cdl_package CYGPKG_HAL_I1386 {
display "i386 architecture"
parent CYGPKG_HAL
hardware

include_dir  cyg/hal
define_header hal _i386.h

}

cdl_component CYGBLD_GLOBAL_OPTIONS ({
display "Global build options”
parent

}

See Also

Propertyscript commandsdl_component andcdl_package

156



requires

Name

Property requires — List constraints that the configuration should satisfy if a given option is active and
enabled..

Synopsis

cdl_option <name> {
requires <goal expression >

Description

Configuration options are not independent. For example the C library can provide thread-safe implementations of
certain functions, but only if the kernel is present, if the kernel provides multi-threading, and if the kernel options
related to per-thread data are enabled. It is possible to express such constraints using requires properties.

The arguments to a requires property should constitute a goal expression, as desdfikeSdation calledlist
Expressionsn Chapter 3Most goal expressions are relatively simple because the constraints being described are
simple, but complicated expressions can be used when necessary. The body of an option or other CDL entity can
contain any number of requires constraints. If the option is active and enabled then all these constraints should be
satisfied, and any goal expressions which evaluagentitl result in conflicts being raised. It is possible for users to
ignore such conflicts and attempt to build the current configuration anyway, but there is no guarantee that anything
will work. If an option is inactive or disabled then its requires constraints will be ignored.

The configuration system contains an inference engine which can resolve many types of conflicts automatically.
For example, if optiom is enabled and requires an optiBrthat is currently disabled then the inference engine
may attempt to resolve the conflict by enabl®igHowever this will not always be possible, for example there may

be other constraints in the configuration which foed® be disabled at present, in which case user intervention is

required.
Example
cdl_component CYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_A {
display "Cogent PowerPC serial port A driver"
flavor bool
default_value 0
requires (CYGIMP_KERNEL_INTERRUPTS_CHAIN || \

ICYGPKG_IO_SERIAL_POWERPC_COGENT_SERIAL_B)

157



requires

See Also

Propertyactive_if

158



script

Name

Property script — Include additional configuration information from another CDL script.

Synopsis

cdl_component  <name> {
script <filename >

Description

It is possible to define all the configuration options and sub-components for a given package in a single CDL
script, either by nesting them in the appropriate command bodies, by extensive use of the parent property, or by
some combination of these two. However for large packages this is inconvenient and it is better to split the raw
configuration data over several different files. The script property can be used to achieve this. It takes a single
filename as argument. If the package follows thectory layout conventionthen the configuration tools will

look for the specified file in thedl sub-directory of the package, otherwise it will look for the file relative to the
package’s top-level directory.

The script property can only occur in the body ofdh component command, and only one script property per
body is allowed.

Example

cdl_component CYGPKG_UITRON_TASKS {
display "Tasks"
flavor none
description "

UITRON Tasks are the basic blocks of multi-tasking

in the ulTRON world; they are threads or lightweight
processes, sharing the address space and the CPU.
They communicate using the primitives outlined above.
Each has a stack, an entry point (a C or C++ function),
and (where appropriate) a scheduling priority."

script tasks.cdl

See Also

Commandtdl_component , and propertyparent

159



script

160



Chapter 6. Templates, Targets and Other Topics

Templates

This section is still under construction.

Targets

This section is still under construction.

161



Chapter 6. Templates, Targets and Other Topics

162



	The eCos Component Writer's Guide
	Table of Contents
	Chapter 1. Overview
	Terminology
	Component Framework
	Configuration Option
	Component
	Package
	Configuration
	Target
	Template
	Properties
	Consequences
	Constraints
	Conflicts
	CDL
	Component Repository

	Why Configurability?
	Approaches to Configurability
	Degrees of Configurability
	Warnings

	Chapter 2. Package Organization
	Packages and the Component Repository
	Package Versioning
	Package Contents and Layout
	Outline of the Build Process
	Configurable Source Code
	Compiler Flag Dependencies
	Package Interfaces and Implementations
	Source Code and Configuration Options

	Exported Header Files
	Configurable Functionality
	Nested #include's
	Including Configuration Headers

	Package Documentation
	Test Cases
	Hostside Support

	Making a Package Distribution
	The eCos package distribution file format
	Preparing eCos packages for distribution


	Chapter 3. The CDL Language
	Language Overview
	CDL Commands
	CDL Properties
	Informationproviding Properties
	The Configuration Hierarchy
	Valuerelated Properties
	Generating the Configuration Header Files
	Controlling what gets Built
	Miscellaneous Properties

	Option Naming Convention
	An Introduction to Tcl
	Values and Expressions
	Option Values
	Is the Option Loaded?
	Is the Option Active
	Is the Option Enabled? What is the Data?
	Some Examples

	Ordinary Expressions
	Functions
	Goal Expressions
	List Expressions

	Interfaces
	Updating the ecos.db database

	Chapter 4. The Build Process
	Build Tree Generation
	Configuration Header File Generation
	The system.h Header

	Building eCos
	Updating the Build Tree
	Exporting Public Header Files
	Compiling
	Generating the Libraries
	The extras.o file
	Compilers and Flags
	Custom Build Steps
	Startup Code
	The Linker Script

	Building Test Cases

	Chapter 5. CDL Language Specification
	cdloption
	Name
	Synopsis
	Description
	Example
	See Also

	cdlcomponent
	Name
	Synopsis
	Description
	Example
	See Also

	cdlpackage
	Name
	Synopsis
	Description
	Example
	See Also

	cdlinterface
	Name
	Synopsis
	Description
	Example
	See Also

	activeif
	Name
	Synopsis
	Description
	Example
	See Also

	calculated
	Name
	Synopsis
	Description
	Example
	See Also

	compile
	Name
	Synopsis
	Description
	Example
	See Also

	defaultvalue
	Name
	Synopsis
	Description
	Example
	See Also

	define
	Name
	Synopsis
	Description
	Example
	See Also

	defineformat
	Name
	Synopsis
	Description
	Example
	See Also

	defineheader
	Name
	Synopsis
	Description
	Example
	See Also

	defineproc
	Name
	Synopsis
	Description
	Example
	See Also

	description
	Name
	Synopsis
	Description
	Example
	See Also

	display
	Name
	Synopsis
	Description
	Example
	See Also

	doc
	Name
	Synopsis
	Description
	Example
	See Also

	flavor
	Name
	Synopsis
	Description
	Example
	See Also

	hardware
	Name
	Synopsis
	Description
	Example
	See Also

	ifdefine
	Name
	Synopsis
	Description
	Example
	See Also

	implements
	Name
	Synopsis
	Description
	Example
	See Also

	includedir
	Name
	Synopsis
	Description
	Example
	See Also

	includefiles
	Name
	Synopsis
	Description
	Example
	See Also

	legalvalues
	Name
	Synopsis
	Description
	Example
	See Also

	library
	Name
	Synopsis
	Description
	Example
	See Also

	make
	Name
	Synopsis
	Description
	Example
	See Also

	makeobject
	Name
	Synopsis
	Description
	Example
	See Also

	nodefine
	Name
	Synopsis
	Description
	Example
	See Also

	parent
	Name
	Synopsis
	Description
	Example
	See Also

	requires
	Name
	Synopsis
	Description
	Example
	See Also

	script
	Name
	Synopsis
	Description
	Example
	See Also


	Chapter 6. Templates, Targets and Other Topics
	Templates
	Targets


