Debugging with GDB

The GNU Source-Level Debugger

Ninth Edition, for GDB version 6.6

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on GDB to bug-gdb@gnu.org.)
Debugging with GDB
TEXinfo 2004-02-19.09

Copyright (©) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2006 Free Software Foundation, Inc.

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
ISBN 1-882114-77-9

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The Free Software Foundation’s Back-Cover Text is: “You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Table of Contents

Summary of GDB............ciiiiiiiiinnnn., 1
Free software 1
Free Software Needs Free Documentation 1
Contributors 10 GDB. ...ttt 3

1 A Sample GDB Session...................... 7

2 Getting Inand Outof GDB................ 11
2.1 Invoking GDBoo 11

2.1.1 Choosing files 12
2.1.2 Choosing modesouiiiiniiiiii ., 13
2.1.3 What ¢DB does during startup 15
2.2 QUItHNG GDB .ottt 16
2.3 Shell commands. i 16
2.4 Logging output 17

3 GDBCommands...........oovviiiinnnnnnn. 19
3.1 Command Syntaxueeineiin e 19
3.2 Command completionoiiiieiiiineniinaa.. 19
3.3 Getting help ... 21

4 Running Programs Under GDB............. 25
4.1 Compiling for debugging i 25
4.2 Starting your programeeuumeeiunneennnneennn.. 26
4.3 Your program’s argumentsoeiiai 27
4.4 Your program’s environment L. 28
4.5 Your program’s working directory 29
4.6 Your program’s input and output.............. 29
4.7 Debugging an already-running process 30
4.8 Killing the child process 31
4.9 Debugging programs with multiple threads................... 31
4.10 Debugging programs with multiple processes 33
4.11 Setting a bookmark to return to later 35

4.11.1 A non-obvious benefit of using checkpoints.............. 36

5 Stopping and Continuing.................. 37

5.1 Breakpoints, watchpoints, and catchpoints 37
5.1.1 Setting breakpoints 38
5.1.2 Setting watchpoints......... 42
5.1.3 Setting catchpoints 44

5.1.4 Deleting breakpoints 45

ii

Debugging with GDB

5.1.5 Disabling breakpoints 46
5.1.6 Break conditions........... 47
5.1.7 Breakpoint command lists................ 48
5.1.8 Breakpoint menus 49
5.1.9 “Cannot insert breakpoints” 50
5.1.10 “Breakpoint address adjusted...” 50
5.2 Continuing and stepping............oooiiiiiiiiiiiii... 51
5.3 Signals 54
5.4 Stopping and starting multi-thread programs................. 56
Examining the Stack...................... 59
6.1 Stack frames....... ... 59
6.2 Backtraces........ ... 60
6.3 Selecting a frame......... 62
6.4 Information about a frame 63
Examining Source Files 65
7.1 Printing source lines. i 65
7.2 Editing source files ... 66
7.2.1 Choosing your editor.......... ... 67
7.3 Searching source files 67
7.4 Specifying source directories.............. 67
7.5 Source and machine code 70
Examining Data.......................... 73
8.1 EXPIessionsttt 73
8.2 Program variables.......... 74
8.3 Artificial arrays ... 75
8.4 Output formats 76
8.5 Examining memory.......... ... 7
8.6 Automatic display 79
8.7 Print settings 80
8.8 Value history 85
8.9 Convenience variables 86
8.10 Registers ... 87
8.11 Floating point hardware 89
8.12 Vector Unit..........o 89
8.13 Operating system auxiliary information..................... 89
8.14 Memory region attributes............. L 90
8.14.1 Attributes.o 91
8.14.1.1 Memory Access Mode 91
8.14.1.2 Memory Access SIZ€vuueeiiineiinnnen.. 91
8.14.1.3 Data Cache......... i 91

8.15 Copy between memory and afile........................... 92
8.16 How to Produce a Core File from Your Program............. 92
8.17 Character Setst 93

8.18 Caching Data of Remote Targets 96

9 C Preprocessor Macros 97

10 Tracepointscccun.... 101
10.1 Commands to Set Tracepoints............................. 101
10.1.1 Create and Delete Tracepoints........................ 101
10.1.2 Enable and Disable Tracepoints....................... 102
10.1.3 Tracepoint Passcounts 102
10.1.4 Tracepoint Action Lists 103
10.1.5 Listing Tracepoints oo, 104
10.1.6 Starting and Stopping Trace Experiment 104
10.2 Using the collected data 105
1021 tfind m ..o 105
10.2.2 tdump.o 107
10.2.3 save-tracepoints filename 108
10.3 Convenience Variables for Tracepoints 108

11 Debugging Programs That Use Overlays

....................................... 109

11.1 How Overlays Work 109
11.2 Overlay Commands ...t .. 110
11.3 Automatic Overlay Debugging 112
11.4 Overlay Sample Program 113
12 Using GDB with Different Languages..... 115
12.1 Switching between source languages 115
12.1.1 List of filename extensions and languages.............. 115
12.1.2 Setting the working language 116
12.1.3 Having GDB infer the source language 116
12.2 Displaying the language 116
12.3 Type and range checking 117
12.3.1 An overview of type checking 117
12.3.2 An overview of range checking........................ 118
12.4 Supported languages ... 119
1241 Cand CH+ .o 119
12.4.1.1 Cand C++operators.............ovuiivei.... 120
12.4.1.2 Cand C++ constants, 121
12.4.1.3 CH+ exXpressionsoveeene e 122
12.4.1.4 Cand C++defaults 123
12.4.1.5 C and C++ type and range checks 123
12416 cpBand C ... 123
12.4.1.7 ¢DB features for C++ 124
12.4.2 Objective-Co 125
12.4.2.1 Method Names in Commands 125
12.4.2.2 The Print Command With Objective-C........... 126
12.4.3 Fortran 126
12.4.3.1 Fortran operators and expressions................ 126

12.4.3.2 Fortran Defaults i .. 126

iv Debugging with GDB

12.4.3.3 Special Fortran commands....................... 126

12.4.4 Pascalo 127
1245 Modula-2 127
12.4.5.1 Operatorsooneei i 127

12.4.5.2 Built-in functions and procedures................. 128

12.4.5.3 Constantsoeerii 129

12.4.5.4 Modula-2 Types ... 130

12.4.5.5 Modula-2 defaults............. 132

12.4.5.6 Deviations from standard Modula-2 132

12.4.5.7 Modula-2 type and range checks.................. 132

12.4.5.8 The scope operators :: and 132

12.4.5.9 ¢pBand Modula-2........... 133

1246 Ada ... 133
12.4.6.1 Introduction........... 133

12.4.6.2 Omissions from Ada............................. 134

12.4.6.3 Additionsto Ada 135

12.4.6.4 Stopping at the Very Beginning 136

12.4.6.5 Known Peculiarities of Ada Mode 136

12.5 Unsupported languagesccooiiiiiin .. 137
13 Examining the Symbol Table............ 139
14 Altering Execution 145
14.1 Assignment to variables.............. 145
14.2 Continuing at a different address 146
14.3 Giving your program a signal 147
14.4 Returning from a function 147
14.5 Calling program functions 148
14.6 Patching programs ...t 148
15 GDBFiles........oviiiiiiiiiiii ... 151
15.1 Commands to specify files, 151
15.2 Debugging Information in Separate Files................... 157
15.3 Errors reading symbol files............. 159
16 Specifying a Debugging Target 161
16.1 Active targets.ot 161
16.2 Commands for managing targets 162
16.3 Choosing target byte order................................ 164

16.4 Remote debugging 164

17 Debugging remote programs 165

17.1 Connecting to a remote target............................. 165
17.2 Using the gdbserver program...................oouuioo... 166
17.3 Remote configuration............. 168
17.4 Implementing a remote stub 170
17.4.1 What the stub can do for you 171
17.4.2 What you must do for the stub....................... 172
17.4.3 Putting it all together..........., 173
18 Configuration-Specific Information....... 175
181 NatiVe. ..ottt e 175
18. 1.1 HP-UX .. 175
18.1.2 BSD libkvm Interface............ 175
18.1.3 SVRA process information............................ 175
18.1.4 Features for Debugging DJGPP Programs 177
18.1.5 Features for Debugging MS Windows PE executables... 179
18.1.5.1 Support for DLLs without debugging symbols 180
18.1.5.2 DLL name prefixes.............c.oiiiiiiin... 180
18.1.5.3 Working with minimal symbols................... 181
18.1.6 Commands specific to GNU Hurd systems.............. 182
18.1.7 QNX Neutrinooooiiiinn 184
18.2 Embedded Operating Systems............................. 184
18.2.1 Using ¢DB with VxWorks 184
18.2.1.1 Connecting to VxWorks 185
18.2.1.2 VxWorks download........................... ... 185
18.2.1.3 Running tasks 186

18.3 Embedded Processorsiiiiiii 186
18.3.1 ARM ... 186
18.3.2 Renesas H8/300 188
18.3.2.1 Connecting to Renesas boards.................... 188
18.3.2.2 Using the E7000 in-circuit emulator 190
18.3.2.3 Special GDB commands for Renesas micros........ 191
18.3.3 H8/B500 ..t 191
18.3.4 Renesas M32R/D and M32R/SDI..................... 191
18.3.5 MO8K ..ttt 192
18.3.6 MIPS Embedded 192
18.3.7 OpenRISC 1000o 194
18.3.8 PowerPC 196
18.3.9 HP PA Embedded 197
18.3.10 Renesas SH 197
18.3.11 Tsqware Sparclet i 197
18.3.11.1 Setting filetodebug................. 197
18.3.11.2 Connecting to Sparclet 198
18.3.11.3 Sparclet download 198
18.3.11.4 Running and debugging 198
18.3.12 Fujitsu Sparclite......... 198
18.3.13 Tandem ST2000t 199

18.3.14 Zilog Z8O0Ot 199

vi Debugging with GDB

18.3.15 Atmel AVR 200
18.3.16 CRIS ... 200
18.3.17 Renesas Super-H 200
18.3.18 Windows CE....... 200

18.4 Architectures 201
18.4.1 x86 Architecture-specific issues........................ 201
18.4.2 A20K . .. o 201
18.4.3 AIDRA + oot 201
18.4.4 MIPS . .o 201
18.4.5 HPPA ... 203

19 Controlling GDBcvvvvnnn... 205
19.1 Promptb.o 205
19.2 Command editing 205
19.3 Command history 205
19.4 SCreen SIZe.t 207
19.5 Numbers ... 208
19.6 Configuring the current ABL.............................. 208
19.7 Optional warnings and messages.ooevveeeeeo... 209
19.8 Optional messages about internal happenings............... 211
20 Canned Sequences of Commands 213
20.1 User-defined commands............... 213
20.2 User-defined command hooks 214
20.3 Command files............ 215
20.4 Commands for controlled output 216
21 Command Interpreters.................. 219
22 aDB Text User Interface................. 221
221 TUIL OVEIVIEW ..ottt e e e e e e 221
22.2 TUI Key Bindings. ... 222
22.3 TUI Single Key Mode ..., 223
22.4 TUI specific commands 224
22.5 TUI configuration variables 225

23 Using ¢DB under ¢GNU Emacs 227

vii

24 The ¢pB/MI Interface 229
Function and Purpose 229
Notation and Terminology 229
24.3 GDB/MI Command Syntaxcoovuieineonn... 229

24.3.1 GDB/MI Input Syntax.............cooiiiiiiii... 229

24.3.2 GDB/MI Output Syntax 230
24.4 ¢pB/MI Compatibility with CLI........................... 232
24.5 @pB/MI Development and Front Ends 232
24.6 GDB/MI Output Records............ 232

24.6.1 GDB/MI Result Records 232

24.6.2 GDB/MI Stream Records 233

24.6.3 GDB/MI Out-of-band Records......................... 233
24.7 Simple Examples of GDB/MI Interaction.................... 234
24.8 GbpB/MI Command Description Format 235
24.9 GDB/MI Breakpoint Commands 235
24.10 GDpB/MI Program Context 243
24.11 ¢pB/MI Thread Commands.............................. 245
24.12 @pB/MI Program Execution.............................. 247
24.13 GpB/MI Stack Manipulation Commands 252
24.14 GDB/MI Variable Objects 257
24.15 GpB/MI Data Manipulation.............................. 261
24.16 GpB/MI Tracepoint Commands. 267
24.17 GpB/MI Symbol Query Commands 267
24.18 &pB/MI File Commands 270
24.19 GpB/MI Target Manipulation Commands 273
24.20 Miscellaneous GDB/MI Commands........................ 277

25 GDB Annotations, 281
25.1 What is an Annotation? i 281
25.2 Annotation for GDB Input 282
253 BITOTS.o 282
25.4 Invalidation Notices......... 283
25.5 Running the Program 283
25.6 Displaying Sourcet 284

26 Reporting BugsinGDB.................. 285
26.1 Have you found abug?.......... 285

26.2 How toreport bugs.......... ... 285

viii Debugging with GDB

27 Command Line Editing 289
27.1 Introduction to Line Editing 289
27.2 Readline Interaction............. 289

27.2.1 Readline Bare Essentials 289
27.2.2 Readline Movement Commands....................... 290
27.2.3 Readline Killing Commands 290
27.2.4 Readline Arguments 291
27.2.5 Searching for Commands in the History 291
27.3 ReadlineInit File i 292
27.3.1 Readline Init File Syntax............................. 292
27.3.2 Conditional Init Constructs 297
27.3.3 SampleInit File.......... 298
27.4 Bindable Readline Commands............................. 301
27.4.1 Commands For Moving 301
27.4.2 Commands For Manipulating The History 301
27.4.3 Commands For Changing Text 303
27.4.4 Killing And Yanking 304
27.4.5 Specifying Numeric Arguments 305
27.4.6 Letting Readline Type For You....................... 305
27.4.7 Keyboard Macros.oouiniiiii i 305
27.4.8 Some Miscellaneous Commands....................... 306
275 ReadlineviMode i 307

28 Using History Interactively.............. 309

28.1 History Expansion 309
28.1.1 Event Designators.............. 309
28.1.2 Word Designators 309
28.1.3 Modifiers 310

Appendix A Formatting Documentation.... 313

Appendix B Installing GDB 315
B.1 Requirements for building GDB............................. 315
B.2 Invoking the GDB configure script 315
B.3 Compiling GDB in another directory........................ 316
B.4 Specifying names for hosts and targets 317
B.5 configureoptions.............. i 318

Appendix C Maintenance Commands...... 321

Appendix D GDB Remote Serial Protocol ... 327

Dol OVEIVIEW ..ot 327
D.2 Packetso 328
D.3 Stop Reply Packets 335
D.4 General Query Packets................ 336
D.5 Register Packet Format 343
D.6 Tracepoint Packets 343
D.7 Interrupts...... ..o 345
D.8 Exampleso 346
D.9 File-I/O remote protocol extension......................... 346
D.9.1 File-I/O Overview. 346
D.9.2 Protocol basics...........oviii 347
D.9.3 The F request packet 348
D.94 TheFreply packet i, 348
D.9.5 The ‘Ctrl-C’ mesSageovvuneiiunneeaneeanan 348
D.9.6 Console I/Oo 349
D.9.7 List of supported calls............. 349

103 015 8 349

ClOSE .« ot 350

TeAd . oot 351

WIIEE . oo 351

ISeek . . 351
TEIAIIIC .« . e v ee v et e e e e e e e e e e e e e 352
unlink 352
stat/fstat 353
gettimeofday 353
ISALEY .« oo 354
SYSUEIIL . ..o 354

D.9.8 Protocol specific representation of datatypes 354
Integral datatypes........... . .. 355
Pointer values. 355
Memory transfer 355
struct stat 355
struct timeval 356

D.9.9 Constantsooiiuim 356
Open flags 356
mode_t values. 356
Errnovalues......... ... 357
Lseek flags. . ..o 357
Limits . ..o 357
D.9.10 File-I/O Examples ... 357

D.10 Memory map format............ 358

ix

X Debugging with GDB
Appendix E The GDB Agent Expression

Mechanism............................. 361
E.1 General Bytecode Design................... 361
E.2 Bytecode Descriptions. o i 363
E.3 Using Agent Expressionscooiiiiiin... 367
E.4 Varying Target Capabilities.............. 368
E.5 Tracing on Symmetrix...........ooiniiiiii ... 368
E.6 Rationale 370

Appendix F GNU GENERAL PUBLIC

LICENSE.........cciiiiiiiiiiiiiinnn.. 373
Preamble. 373
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 374
How to Apply These Terms to Your New Programs............... 378

Appendix G GNU Free Documentation License
....................................... 379
G.1 ADDENDUM: How to use this License for your documents .. 385

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:

e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++. For more information, see
Section 12.4 [Supported languages|, page 119. For more information, see Section 12.4.1 [C
and C++|, page 119.

Support for Modula-2 is partial. For information on Modula-2, see Section 12.4.5
[Modula-2], page 127.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

GDB can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free software

GDB is free software, protected by the GNU General Public License (GPL). The GPL gives
you the freedom to copy or adapt a licensed program—but every person getting a copy also
gets with it the freedom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical software companies use
copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve
these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory
texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

2 Debugging with GDB

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with
restrictive terms—mno copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval-—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up
to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you're not sure whether a proposed
license is free, write to 1licensing@gnu.org.

mailto:licensing@gnu.org

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid
for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs. Many
others have contributed to its development. This section attempts to credit major contrib-
utors. One of the virtues of free software is that everyone is free to contribute to it; with
regret, we cannot actually acknowledge everyone here. The file ‘Changelog’ in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0,
5.3, 5.2, 5.1 and 5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs
(release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman
and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1,
4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the ¢NU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats; BFD was
a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the IST Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki
Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.

4 Debugging with GDB

Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support. Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K GNU/Linux support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GpB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the 1960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for H8/300,
H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vrdxxx, and VrHxxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R /D proces-
Sors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, lan Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the Text User Interface (nee Terminal User
Interface): Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann, Satish
Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-specific
information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB fulltime include Mark Alexander, Jim

Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, lan Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Eigler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for Cygnus Solu-
tions, implemented the original GDB/MI interface.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

Andrew Cagney designed GDB’s architecture vector. Many people including Andrew
Cagney, Stephane Carrez, Randolph Chung, Nick Duffek, Richard Henderson, Mark Ket-
tenis, Grace Sainsbury, Kei Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab,
Jason Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped with the
migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented GDB’s unwinder framework,
this consisting of a fresh new design featuring frame IDs, independent frame sniffers, and
the sentinel frame. Mark Kettenis implemented the DWARF 2 unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and trad unwinders.
The architecture specific changes, each involving a complete rewrite of the architecture’s
frame code, were carried out by Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew
Cagney, Stephane Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei Sakamoto, Yoshinori
Sato, Michael Snyder, Corinna Vinschen, and Ulrich Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from Tensilica, Inc.
contributed support for Xtensa processors. Others who have worked on the Xtensa port of
GDB in the past include Steve Tjiang, John Newlin, and Scott Foehner.

Debugging with GDB

Chapter 1: A Sample GDB Session 7

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. However, a handful of
commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4

$./m4
define(f0o0,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

Ctrl-d

m4: End of input: O: fatal error: EOF in string
Let us use GDB to try to see what is going on.

$ gdb m4

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB 6.6, Copyright 1999 Free Software Foundation, Inc...

(gdb)
GDB reads only enough symbol data to know where to find the rest when needed; as a result,
the first prompt comes up very quickly. We now tell GDB to use a narrower display width
than usual, so that examples fit in this manual.

(gdb) set width 70
We need to see how the m4 built-in changequote works. Having looked at the source, we
know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

(gdb) break m4_changequote

Breakpoint 1 at 0x62f4: file builtin.c, line 879.
Using the run command, we start m4 running under GDB control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

8 Debugging with GDB

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/mé
define(f00,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, mé4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc(TOKEN_DATA_TEXT (argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n

882 set_quotes((argc >= 2) 7 TOKEN_DATA_TEXT(argv([1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s
(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s

set_quotes (1gq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote !'= def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.

(gdb) bt

#0 set_quotes (1q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s

0x3bbc 532 if (rquote != def_rquote)

(gdb) s

0x3b80 535 lquote = (1q == nil || *1q == ’\0’) 7 \

def_lquote : xstrdup(lq);

(gdb) n

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup(rq);

(gdb) n

538 len_lquote = strlen(rquote);

Chapter 1: A Sample GDB Session 9

The last line displayed looks a little odd; we can examine the variables 1quote and rquote
to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote

$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote

$2 = 0x35d50 "<UNQUOTE>"
lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the 1 (1ist) command.

(gdb) 1

533 xfree(rquote) ;

534

535 lquote = (1g == nil || *1q == ’\0’) 7 def_lquote\
: xstrdup (1q);

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n

539 len_rquote = strlen(lquote);

(gdb) n

540 }

(gdb) p len_lquote

$3 =9

(gdb) p len_rquote

$4 =7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of 1quote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len_lquote=strlen(lquote)

$6 =7
(gdb) p len_rquote=strlen(rquote)
$6 =9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the ¢ (continue) command, and then try the example
that caused trouble initially:

(gdb) ¢
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

10 Debugging with GDB

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

Ctrl-d

Program exited normally.
The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished execut-
ing. We can end our GDB session with the GDB quit command.

(gdb) quit

Chapter 2: Getting In and Out of GDB 11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:
e type ‘gdb’ to start GDB.
e type quit or Ctrl-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program
You can also start with both an executable program and a core file specified:
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

gdb program 1234
would attach GDB to process 1234 (unless you also have a file named ‘1234’; GDB does check
for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using ——args. This option stops option processing.

gdb --args gcc -02 -c foo.c

This will cause gdb to debug gce, and to set gcc’s command-line arguments (see Sec-
tion 4.3 [Arguments|, page 27) to ‘-02 -c foo.c’.

You can run gdb without printing the front material, which describes GDB’s
non-warranty, by specifying -silent:

gdb -silent
You can further control how GDB starts up by using command-line options. GDB itself can
remind you of the options available.
Type

gdb -help
to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘-se’ and ‘-c¢’ (or ‘-p’ options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘=c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, GDB will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent GDB from treating it as a pid by prefixing it with ./, e.g. ©./12345’.

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. GDB
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘-=’ rather
than ‘-’, though we illustrate the more usual convention.)

—symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

—-core file
-c file Use file file as a core dump to examine.

—-c number

-pid number

-p number
Connect to process ID number, as with the attach command. If there is no
such process, GDB will attempt to open a core file named number.

-command file
-x file Execute GDB commands from file file. See Section 20.3 [Command files],
page 215.

—eval-command command
—-ex command
Execute a single GDB command.

This option may be used multiple times to call multiple commands. It may also
be interleaved with ‘~command’ as required.
gdb -ex ’target sim’ -ex ’load’ \
-x setbreakpoints -ex ’run’ a.out
—-directory directory
-d directory
Add directory to the path to search for source and script files.

Chapter 2: Getting In and Out of GDB 13

-r
-readnow

Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

2.1.2 Choosing modes

You can run GDB in various alternative modes—for example, in batch mode or quiet mode.

-nx
-n

-quiet
-silent
-q

-batch

Do not execute commands found in any initialization files. Normally, GDB exe-
cutes the commands in these files after all the command options and arguments
have been processed. See Section 20.3 [Command files], page 215.

“Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-batch-silent

Run in batch mode exactly like ‘-batch’, but totally silently. All GDB output to
stdout is prevented (stderr is unaffected). This is much quieter than ‘-silent’
and would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via GDB, as opposed to writing directly
to stdout, will also be made silent.

-return-child-result

The return code from GDB will be the return code from the child process (the
process being debugged), with the following exceptions:

e GDB exits abnormally. E.g., due to an incorrect argument or an internal
error. In this case the exit code is the same as it would have been without
‘-return-child-result’.

e The user quits with an explicit value. E.g., ‘quit 1’.

e The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.

14 Debugging with GDB

This option is useful in conjunction with ‘~batch’ or ‘-batch-silent’, when
GDB is being used as a remote program loader or simulator interface.

-nowindows

-nw “No windows”. If GDB comes with a graphical user interface (GUI) built in,
then this option tells GDB to only use the command-line interface. If no GUI is
available, this option has no effect.

-windows
-w If ¢DB includes a GUI, then this option requires it to be used if possible.

-cd directory
Run GDB using directory as its working directory, instead of the current direc-
tory.

—-fullname

-f GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

-epoch The Epoch Emacs-GDB interface sets this option when it runs GDB as a subpro-
cess. It tells GDB to modify its print routines so as to allow Epoch to display
values of expressions in a separate window.

—annotate level

This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 25 [Annotations], page 281). The annota-
tion level controls how much information GDB prints together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
3 is the maximum annotation suitable for programs that control GDB, and level
2 has been deprecated.

The annotation mechanism has largely been superseded by GDB/MI (see Chap-
ter 24 [GDB/MI], page 229).

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps
-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

-1 timeout
Set the timeout (in seconds) of any communication used by GDB for remote
debugging.

Chapter 2: Getting In and Out of GDB 15

-tty device
-t device
Run using device for your program’s standard input and output.

-tui Activate the Text User Interface when starting. The Text User Interface man-
ages several text windows on the terminal, showing source, assembly, regis-
ters and GDB command outputs (see Chapter 22 [GDB Text User Interface],
page 221). Alternatively, the Text User Interface can be enabled by invoking
the program ‘gdbtui’. Do not use this option if you run GDB from Emacs (see
Chapter 23 [Using GDB under GNU Emacs], page 227).

-interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB using
it as a back end. See Chapter 21 [Command Interpreters], page 219.

‘~-interpreter=mi’ (or ‘--interpreter=mi2’) causes GDB to use the GDB/MI
interface (see Chapter 24 [The GDB/MI Interface], page 229) included since GDB
version 6.0. The previous GDB/MI interface, included in GDB version 5.3 and
selected with ‘--interpreter=mil’, is deprecated. Earlier GDB/MI interfaces
are no longer supported.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 14.6 [Patching],
page 148).

-statistics

This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb, and
exit.

2.1.3 What ¢DB does during startup
Here’s the description of what GDB does during session startup:
1. Sets up the command interpreter as specified by the command line (see Section 2.1.2
[Mode Options], page 13).
2. Reads the init file (if any) in your home directory! and executes all the commands in
that file.
3. Processes command line options and operands.

4. Reads and executes the commands from init file (if any) in the current working direc-
tory. This is only done if the current directory is different from your home directory.
Thus, you can have more than one init file, one generic in your home directory, and
another, specific to the program you are debugging, in the directory where you invoke
GDB.

5. Reads command files specified by the ‘-x’ option. See Section 20.3 [Command Files],
page 215, for more details about GDB command files.

1 On DOS /Windows systems, the home directory is the one pointed to by the HOME environment variable.

16 Debugging with GDB

6. Reads the command history recorded in the history file. See Section 19.3 [Command
History], page 205, for more details about the command history and the files where
GDB records it.

Init files use the same syntax as command files (see Section 20.3 [Command Files],
page 215) and are processed by GDB in the same way. The init file in your home directory
can set options (such as ‘set complaints’) that affect subsequent processing of command
line options and operands. Init files are not executed if you use the ‘-nx’ option (see
Section 2.1.2 [Choosing modes], page 13).

The GDB init files are normally called ‘.gdbinit’. On some configurations of GDB, the
init file is known by a different name (these are typically environments where a specialized
form of GDB may need to coexist with other forms, hence a different name for the specialized
version’s init file). These are the environments with special init file names:

e The DJGPP port of GDB uses the name ‘gdb.ini’, due to the limitations of file names
imposed by DOS filesystems. The Windows ports of GDB use the standard name, but
if they find a ‘gdb.ini’ file, they warn you about that and suggest to rename the file
to the standard name.

e VxWorks (Wind River Systems real-time OS): ‘.vxgdbinit’

e OS68K (Enea Data Systems real-time OS): ‘. 0s68gdbinit’

e ES-1800 (Ericsson Telecom AB M68000 emulator): ‘.esgdbinit’
e CISCO 68k: ‘.cisco-gdbinit’

2.2 Quitting GDB

quit [expression]|

q To exit GDB, use the quit command (abbreviated q), or type an end-of-file
character (usually Ctrl-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often Ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with the detach command (see Section 4.7 [Debugging an already-running process|,
page 30).

2.3 Shell commands

If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a standard shell to execute command string. If it exists, the environment
variable SHELL determines which shell to run. Otherwise GDB uses the default
shell (‘/bin/sh’ on Unix systems, ‘COMMAND.COM’ on MS-DOS, etc.).

Chapter 2: Getting In and Out of GDB 17

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

2.4 Logging output

You may want to save the output of GDB commands to a file. There are several commands
to control GDB’s logging.

set logging on
Enable logging.

set logging off
Disable logging.

set logging file file
Change the name of the current logfile. The default logfile is ‘gdb.txt’ .

set logging overwrite [on|off]
By default, DB will append to the logfile. Set overwrite if you want set
logging on to overwrite the logfile instead.

set logging redirect [on|off]
By default, GbB output will go to both the terminal and the logfile. Set
redirect if you want output to go only to the log file.

show logging
Show the current values of the logging settings.

18

Debugging with GDB

Chapter 3: GbB Commands 19

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain GDB commands by typing just
RET). You can also use the key to get GDB to fill out the rest of a word in a command
(or to show you the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends on
the command name. For example, the command step accepts an argument which is the
number of times to step, as in ‘step 5. You can also use the step command with no
arguments. Some commands do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just (RET)) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.
User-defined commands can disable this feature; see Section 20.1 [Define], page 213.

The 1ist and x commands, when you repeat them with (RET), construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 19.4 [Screen size], page 207). Since it is easy to press
one too many in this situation, GDB disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 20.3 [Command files|, page 215).

The Ctrl-o binding is useful for repeating a complex sequence of commands. This
command accepts the current line, like (RET), and then fetches the next line relative to the
current line from the history for editing.

3.2 Command completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your program.

Press the key whenever you want GDB to fill out the rest of a word. If there is only
one possibility, GDB fills in the word, and waits for you to finish the command (or press
to enter it). For example, if you type

(gdb) info bre
GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:

20 Debugging with GDB

(gdb) info breakpoints

You can either press at this point, to run the info breakpoints command, or
backspace and enter something else, if ‘breakpoints’ does not look like the command you
expected. (If you were sure you wanted info breakpoints in the first place, you might as
well just type immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you press (TAB), GDB sounds
a bell. You can either supply more characters and try again, or just press a second
time; ¢DB displays all the possible completions for that word. For example, you might want
to set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b
make_(TAB) GDB just sounds the bell. Typing again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_
GDB sounds bell; press again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing twice. M-? means 7. You can type this either by holding down
a key designated as the shift on your keyboard (if there is one) while typing 7, or as
followed by ?.

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that ¢DB normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the same
function, distinguished by argument type). For example, when you want to set a breakpoint
you may need to distinguish whether you mean the version of name that takes an int
parameter, name (int), or the version that takes a float parameter, name (float). To use
the word-completion facilities in this situation, type a single quote > at the beginning of the
function name. This alerts GDB that it may need to consider more information than usual
when you press or M-7 to request word completion:

(gdb) b ’bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub

GDB alters your input line to the following, and rings a bell:
(gdb) b ’bubble(

Chapter 3: ¢bB Commands 21

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started
typing the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 12.4.1.3 [C++ expressions],
page 122. You can use the command set overload-resolution off to disable overload
resolution; see Section 12.4.1.7 [GDB features for C++|, page 124.

3.3 Getting help

You can always ask GDB itself for information on its commands, using the command help.

help
h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without

stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
(gdb)

help class
Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for

the class status:

(gdb) help status
Status inquiries.

List of commands:

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things

about the debugger

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
(gdb)

22 Debugging with GDB

help command
With a command name as help argument, GDB displays a short paragraph on
how to use that command.

apropos args
The apropos command searches through all of the GDB commands, and their
documentation, for the regular expression specified in args. It prints out all
matches found. For example:

apropos reload

results in:

set symbol-reloading -- Set dynamic symbol table reloading
multiple times in one run

show symbol-reloading -- Show dynamic symbol table reloading
multiple times in one run

complete args
The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:
if
ignore
info
inspect

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the
state of your program, or the state of GDB itself. Each command supports many topics of
inquiry; this manual introduces each of them in the appropriate context. The listings under
info and under show in the Index point to all the sub-commands. See [Index], page 387.

info This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

set You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

Chapter 3: GbB Commands 23

show version

Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB in
GNU/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
info copying
Display information about permission for copying GDB.

show warranty

info warranty
Display the aNU “NO WARRANTY?” statement, or a warranty, if your version
of GDB comes with one.

24

Debugging with GDB

Chapter 4: Running Programs Under GDB 25

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information when
you compile it.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or kill a child process.

4.1 Compiling for debugging

In order to debug a program effectively, you need to generate debugging information when
you compile it. This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Programs that are to be shipped to your customers are compiled with optimizations,
using the ‘-0’ compiler option. However, many compilers are unable to handle the ‘-g’ and
‘-0’ options together. Using those compilers, you cannot generate optimized executables
containing debugging information.

Gce, the GNU C/C++ compiler, supports ‘-g’ with or without ‘-0’ making it possible
to debug optimized code. We recommend that you always use ‘-g’ whenever you compile
a program. You may think your program is correct, but there is no sense in pushing your
luck.

When you debug a program compiled with ‘-g -0’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too surprised
when the execution path does not exactly match your source file! An extreme example: if
you define a variable, but never use it, GDB never sees that variable—because the compiler
optimizes it out of existence.

Some things do not work as well with ‘~g -0’ as with just ‘~g’, particularly on machines
with instruction scheduling. If in doubt, recompile with ‘-g’ alone, and if this fixes the
problem, please report it to us as a bug (including a test case!). See Section 8.2 [Variables],
page 74, for more information about debugging optimized code.

Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your GNU C compiler has this option,
do not use it.

GDB knows about preprocessor macros and can show you their expansion (see Chapter 9
[Macros], page 97). Most compilers do not include information about preprocessor macros
in the debugging information if you specify the ‘-g’ flag alone, because this information is
rather large. Version 3.1 and later of Gcc, the GNU C compiler, provides macro information
if you specify the options ‘-gdwarf-2’ and ‘-g3’; the former option requests debugging
information in the Dwarf 2 format, and the latter requests “extra information”. In the
future, we hope to find more compact ways to represent macro information, so that it can
be included with ‘-g’ alone.

26 Debugging with GDB

4.2 Starting your program

run

r Use the run command to start your program under GDB. You must first specify
the program name (except on VxWorks) with an argument to GDB (see Chap-
ter 2 [Getting In and Out of GDB|, page 11), or by using the file or exec-file
command (see Section 15.1 [Commands to specify files], page 151).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In environments
without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.
Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. See Section 4.3
[Your program’s arguments|, page 27.

The environment.
Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your program’s
environment|, page 28.

The working directory.
Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See Section 4.5 [Your pro-
gram’s working directory|, page 29.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your program’s input and output], page 29.

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and continuing], page 37, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 8 [Examining Datal, page 73.

Chapter 4: Running Programs Under GDB 27

If the modification time of your symbol file has changed since the last time GDB read its
symbols, ¢DB discards its symbol table, and reads it again. When it does this, GDB tries to
retain your current breakpoints.

start The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main procedure is called. This depends on the languages used
to write your program. In C++, for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, insert breakpoints in your elaboration code before
running your program.

4.3 Your program’s arguments

The arguments to your program can be specified by the arguments of the run command.
They are passed to a shell, which expands wildcard characters and performs redirection of
I/0O, and thence to your program. Your SHELL environment variable (if it exists) specifies
what shell GDB uses. If you do not define SHELL, GDB uses the default shell (‘/bin/sh’ on
Unix).

On non-Unix systems, the program is usually invoked directly by GDB, which emulates
I/0 redirection via the appropriate system calls, and the wildcard characters are expanded
by the startup code of the program, not by the shell.

run with no arguments uses the same arguments used by the previous run, or those set
by the set args command.

set args Specify the arguments to be used the next time your program is run. If set
args has no arguments, run executes your program with no arguments. Once
you have run your program with arguments, using set args before the next
run is the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

28 Debugging with GDB

4.4 Your program’s environment

The environment consists of a set of environment variables and their values. Environment
variables conventionally record such things as your user name, your home directory, your
terminal type, and your search path for programs to run. Usually you set up environment
variables with the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified environment
without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path
for executables) that will be passed to your program. The value of PATH used
by G¢DB does not change. You may specify several directory names, separated
by whitespace or by a system-dependent separator character (‘:” on Unix, ;’
on MS-DOS and MS-Windows). If directory is already in the path, it is moved

to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working direc-
tory at the time GDB searches the path. If you use ‘.’ instead, it refers to the
directory where you executed the path command. GDB replaces ‘.’ in the di-
rectory argument (with the current path) before adding directory to the search

path.

show paths
Display the list of search paths for executables (the PATH environment variable).

show environment |[varname|
Print the value of environment variable varname to be given to your program
when it starts. If you do not supply varname, print the names and values of
all environment variables to be given to your program. You can abbreviate
environment as env.

set environment varname [=value]
Set environment variable varname to value. The value changes for your program
only, not for GDB itself. value may be any string; the values of environment
variables are just strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated, the variable is set to
a null value.

For example, this command:
set env USER = foo

tells the debugged program, when subsequently run, that its user is named
‘foo’. (The spaces around ‘=" are used for clarity here; they are not actually
required.)

unset environment varname
Remove variable varname from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

Warning: On Unix systems, GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL variable names a

Chapter 4: Running Programs Under GDB 29

shell that runs an initialization file—such as ‘. cshrc’ for C-shell, or ‘.bashrc’ for BASH—
any variables you set in that file affect your program. You may wish to move setting of
environment variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your program’s working directory

Each time you start your program with run, it inherits its working directory from the current
working directory of GDB. The GDB working directory is initially whatever it inherited from
its parent process (typically the shell), but you can specify a new working directory in GDB
with the cd command.

The ¢DB working directory also serves as a default for the commands that specify files
for GDB to operate on. See Section 15.1 [Commands to specify files|, page 151.

cd directory
Set the ¢DB working directory to directory.

pwd Print the GDB working directory.

It is generally impossible to find the current working directory of the process being
debugged (since a program can change its directory during its run). If you work on a system
where GDB is configured with the ‘/proc’ support, you can use the info proc command
(see Section 18.1.3 [SVR4 Process Information|, page 175) to find out the current working
directory of the debuggee.

4.6 Your program’s input and output

By default, the program you run under GDB does input and output to the same terminal
that GDB uses. GDB switches the terminal to its own terminal modes to interact with you,
but it records the terminal modes your program was using and switches back to them when
you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program
is using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example,

run > outfile
starts your program, diverting its output to the file ‘outfile’.

Another way to specify where your program should do input and output is with the
tty command. This command accepts a file name as argument, and causes this file to be
the default for future run commands. It also resets the controlling terminal for the child
process, for future run commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output
on the terminal ‘/dev/ttyb’ and have that as their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

30 Debugging with GDB

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal. tty is an
alias for set inferior-tty.

You can use the show inferior-tty command to tell GDB to display the name of the
terminal that will be used for future runs of your program.

set inferior-tty /dev/ttyb
Set the tty for the program being debugged to /dev/ttyb.

show inferior-tty
Show the current tty for the program being debugged.

4.7 Debugging an already-running process

attach process-id
This command attaches to a running process—one that was started outside
GDB. (info files shows your active targets.) The command takes as argument
a process ID. The usual way to find out the process-id of a Unix process is with
the ps utility, or with the ‘jobs -1’ shell command.

attach does not repeat if you press a second time after executing the
command.

To use attach, your program must be running in an environment which supports pro-
cesses; for example, attach does not work for programs on bare-board targets that lack an
operating system. You must also have permission to send the process a signal.

When you use attach, the debugger finds the program running in the process first by
looking in the current working directory, then (if the program is not found) by using the
source file search path (see Section 7.4 [Specifying source directories], page 67). You can
also use the file command to load the program. See Section 15.1 [Commands to Specify
Files|, page 151.

The first thing GDB does after arranging to debug the specified process is to stop it. You
can examine and modify an attached process with all the GDB commands that are ordinarily
available when you start processes with run. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process continue running, you
may use the continue command after attaching GDB to the process.

detach When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. Detaching the process continues its
execution. After the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach another process
or start one with run. detach does not repeat if you press again after
executing the command.

If you exit GDB or use the run command while you have an attached process, you kill
that process. By default, GDB asks for confirmation if you try to do either of these things;
you can control whether or not you need to confirm by using the set confirm command
(see Section 19.7 [Optional warnings and messages|, page 209).

Chapter 4: Running Programs Under GDB 31

4.8 Killing the child process
kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process.
GDB ignores any core dump file while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have
breakpoints set on it inside GDB. You can use the kill command in this situation to permit
running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running in a
process. In this case, when you next type run, GDB notices that the file has changed, and
reads the symbol table again (while trying to preserve your current breakpoint settings).

4.9 Debugging programs with multiple threads

In some operating systems, such as HP-UX and Solaris, a single program may have more
than one thread of execution. The precise semantics of threads differ from one operating
system to another, but in general the threads of a single program are akin to multiple
processes—except that they share one address space (that is, they can all examine and
modify the same variables). On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
e automatic notification of new threads
e ‘thread threadno’, a command to switch among threads
e ‘info threads’, a command to inquire about existing threads

e ‘thread apply [threadno] [all] args’, a command to apply a command to a list of
threads

e thread-specific breakpoints

Warning: These facilities are not yet available on every GDB configuration
where the operating system supports threads. If your GDB does not support
threads, these commands have no effect. For example, a system without thread
support shows no output from ‘info threads’, and always rejects the thread
command, like this:

(gdb) info threads

(gdb) thread 1

Thread ID 1 not known. Use the "info threads" command to

see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads while your program
runs—but whenever GDB takes control, one thread in particular is always the focus of
debugging. This thread is called the current thread. Debugging commands show program
information from the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systag]’. systag is a thread
identifier whose form varies depending on the particular system. For example, on LynxOS,
you might see

32 Debugging with GDB

[New process 35 thread 27]
when GDB notices a new thread. In contrast, on an SGI system, the systag is simply
something like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):
1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

On HP-UX systems:

For debugging purposes, GDB associates its own thread number—a small integer assigned
in thread-creation order—with each thread in your program.

Whenever GDB detects a new thread in your program, it displays both GDB’s thread
number and the target system’s identification for the thread with a message in the form
‘[New systag]’. systag is a thread identifier whose form varies depending on the particular
system. For example, on HP-UX, you see

[New thread 2 (system thread 26594)]

when GDB notices a new thread.
info threads

Display a summary of all threads currently in your program. GDB displays for
each thread (in this order):

1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)

3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads
* 3 system thread 26607 worker (wptr=0x7b09c318 "@") \

at quicksort.c:137
2 system thread 26606 0x7b0030d8 in __ksleep () \

from /usr/lib/libc.2
1 system thread 27905 0x7b003498 in _brk () \

Chapter 4: Running Programs Under GDB 33

from /usr/lib/libc.2

On Solaris, you can display more information about user threads with a Solaris-specific
command:

maint info sol-threads
Display info on Solaris user threads.

thread threadno

Make thread number threadno the current thread. The command argument
threadno is the internal GDB thread number, as shown in the first field of the
‘info threads’ display. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:

(gdb) thread 2

[Switching to process 35 thread 23]

0x34e5 in sigpause ()
As with the ‘[New ...]" message, the form of the text after ‘Switching to’
depends on your system’s conventions for identifying threads.

thread apply [threadno] [all] command
The thread apply command allows you to apply the named command to one
or more threads. Specify the numbers of the threads that you want affected
with the command argument threadno. It can be a single thread number, one
of the numbers shown in the first field of the ‘info threads’ display; or it could
be a range of thread numbers, as in 2-4. To apply a command to all threads,
type thread apply all command.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the context
switch with a message of the form ‘[Switching to systag]’ to identify the thread.

See Section 5.4 [Stopping and starting multi-thread programs|, page 56, for more infor-
mation about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting watchpoints|, page 42, for information about watchpoints in
programs with multiple threads.

4.10 Debugging programs with multiple processes

On most systems, GDB has no special support for debugging programs which create addi-
tional processes using the fork function. When a program forks, GDB will continue to debug
the parent process and the child process will run unimpeded. If you have set a breakpoint
in any code which the child then executes, the child will get a SIGTRAP signal which (unless
it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork. It
may be useful to sleep only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB (a new invocation
of GDB if you are also debugging the parent process) to attach to the child process (see
Section 4.7 [Attach], page 30). From that point on you can debug the child process just like
any other process which you attached to.

34 Debugging with GDB

On some systems, GDB provides support for debugging programs that create additional
processes using the fork or vfork functions. Currently, the only platforms with this feature
are HP-UX (11.x and later only?) and GNU/Linux (kernel version 2.5.60 and later).

By default, when a program forks, GDB will continue to debug the parent process and
the child process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command
set follow-fork-mode.

set follow-fork-mode mode
Set the debugger response to a program call of fork or vfork. A call to fork
or vfork creates a new process. The mode argument can be:

parent The original process is debugged after a fork. The child process
runs unimpeded. This is the default.

child The new process is debugged after a fork. The parent process runs
unimpeded.

show follow-fork-mode
Display the current debugger response to a fork or vfork call.

On Linux, if you want to debug both the parent and child processes, use the command
set detach-on-fork.

set detach-on-fork mode
Tells gdb whether to detach one of the processes after a fork, or retain debugger
control over them both.

on The child process (or parent process, depending on the value of
follow-fork-mode) will be detached and allowed to run indepen-
dently. This is the default.

of f Both processes will be held under the control of GDB. One process
(child or parent, depending on the value of follow-fork-mode) is
debugged as usual, while the other is held suspended.

show detach-on-follow
Show whether detach-on-follow mode is on/off.

If you choose to set detach-on-follow mode off, then GDB will retain control of all forked
processes (including nested forks). You can list the forked processes under the control of
GDB by using the info forks command, and switch from one fork to another by using the
fork command.

info forks
Print a list of all forked processes under the control of GDB. The listing will
include a fork id, a process id, and the current position (program counter) of
the process.

fork fork-id
Make fork number fork-id the current process. The argument fork-id is the
internal fork number assigned by GDB, as shown in the first field of the ‘info
forks’ display.

Chapter 4: Running Programs Under GDB 35

To quit debugging one of the forked processes, you can either detach from it by using
the detach fork command (allowing it to run independently), or delete (and kill) it using
the delete fork command.

detach fork fork-id
Detach from the process identified by GDB fork number fork-id, and remove it
from the fork list. The process will be allowed to run independently.

delete fork fork-id
Kill the process identified by GDB fork number fork-id, and remove it from the
fork list.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes
the new target up to the first breakpoint in the new target. If you have a breakpoint set on
main in your original program, the breakpoint will also be set on the child process’s main.

When a child process is spawned by vfork, you cannot debug the child or parent until
an exec call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts.
To restart the parent process, use the file command with the parent executable name as
its argument.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec
call is made. See Section 5.1.3 [Setting catchpoints|, page 44.

4.11 Setting a bookmark to return to later

On certain operating systems', GDB is able to save a snapshot of a program’s state, called
a checkpoint, and come back to it later.

Returning to a checkpoint effectively undoes everything that has happened in the pro-
gram since the checkpoint was saved. This includes changes in memory, registers, and even
(within some limits) system state. Effectively, it is like going back in time to the moment
when the checkpoint was saved.

Thus, if you're stepping thru a program and you think you’re getting close to the point
where things go wrong, you can save a checkpoint. Then, if you accidentally go too far and
miss the critical statement, instead of having to restart your program from the beginning,
you can just go back to the checkpoint and start again from there.

This can be especially useful if it takes a lot of time or steps to reach the point where
you think the bug occurs.

To use the checkpoint/restart method of debugging:

checkpoint
Save a snapshot of the debugged program’s current execution state. The
checkpoint command takes no arguments, but each checkpoint is assigned
a small integer id, similar to a breakpoint id.

info checkpoints
List the checkpoints that have been saved in the current debugging session. For
each checkpoint, the following information will be listed:

L' Currently, only GNU/Linux.

36 Debugging with GDB

Checkpoint ID
Process ID

Code Address

Source line, or label

restart checkpoint-id
Restore the program state that was saved as checkpoint number checkpoint-id.
All program variables, registers, stack frames etc. will be returned to the values
that they had when the checkpoint was saved. In essence, gdb will “wind back
the clock” to the point in time when the checkpoint was saved.

Note that breakpoints, GDB variables, command history etc. are not affected
by restoring a checkpoint. In general, a checkpoint only restores things that
reside in the program being debugged, not in the debugger.

delete checkpoint checkpoint-id
Delete the previously-saved checkpoint identified by checkpoint-id.

Returning to a previously saved checkpoint will restore the user state of the program
being debugged, plus a significant subset of the system (OS) state, including file pointers. It
won’t “un-write” data from a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten. For files opened in read mode, the
pointer will also be restored so that the previously read data can be read again.

Of course, characters that have been sent to a printer (or other external device) cannot
be “snatched back”, and characters received from eg. a serial device can be removed from
internal program buffers, but they cannot be “pushed back” into the serial pipeline, ready
to be received again. Similarly, the actual contents of files that have been changed cannot
be restored (at this time).

However, within those constraints, you actually can “rewind” your program to a previ-
ously saved point in time, and begin debugging it again — and you can change the course
of events so as to debug a different execution path this time.

Finally, there is one bit of internal program state that will be different when you return
to a checkpoint — the program’s process id. Each checkpoint will have a unique process id
(or pid), and each will be different from the program’s original pid. If your program has
saved a local copy of its process id, this could potentially pose a problem.

4.11.1 A non-obvious benefit of using checkpoints

On some systems such as GNU/Linux, address space randomization is performed on new
processes for security reasons. This makes it difficult or impossible to set a breakpoint, or
watchpoint, on an absolute address if you have to restart the program, since the absolute
location of a symbol will change from one execution to the next.

A checkpoint, however, is an identical copy of a process. Therefore if you create a
checkpoint at (eg.) the start of main, and simply return to that checkpoint instead of
restarting the process, you can avoid the effects of address randomization and your symbols
will all stay in the same place.

Chapter 5: Stopping and Continuing 37

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your program before it
terminates; or so that, if your program runs into trouble, you can investigate and find out
why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a break-
point, or reaching a new line after a GDB command such as step. You may then examine
and change variables, set new breakpoints or remove old ones, and then continue execu-
tion. Usually, the messages shown by GDB provide ample explanation of the status of your
program—but you can also explicitly request this information at any time.

info program
Display information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

5.1 Breakpoints, watchpoints, and catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your program
stops. You can set breakpoints with the break command and its variants (see Section 5.1.1
[Setting breakpoints]|, page 38), to specify the place where your program should stop by line
number, function name or exact address in the program.

On some systems, you can set breakpoints in shared libraries before the executable is
run. There is a minor limitation on HP-UX systems: you must wait until the executable
is run in order to set breakpoints in shared library routines that are not called directly by
the program (for example, routines that are arguments in a pthread_create call).

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. The expression may be a value of a variable, or it could involve values
of one or more variables combined by operators, such as ‘a + b’. This is sometimes called
data breakpoints. You must use a different command to set watchpoints (see Section 5.1.2
[Setting watchpoints|, page 42), but aside from that, you can manage a watchpoint like any
other breakpoint: you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See Section 8.6 [Automatic display|, page 79.

A catchpoint is another special breakpoint that stops your program when a certain kind
of event occurs, such as the throwing of a C++ exception or the loading of a library. As with
watchpoints, you use a different command to set a catchpoint (see Section 5.1.3 [Setting
catchpoints|, page 44), but aside from that, you can manage a catchpoint like any other
breakpoint. (To stop when your program receives a signal, use the handle command; see
Section 5.3 [Signals|, page 54.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create
it; these numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled or disabled; if disabled,
it has no effect on your program until you enable it again.

38 Debugging with GDB

Some GDB commands accept a range of breakpoints on which to operate. A breakpoint
range is either a single breakpoint number, like ‘5’, or two such numbers, in increasing
order, separated by a hyphen, like ‘6-7". When a breakpoint range is given to a command,
all breakpoint in that range are operated on.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger convenience
variable ‘$bpnum’ records the number of the breakpoint you've set most recently; see Sec-
tion 8.9 [Convenience variables|, page 86, for a discussion of what you can do with conve-
nience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using source languages
that permit overloading of symbols, such as C++, function may refer to more
than one possible place to break. See Section 5.1.8 [Breakpoint menus], page 49,
for a discussion of that situation.

break +offset

break -offset
Set a breakpoint some number of lines forward or back from the position at
which execution stopped in the currently selected stack frame. (See Section 6.1
[Frames|, page 59, for a description of stack frames.)

break linenum
Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
program just before it executes any of the code on that line.

break filename:1linenum
Set a breakpoint at line linenum in source file filename.

break filename :function
Set a breakpoint at entry to function function found in file filename. Specifying
a file name as well as a function name is superfluous except when multiple files
contain similarly named functions.

break *address
Set a breakpoint at address address. You can use this to set breakpoints in
parts of your program which do not have debugging information or source files.

break When called without any arguments, break sets a breakpoint at the next in-
struction to be executed in the selected stack frame (see Chapter 6 [Examining
the Stack], page 59). In any selected frame but the innermost, this makes your
program stop as soon as control returns to that frame. This is similar to the
effect of a finish command in the frame inside the selected frame—except that
finish does not leave an active breakpoint. If you use break without an ar-
gument in the innermost frame, GDB stops the next time it reaches the current
location; this may be useful inside loops.

Chapter 5: Stopping and Continuing 39

GDB normally ignores breakpoints when it resumes execution, until at least one
instruction has been executed. If it did not do this, you would be unable to pro-
ceed past a breakpoint without first disabling the breakpoint. This rule applies
whether or not the breakpoint already existed when your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond
evaluates as true. ‘...’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Section 5.1.6 [Break
conditions], page 47, for more information on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See Sec-
tion 5.1.5 [Disabling breakpoints|, page 46.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break com-
mand and the breakpoint is set in the same way, but the breakpoint requires
hardware support and some target hardware may not have this support. The
main purpose of this is EPROM/ROM code debugging, so you can set a break-
point at an instruction without changing the instruction. This can be used
with the new trap-generation provided by SPARClite DSU and most x86-based
targets. These targets will generate traps when a program accesses some data
or instruction address that is assigned to the debug registers. However the
hardware breakpoint registers can take a limited number of breakpoints. For
example, on the DSU, only two data breakpoints can be set at a time, and
GDB will reject this command if more than two are used. Delete or disable
unused hardware breakpoints before setting new ones (see Section 5.1.5 [Dis-
abling], page 46). See Section 5.1.6 [Break conditions|, page 47. For remote
targets, you can restrict the number of hardware breakpoints GDB will use, see
[set remote hardware-breakpoint-limit], page 169.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the
same as for the hbreak command and the breakpoint is set in the same way.
However, like the tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the hbreak command,
the breakpoint requires hardware support and some target hardware may not
have this support. See Section 5.1.5 [Disabling breakpoints], page 46. See also
Section 5.1.6 [Break conditions|, page 47.

rbreak regex
Set breakpoints on all functions matching the regular expression regex. This
command sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete them, disable them,
or make them conditional the same way as any other breakpoint.

40

Debugging with GDB

The syntax of the regular expression is the standard one used with tools like
‘grep’. Note that this is different from the syntax used by shells, so for instance
foo* matches all functions that include an fo followed by zero or more os. There
is an implicit .* leading and trailing the regular expression you supply, so to
match only functions that begin with foo, use “foo.

When debugging C++ programs, rbreak is useful for setting breakpoints on
overloaded functions that are not members of any special classes.
The rbreak command can be used to set breakpoints in all the functions in a
program, like this:

(gdb) rbreak .

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set and not
deleted. Optional argument n means print information only about the spec-
ified breakpoint (or watchpoint or catchpoint). For each breakpoint, following
columns are printed:

Breakpoint Numbers
Type Breakpoint, watchpoint, or catchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when
hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’ marks breakpoints
that are not enabled.

Address Where the breakpoint is in your program, as a memory address. If
the breakpoint is pending (see below for details) on a future load
of a shared library, the address will be listed as ‘<PENDING>’.

What Where the breakpoint is in the source for your program, as a file and
line number. For a pending breakpoint, the original string passed
to the breakpoint command will be listed as it cannot be resolved
until the appropriate shared library is loaded in the future.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that. A pending breakpoint is allowed to have a condition specified for it. The
condition is not parsed for validity until a shared library is loaded that allows
the pending breakpoint to resolve to a valid location.

info break with a breakpoint number n as argument lists only that break-
point. The convenience variable $_ and the default examining-address for the
x command are set to the address of the last breakpoint listed (see Section 8.5
[Examining memory], page 77).

info break displays a count of the number of times the breakpoint has been
hit. This is especially useful in conjunction with the ignore command. You

Chapter 5: Stopping and Continuing 41

can ignore a large number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again, ignoring one less
than that number. This will get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are conditional,
this is even useful (see Section 5.1.6 [Break conditions|, page 47).

If a specified breakpoint location cannot be found, it may be due to the fact that the
location is in a shared library that is yet to be loaded. In such a case, you may want GDB
to create a special breakpoint (known as a pending breakpoint) that attempts to resolve
itself in the future when an appropriate shared library gets loaded.

Pending breakpoints are useful to set at the start of your GDB session for locations that
you know will be dynamically loaded later by the program being debugged. When shared
libraries are loaded, a check is made to see if the load resolves any pending breakpoint
locations. If a pending breakpoint location gets resolved, a regular breakpoint is created
and the original pending breakpoint is removed.

GDB provides some additional commands for controlling pending breakpoint support:

set breakpoint pending auto
This is the default behavior. When GDB cannot find the breakpoint location,
it queries you whether a pending breakpoint should be created.

set breakpoint pending on
This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

set breakpoint pending off
This indicates that pending breakpoints are not to be created. Any unrecog-
nized breakpoint location results in an error. This setting does not affect any
pending breakpoints previously created.

show breakpoint pending
Show the current behavior setting for creating pending breakpoints.

Normal breakpoint operations apply to pending breakpoints as well. You may specify a
condition for a pending breakpoint and/or commands to run when the breakpoint is reached.
You can also enable or disable the pending breakpoint. When you specify a condition for
a pending breakpoint, the parsing of the condition will be deferred until the point where
the pending breakpoint location is resolved. Disabling a pending breakpoint tells GDB to
not attempt to resolve the breakpoint on any subsequent shared library load. When a
pending breakpoint is re-enabled, GDB checks to see if the location is already resolved. This
is done because any number of shared library loads could have occurred since the time the
breakpoint was disabled and one or more of these loads could resolve the location.

GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1; ‘info breakpoints’ does not display them. You can
see these breakpoints with the GDB maintenance command ‘maint info breakpoints’ (see
[maint info breakpoints|, page 321).

42 Debugging with GDB

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen. (This is sometimes
called a data breakpoint.) The expression may be as simple as the value of a single variable,
or as complex as many variables combined by operators. Examples include:

e A reference to the value of a single variable.

e An address cast to an appropriate data type. For example, ‘*(int *)0x12345678" will
watch a 4-byte region at the specified address (assuming an int occupies 4 bytes).

e An arbitrarily complex expression, such as ‘a*b + c¢/d’. The expression can use any op-
erators valid in the program’s native language (see Chapter 12 [Languages|, page 115).

Depending on your system, watchpoints may be implemented in software or hardware.
GDB does software watchpointing by single-stepping your program and testing the variable’s
value each time, which is hundreds of times slower than normal execution. (But this may
still be worth it, to catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as HP-UX, GNU/Linux and most other x86-based targets, GDB
includes support for hardware watchpoints, which do not slow down the running of your
program.

watch expr
Set a watchpoint for an expression. GDB will break when the expression expr
is written into by the program and its value changes. The simplest (and the
most popular) use of this command is to watch the value of a single variable:
(gdb) watch foo

rwatch expr
Set a watchpoint that will break when the value of expr is read by the program.

awatch expr
Set a watchpoint that will break when expr is either read from or written into
by the program.

info watchpoints
This command prints a list of watchpoints, breakpoints, and catchpoints; it is
the same as info break (see Section 5.1.1 [Set Breaks|, page 38).

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly,
and the debugger reports a change in value at the exact instruction where the change occurs.
If GDB cannot set a hardware watchpoint, it sets a software watchpoint, which executes more
slowly and reports the change in value at the next statement, not the instruction, after the
change occurs.

You can force GDB to use only software watchpoints with the set can-use-hw-
watchpoints 0 command. With this variable set to zero, GDB will never try to use
hardware watchpoints, even if the underlying system supports them. (Note that
hardware-assisted watchpoints that were set before setting can-use-hw-watchpoints to
zero will still use the hardware mechanism of watching expressiion values.)

set can-use-hw-watchpoints
Set whether or not to use hardware watchpoints.

Chapter 5: Stopping and Continuing 43

show can-use-hw-watchpoints
Show the current mode of using hardware watchpoints.

For remote targets, you can restrict the number of hardware watchpoints GDB will use,
see [set remote hardware-breakpoint-limit], page 169.

When you issue the watch command, GDB reports

Hardware watchpoint num: expr
if it was able to set a hardware watchpoint.

Currently, the awatch and rwatch commands can only set hardware watchpoints, be-
cause accesses to data that don’t change the value of the watched expression cannot be
detected without examining every instruction as it is being executed, and GDB does not do
that currently. If GDB finds that it is unable to set a hardware breakpoint with the awatch
or rwatch command, it will print a message like this:

Expression cannot be implemented with read/access watchpoint.

Sometimes, GDB cannot set a hardware watchpoint because the data type of the watched
expression is wider than what a hardware watchpoint on the target machine can handle.
For example, some systems can only watch regions that are up to 4 bytes wide; on such sys-
tems you cannot set hardware watchpoints for an expression that yields a double-precision
floating-point number (which is typically 8 bytes wide). As a work-around, it might be pos-
sible to break the large region into a series of smaller ones and watch them with separate
watchpoints.

If you set too many hardware watchpoints, GDB might be unable to insert all of them
when you resume the execution of your program. Since the precise number of active watch-
points is unknown until such time as the program is about to be resumed, GDB might not be
able to warn you about this when you set the watchpoints, and the warning will be printed
only when the program is resumed:

Hardware watchpoint num: Could not insert watchpoint
If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also exhaust the re-
sources available for hardware-assisted watchpoints. That’s because GDB needs to watch
every variable in the expression with separately allocated resources.

The SPARClite DSU will generate traps when a program accesses some data or instruc-
tion address that is assigned to the debug registers. For the data addresses, DSU facilitates
the watch command. However the hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind. For example, you can set two
watchpoints with watch commands, two with rwatch commands, or two with awatch com-
mands, but you cannot set one watchpoint with one command and the other with a different
command. GDB will reject the command if you try to mix watchpoints. Delete or disable
unused watchpoint commands before setting new ones.

If you call a function interactively using print or call, any watchpoints you have set
will be inactive until GDB reaches another kind of breakpoint or the call completes.

GDB automatically deletes watchpoints that watch local (automatic) variables, or expres-
sions that involve such variables, when they go out of scope, that is, when the execution
leaves the block in which these variables were defined. In particular, when the program
being debugged terminates, all local variables go out of scope, and so only watchpoints

44 Debugging with GDB

that watch global variables remain set. If you rerun the program, you will need to set all
such watchpoints again. One way of doing that would be to set a code breakpoint at the
entry to the main function and when it breaks, set all the watchpoints.

Warning: In multi-thread programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can only watch the value of
an expression in a single thread. If you are confident that the expression can
only change due to the current thread’s activity (and if you are also confident
that no other thread can become current), then you can use watchpoints as
usual. However, GDB may not notice when a non-current thread’s activity
changes the expression.

HP-UX Warning: In multi-thread programs, software watchpoints have only
limited usefulness. If GDB creates a software watchpoint, it can only watch
the value of an expression in a single thread. If you are confident that the
expression can only change due to the current thread’s activity (and if you
are also confident that no other thread can become current), then you can use
software watchpoints as usual. However, GDB may not notice when a non-
current thread’s activity changes the expression. (Hardware watchpoints, in
contrast, watch an expression in all threads.)

See [set remote hardware-watchpoint-limit], page 169.

5.1.3 Setting catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program events,
such as C++ exceptions or the loading of a shared library. Use the catch command to set
a catchpoint.

catch event
Stop when event occurs. event can be any of the following:

throw The throwing of a C++ exception.

catch The catching of a C++ exception.

exec A call to exec. This is currently only available for HP-UX.
fork A call to fork. This is currently only available for HP-UX.
vfork A call to vfork. This is currently only available for HP-UX.
load

load libname
The dynamic loading of any shared library, or the loading of the
library libname. This is currently only available for HP-UX.

unload

unload libname
The unloading of any dynamically loaded shared library, or the
unloading of the library libname. This is currently only available
for HP-UX.

tcatch event
Set a catchpoint that is enabled only for one stop. The catchpoint is automat-
ically deleted after the first time the event is caught.

Chapter 5: Stopping and Continuing 45

Use the info break command to list the current catchpoints.

There are currently some limitations to C++ exception handling (catch throw and catch
catch) in GDB:

e If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call may
bypass the mechanism that returns control to you and cause your program either to
abort or to simply continue running until it hits a breakpoint, catches a signal that GDB
is listening for, or exits. This is the case even if you set a catchpoint for the exception;
catchpoints on exceptions are disabled within interactive calls.

e You cannot raise an exception interactively.

e You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to know
exactly where an exception is raised, it is better to stop before the exception handler is
called, since that way you can see the stack before any unwinding takes place. If you set
a breakpoint in an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU C++, exceptions are raised by calling a library function
named __raise_exception which has the following ANSI C interface:

/* addr is where the exception identifier is stored.
id is the exception identifier. */
void __raise_exception (void **addr, void *id);
To make the debugger catch all exceptions before any stack unwinding takes place, set a
breakpoint on __raise_exception (see Section 5.1 [Breakpoints; watchpoints; and excep-
tions|, page 37).

With a conditional breakpoint (see Section 5.1.6 [Break conditions], page 47) that de-
pends on the value of id, you can stop your program when a specific exception is raised.
You can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done
its job and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your
program. With the delete command you can delete individual breakpoints, watchpoints,
or catchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution without
changing the execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected
stack frame (see Section 6.3 [Selecting a frame|, page 62). When the innermost
frame is selected, this is a good way to delete a breakpoint where your program
just stopped.

46 Debugging with GDB

clear function
clear filename :function
Delete any breakpoints set at entry to the named function.

clear linenum

clear filename :linenum
Delete any breakpoints set at or within the code of the specified linenum of the
specified filename.

delete [breakpoints| [range. . .]
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint ranges
specified as arguments. If no argument is specified, delete all breakpoints (GDB
asks confirmation, unless you have set confirm off). You can abbreviate this
command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable
it. This makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and
disable commands, optionally specifying one or more breakpoint numbers as arguments.
Use info break or info watch to print a list of breakpoints, watchpoints, and catchpoints
if you do not know which numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four different states of enable-
ment:

e Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

e Disabled. The breakpoint has no effect on your program.
e Enabled once. The breakpoint stops your program, but then becomes disabled.

e Enabled for deletion. The breakpoint stops your program, but immediately after it
does so it is deleted permanently. A breakpoint set with the tbreak command starts
out in this state.

You can use the following commands to enable or disable breakpoints, watchpoints, and
catchpoints:

disable [breakpoints| [range. . .]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable [breakpoints| [range. . .]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints| once range. ..
Enable the specified breakpoints temporarily. GDB disables any of these break-
points immediately after stopping your program.

Chapter 5: Stopping and Continuing 47

enable [breakpoints| delete range. ..
Enable the specified breakpoints to work once, then die. GDB deletes any of
these breakpoints as soon as your program stops there. Breakpoints set by the
tbreak command start out in this state.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints],
page 38), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the commands above. (The command until
can set and delete a breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 [Continuing and stepping], page 51.)

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is just a Boolean expression
in your programming language (see Section 8.1 [Expressions|, page 73). A breakpoint with
a condition evaluates the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C, if
you want to test an assertion expressed by the condition assert, you should set the condition
‘I assert’ on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint
is inspecting the value of an expression anyhow—but it might be simpler, say, to just set a
watchpoint on a variable name, and specify a condition that tests whether the new value is
an interesting one.

Break conditions can have side effects, and may even call functions in your program. This
can be useful, for example, to activate functions that log program progress, or to use your
own print functions to format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop your program without checking the condition of
this one.) Note that breakpoint commands are usually more convenient and flexible than
break conditions for the purpose of performing side effects when a breakpoint is reached
(see Section 5.1.7 [Breakpoint command lists|, page 48).

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. See Section 5.1.1 [Setting breakpoints]|, page 38. They can also be
changed at any time with the condition command.

You can also use the if keyword with the watch command. The catch command does
not recognize the if keyword; condition is the only way to impose a further condition on
a catchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint, watchpoint, or catch-
point number bnum. After you set a condition, breakpoint bnum stops your
program only if the value of expression is true (nonzero, in C). When you
use condition, GDB checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in the context of your

48 Debugging with GDB

breakpoint. If expression uses symbols not referenced in the context of the
breakpoint, GDB prints an error message:

No symbol "foo" in current context.

GDB does not actually evaluate expression at the time the condition command
(or a command that sets a breakpoint with a condition, like break if ...) is
given, however. See Section 8.1 [Expressions]|, page 73.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore has no effect. But if
your program reaches a breakpoint whose ignore count is positive, then instead of stopping,
it just decrements the ignore count by one and continues. As a result, if the ignore count
value is n, the breakpoint does not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, your program’s execution does not stop; other
than to decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a break-
point, you can specify an ignore count directly as an argument to continue,
rather than using ignore. See Section 5.2 [Continuing and stepping], page 51.

If a breakpoint has a positive ignore count and a condition, the condition is
not checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

You could achieve the effect of the ignore count with a condition such as
‘$foo-- <= 0’ using a debugger convenience variable that is decremented each
time. See Section 8.9 [Convenience variables|, page 86.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute
when your program stops due to that breakpoint. For example, you might want to print
the values of certain expressions, or enable other breakpoints.

commands |bnum]
. command-1ist ...
end Specify a list of commands for breakpoint number bnum. The commands them-
selves appear on the following lines. Type a line containing just end to terminate
the commands.

To remove all commands from a breakpoint, type commands and follow it im-
mediately with end; that is, give no commands.

Chapter 5: Stopping and Continuing 49

With no bnum argument, commands refers to the last breakpoint, watchpoint,
or catchpoint set (not to the breakpoint most recently encountered).

Pressing as a means of repeating the last GDB command is disabled within a
command-list.

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are
ignored. This is because any time you resume execution (even with a simple next or step),
you may encounter another breakpoint—which could have its own command list, leading
to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely controlled output,
and are often useful in silent breakpoints. See Section 20.4 [Commands for controlled
output], page 216.

For example, here is how you could use breakpoint commands to print the value of x at
entry to foo whenever x is positive.
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end
One application for breakpoint commands is to compensate for one bug so you can test
for another. Put a breakpoint just after the erroneous line of code, give it a condition
to detect the case in which something erroneous has been done, and give it commands to
assign correct values to any variables that need them. End with the continue command so
that your program does not stop, and start with the silent command so that no output
is produced. Here is an example:

break 403
commands
silent

set x =y + 4
cont

end

5.1.8 Breakpoint menus

Some programming languages (notably C++ and Objective-C) permit a single function name
to be defined several times, for application in different contexts. This is called overloading.
When a function name is overloaded, ‘break function’ is not enough to tell GDB where
you want a breakpoint. If you realize this is a problem, you can use something like ‘break
function (types)’ to specify which particular version of the function you want. Otherwise,
GDB offers you a menu of numbered choices for different possible breakpoints, and waits for
your selection with the prompt ‘>’. The first two options are always ‘[0] cancel’ and ‘[1]

50 Debugging with GDB

all’. Typing 1 sets a breakpoint at each definition of function, and typing 0 aborts the
break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String: :after. We choose three particular definitions of that function
name:

(gdb) b String::after

[0] cancel

[1] all1

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[6] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

>246

Breakpoint 1 at Oxb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at Oxafcc: file String.cc, line 846.
Multiple breakpoints were set.

Use the "delete" command to delete unwanted
breakpoints.

(gdb)

5.1.9 “Cannot insert breakpoints”

Under some operating systems, breakpoints cannot be used in a program if any other process
is running that program. In this situation, attempting to run or continue a program with
a breakpoint causes GDB to print an error message:
Cannot insert breakpoints.
The same program may be running in another process.
When this happens, you have three ways to proceed:
Remove or disable the breakpoints, then continue.

2. Suspend GDB, and copy the file containing your program to a new name. Resume GDB
and use the exec-file command to specify that GDB should run your program under
that name. Then start your program again.

3. Relink your program so that the text segment is nonsharable, using the linker option
‘~N’. The operating system limitation may not apply to nonsharable executables.

A similar message can be printed if you request too many active hardware-assisted
breakpoints and watchpoints:
Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.
This message is printed when you attempt to resume the program, since only then GDB
knows exactly how many hardware breakpoints and watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the hardware-
assisted breakpoints and watchpoints, and then continue.

5.1.10 “Breakpoint address adjusted...”

Some processor architectures place constraints on the addresses at which breakpoints may
be placed. For architectures thus constrained, GDB will attempt to adjust the breakpoint’s
address to comply with the constraints dictated by the architecture.

Chapter 5: Stopping and Continuing 51

One example of such an architecture is the Fujitsu FR-V. The FR-V is a VLIW archi-
tecture in which a number of RISC-like instructions may be bundled together for parallel
execution. The FR-V architecture constrains the location of a breakpoint instruction within
such a bundle to the instruction with the lowest address. GDB honors this constraint by
adjusting a breakpoint’s address to the first in the bundle.

It is not uncommon for optimized code to have bundles which contain instructions from
different source statements, thus it may happen that a breakpoint’s address will be adjusted
from one source statement to another. Since this adjustment may significantly alter GDB’s
breakpoint related behavior from what the user expects, a warning is printed when the
breakpoint is first set and also when the breakpoint is hit.

A warning like the one below is printed when setting a breakpoint that’s been subject
to address adjustment:
warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.

Such warnings are printed both for user settable and GDB’s internal breakpoints. If you
see one of these warnings, you should verify that a breakpoint set at the adjusted address
will have the desired affect. If not, the breakpoint in question may be removed and other
breakpoints may be set which will have the desired behavior. E.g., it may be sufficient to
place the breakpoint at a later instruction. A conditional breakpoint may also be useful in
some cases to prevent the breakpoint from triggering too often.

aDB will also issue a warning when stopping at one of these adjusted breakpoints:
warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.
When this warning is encountered, it may be too late to take remedial action except in
cases where the breakpoint is hit earlier or more frequently than expected.

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally. In
contrast, stepping means executing just one more “step” of your program, where “step”
may mean either one line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when stepping, your program may
stop even sooner, due to a breakpoint or a signal. (If it stops due to a signal, you may want
to use handle, or use ‘signal 0’ to resume execution. See Section 5.3 [Signals|, page 54.)

continue [ignore-count|

c [ignore-count]

fg [ignore-count]
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
ignore-count allows you to specify a further number of times to ignore a break-
point at this location; its effect is like that of ignore (see Section 5.1.6 [Break
conditions], page 47).
The argument ignore-count is meaningful only when your program stopped due
to a breakpoint. At other times, the argument to continue is ignored.
The synonyms c¢ and fg (for foreground, as the debugged program is deemed
to be the foreground program) are provided purely for convenience, and have
exactly the same behavior as continue.

52 Debugging with GDB

To resume execution at a different place, you can use return (see Section 14.4 [Returning
from a function], page 147) to go back to the calling function; or jump (see Section 14.2
[Continuing at a different address|, page 146) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;
watchpoints; and catchpoints|, page 37) at the beginning of the function or the section
of your program where a problem is believed to lie, run your program until it stops at
that breakpoint, and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a different source line,
then stop it and return control to GDB. This command is abbreviated s.

Warning: 1f you use the step command while control is within
a function that was compiled without debugging information, ex-
ecution proceeds until control reaches a function that does have
debugging information. Likewise, it will not step into a function
which is compiled without debugging information. To step through
functions without debugging information, use the stepi command,
described below.

The step command only stops at the first instruction of a source line. This pre-
vents the multiple stops that could otherwise occur in switch statements, for
loops, etc. step continues to stop if a function that has debugging information
is called within the line. In other words, step steps inside any functions called
within the line.

Also, the step command only enters a function if there is line number infor-
mation for the function. Otherwise it acts like the next command. This avoids
problems when using cc -g1 on MIPS machines. Previously, step entered sub-
routines if there was any debugging information about the routine.

step count
Continue running as in step, but do so count times. If a breakpoint is reached,
or a signal not related to stepping occurs before count steps, stepping stops
right away:.

next [count|
Continue to the next source line in the current (innermost) stack frame. This
is similar to step, but function calls that appear within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the original stack level that was executing when you gave the
next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command only stops at the first instruction of a source line. This
prevents multiple stops that could otherwise occur in switch statements, for
loops, etc.

Chapter 5: Stopping and Continuing 53

set step—mode
set step-mode on

The set step-mode on command causes the step command to stop at the first
instruction of a function which contains no debug line information rather than
stepping over it.

This is useful in cases where you may be interested in inspecting the machine
instructions of a function which has no symbolic info and do not want GDB to
automatically skip over this function.

set step—mode off

Causes the step command to step over any functions which contains no debug
information. This is the default.

show step-mode

finish

until

Show whether GDB will stop in or step over functions without source line debug
information.

Continue running until just after function in the selected stack frame returns.
Print the returned value (if any).

Contrast this with the return command (see Section 14.4 [Returning from a
function|, page 147).

Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encoun-
ters a jump, it automatically continues execution until the program counter is
greater than the address of the jump.

This means that when you reach the end of a loop after single stepping though
it, until makes your program continue execution until it exits the loop. In con-
trast, a next command at the end of a loop simply steps back to the beginning
of the loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

until may produce somewhat counterintuitive results if the order of machine
code does not match the order of the source lines. For example, in the following
excerpt from a debugging session, the £ (frame) command shows that execution
is stopped at line 206; yet when we use until, we get to line 195:

(gdb) £

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input () ;

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated
code for the loop closure test at the end, rather than the start, of the loop—
even though the test in a C for-loop is written before the body of the loop.
The until command appeared to step back to the beginning of the loop when
it advanced to this expression; however, it has not really gone to an earlier
statement—mnot in terms of the actual machine code.

54

Debugging with GDB

until with no argument works by means of single instruction stepping, and
hence is slower than until with an argument.

until location

u location

Continue running your program until either the specified location is reached,
or the current stack frame returns. location is any of the forms of argument
acceptable to break (see Section 5.1.1 [Setting breakpoints], page 38). This form
of the command uses breakpoints, and hence is quicker than until without an
argument. The specified location is actually reached only if it is in the current
frame. This implies that until can be used to skip over recursive function
invocations. For instance in the code below, if the current location is line 96,
issuing until 99 will execute the program up to line 99 in the same invocation
of factorial, i.e. after the inner invocations have returned.

94 int factorial (int value)

95 {

96 if (value > 1) {

97 value *= factorial (value - 1);
98 }

99 return (value);

100 }

advance location

stepi
stepi arg
si

nexti
nexti arg
ni

Continue running the program up to the given location. An argument is re-
quired, which should be of the same form as arguments for the break command.
Execution will also stop upon exit from the current stack frame. This command
is similar to until, but advance will not skip over recursive function calls, and
the target location doesn’t have to be in the same frame as the current one.

Execute one machine instruction, then stop and return to the debugger.

It is often useful to do ‘display/i $pc’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed, each
time your program stops. See Section 8.6 [Automatic display], page 79.

An argument is a repeat count, as in step.

Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For example,
in Unix SIGINT is the signal a program gets when you type an interrupt character (often
Ctrl-c); SIGSEGV is the signal a program gets from referencing a place in memory far
away from all the areas in use; SIGALRM occurs when the alarm clock timer goes off (which
happens only if your program has requested an alarm).

Chapter 5: Stopping and Continuing 55

Some signals, including SIGALRM, are a normal part of the functioning of your program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (they kill your program
immediately) if the program has not specified in advance some other way to handle the
signal. SIGINT does not indicate an error in your program, but it is normally fatal so it can
carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to let the non-erroneous signals like SIGALRM be silently passed
to your program (so as not to interfere with their role in the program’s functioning) but to
stop your program immediately whenever an error signal happens. You can change these
settings with the handle command.

info signals

info handle
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types of
signals.

info signals sig
Similar, but print information only about the specified signal number.

info handle is an alias for info signals.

handle signal [keywords. . .]
Change the way GDB handles signal signal. signal can be the number of a
signal or its name (with or without the ‘SIG’ at the beginning); a list of signal
numbers of the form ‘low-high’; or the word ‘all’, meaning all the known
signals. Optional arguments keywords, described below, say what change to
make.

The keywords allowed by the handle command can be abbreviated. Their full names
are:

nostop GDB should not stop your program when this signal happens. It may still print
a message telling you that the signal has come in.

stop GDB should stop your program when this signal happens. This implies the
print keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass

noignore GDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled. pass and
noignore are synonyms.

nopass
ignore GDB should not allow your program to see this signal. nopass and ignore are
synonyms.

56 Debugging with GDB

When a signal stops your program, the signal is not visible to the program until you
continue. Your program sees the signal then, if pass is in effect for the signal in question
at that time. In other words, after GDB reports a signal, you can use the handle command
with pass or nopass to control whether your program sees that signal when you continue.

The default is set to nostop, noprint, pass for non-erroneous signals such as SIGALRM,
SIGWINCH and SIGCHLD, and to stop, print, pass for the erroneous signals.

You can also use the signal command to prevent your program from seeing a signal, or
cause it to see a signal it normally would not see, or to give it any signal at any time. For
example, if your program stopped due to some sort of memory reference error, you might
store correct values into the erroneous variables and continue, hoping to see more execution;
but your program would probably terminate immediately as a result of the fatal signal once
it saw the signal. To prevent this, you can continue with ‘signal 0’. See Section 14.3
[Giving your program a signal|, page 147.

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.9 [Debugging programs with mul-
tiple threads], page 31), you can choose whether to set breakpoints on all threads, or on a
particular thread.

break linespec thread threadno

break linespec thread threadno if ...
linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.

Use the qualifier ‘thread threadno’ with a breakpoint command to specify
that you only want GDB to stop the program when a particular thread reaches
this breakpoint. threadno is one of the numeric thread identifiers assigned by
GDB, shown in the first column of the ‘info threads’ display.

If you do not specify ‘thread threadno’ when you set a breakpoint, the break-
point applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this
case, place ‘thread threadno’ before the breakpoint condition, like this:
(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop,
not just the current thread. This allows you to examine the overall state of the program,
including switching between threads, without worrying that things may change underfoot.

There is an unfortunate side effect. If one thread stops for a breakpoint, or for some
other reason, and another thread is blocked in a system call, then the system call may
return prematurely. This is a consequence of the interaction between multiple threads and
the signals that GDB uses to implement breakpoints and other events that stop execution.

To handle this problem, your program should check the return value of each system call
and react appropriately. This is good programming style anyways.
For example, do not write code like this:
sleep (10);
The call to sleep will return early if a different thread stops at a breakpoint or for some
other reason.

Chapter 5: Stopping and Continuing 57

Instead, write this:
int unslept = 10;
while (unslept > 0)
unslept = sleep (unslept);
A system call is allowed to return early, so the system is still conforming to its specifica-
tion. But GDB does cause your multi-threaded program to behave differently than it would
without GDB.

Also, GDB uses internal breakpoints in the thread library to monitor certain events such
as thread creation and thread destruction. When such an event happens, a system call
in another thread may return prematurely, even though your program does not appear to
stop.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next.

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other threads
may execute more than one statement while the current thread completes a single step.
Moreover, in general other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a signal,
or an exception before the first thread completes whatever you requested.

On some OSes, you can lock the OS scheduler and thus allow only a single thread to
run.

set scheduler-locking mode
Set the scheduler locking mode. If it is off, then there is no locking and any
thread may run at any time. If on, then only the current thread may run when
the inferior is resumed. The step mode optimizes for single-stepping. It stops
other threads from “seizing the prompt” by preempting the current thread while
you are stepping. Other threads will only rarely (or never) get a chance to run
when you step. They are more likely to run when you ‘next’ over a function call,
and they are completely free to run when you use commands like ‘continue’,
‘until’, or ‘finish’. However, unless another thread hits a breakpoint during
its timeslice, they will never steal the GDB prompt away from the thread that
you are debugging.

show scheduler-locking
Display the current scheduler locking mode.

58

Debugging with GDB

Chapter 6: Examining the Stack 59

6 Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, information about the call is generated.
That information includes the location of the call in your program, the arguments of the
call, and the local variables of the function being called. The information is saved in a block
of data called a stack frame. The stack frames are allocated in a region of memory called
the call stack.

When your program stops, the GDB commands for examining the stack allow you to see
all of this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly
to the selected frame. In particular, whenever you ask GDB for the value of a variable in
your program, the value is found in the selected frame. There are special GDB commands
to select whichever frame you are interested in. See Section 6.3 [Selecting a frame|, page 62.

When your program stops, GDB automatically selects the currently executing frame and
describes it briefly, similar to the frame command (see Section 6.4 [Information about a
frame]|, page 63).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short;
each frame is the data associated with one call to one function. The frame contains the
arguments given to the function, the function’s local variables, and the address at which
the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has a
convention for choosing one byte whose address serves as the address of the frame. Usually
this address is kept in a register called the frame pointer register (see Section 8.10 [Registers],
page 87) while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward. These numbers do not really
exist in your program; they are assigned by GDB to give you a way of designating stack
frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the gce option

‘-fomit-frame-pointer’
generates functions without a frame.) This is occasionally done with heavily used li-
brary functions to save the frame setup time. GDB has limited facilities for dealing with
these function invocations. If the innermost function invocation has no stack frame, GDB

60 Debugging with GDB

nevertheless regards it as though it had a separate frame, which is numbered zero as usual,
allowing correct tracing of the function call chain. However, GDB has no provision for
frameless functions elsewhere in the stack.

frame args
The frame command allows you to move from one stack frame to another, and
to print the stack frame you select. args may be either the address of the frame
or the stack frame number. Without an argument, frame prints the current
stack frame.

select-frame
The select-frame command allows you to move from one stack frame to an-
other without printing the frame. This is the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame zero), followed by its
caller (frame one), and on up the stack.

backtrace
bt Print a backtrace of the entire stack: one line per frame for all frames in the
stack.

You can stop the backtrace at any time by typing the system interrupt charac-
ter, normally Ctrl-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

backtrace full

bt full

bt full n

bt full -n
Print the values of the local variables also. n specifies the number of frames to
print, as described above.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace.

In a multi-threaded program, GDB by default shows the backtrace only for the current
thread. To display the backtrace for several or all of the threads, use the command thread
apply (see Section 4.9 [Threads|, page 31). For example, if you type thread apply all
backtrace, GDB will display the backtrace for all the threads; this is handy when you
debug a core dump of a multi-threaded program.

Each line in the backtrace shows the frame number and the function name. The program
counter value is also shown—unless you use set print address off. The backtrace also
shows the source file name and line number, as well as the arguments to the function. The
program counter value is omitted if it is at the beginning of the code for that line number.

Chapter 6: Examining the Stack 61

Here is an example of a backtrace. It was made with the command ‘bt 3’, so it shows
the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that
your program has stopped at the beginning of the code for line 993 of builtin.c.

If your program was compiled with optimizations, some compilers will optimize away
arguments passed to functions if those arguments are never used after the call. Such opti-
mizations generate code that passes arguments through registers, but doesn’t store those
arguments in the stack frame. GDB has no way of displaying such arguments in stack frames
other than the innermost one. Here’s what such a backtrace might look like:

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The values of arguments that were not saved in their stack frames are shown as ‘<value
optimized out>’.

If you need to display the values of such optimized-out arguments, either deduce that
from other variables whose values depend on the one you are interested in, or recompile
without optimizations.

Most programs have a standard user entry point—a place where system libraries and
startup code transition into user code. For C this is main'. When GDB finds the entry
function in a backtrace it will terminate the backtrace, to avoid tracing into highly system-
specific (and generally uninteresting) code.

If you need to examine the startup code, or limit the number of levels in a backtrace,
you can change this behavior:

set backtrace past-main
set backtrace past-main on
Backtraces will continue past the user entry point.

set backtrace past-main off
Backtraces will stop when they encounter the user entry point. This is the
default.

show backtrace past-main
Display the current user entry point backtrace policy.

1 Note that embedded programs (the so-called “free-standing” environment) are not required to have a

main function as the entry point. They could even have multiple entry points.

62 Debugging with GDB

set backtrace past-entry

set backtrace past-entry on
Backtraces will continue past the internal entry point of an application. This
entry point is encoded by the linker when the application is built, and is likely
before the user entry point main (or equivalent) is called.

set backtrace past-entry off
Backtraces will stop when they encouter the internal entry point of an applica-
tion. This is the default.

show backtrace past-entry
Display the current internal entry point backtrace policy.

set backtrace limit n
set backtrace 1limit O
Limit the backtrace to n levels. A value of zero means unlimited.

show backtrace limit
Display the current limit on backtrace levels.

6.3 Selecting a frame

Most commands for examining the stack and other data in your program work on whichever
stack frame is selected at the moment. Here are the commands for selecting a stack frame;
all of them finish by printing a brief description of the stack frame just selected.

frame n

fn Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and so
on. The highest-numbered frame is the one for main.

frame addr

f addr Select the frame at address addr. This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your
program has multiple stacks and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer
and a program counter.

On the 29k architecture, it needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n Move n frames up the stack. For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
n defaults to one.

down n Move n frames down the stack. For positive numbers n, this advances toward
the innermost frame, to lower frame numbers, to frames that were created more
recently. n defaults to one. You may abbreviate down as do.

Chapter 6: Examining the Stack 63

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source file
and line number of execution in that frame. The second line shows the text of that source
line.

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10

10 read_input_file (argv[il);

After such a printout, the 1ist command with no arguments prints ten lines centered on
the point of execution in the frame. You can also edit the program at the point of execution
with your favorite editing program by typing edit. See Section 7.1 [Printing source lines],
page 65, for details.

up-silently n

down-silently n
These two commands are variants of up and down, respectively; they differ in
that they do their work silently, without causing display of the new frame. They
are intended primarily for use in GDB command scripts, where the output might
be unnecessary and distracting.

6.4 Information about a frame

There are several other commands to print information about the selected stack frame.

frame

f When used without any argument, this command does not change which frame
is selected, but prints a brief description of the currently selected stack frame.
It can be abbreviated £. With an argument, this command is used to select a
stack frame. See Section 6.3 [Selecting a frame], page 62.

info frame
info f This command prints a verbose description of the selected stack frame, includ-
ing:

e the address of the frame

e the address of the next frame down (called by this frame)

e the address of the next frame up (caller of this frame)

e the language in which the source code corresponding to this frame is written
e the address of the frame’s arguments

e the address of the frame’s local variables

e the program counter saved in it (the address of execution in the caller
frame)

e which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

64 Debugging with GDB

info frame addr

info f addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command. This requires
the same kind of address (more than one for some architectures) that you specify
in the frame command. See Section 6.3 [Selecting a frame], page 62.

info args Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These
are all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack
frame at the current point of execution. To see other exception handlers, visit
the associated frame (using the up, down, or frame commands); then type info
catch. See Section 5.1.3 [Setting catchpoints], page 44.

Chapter 7: Examining Source Files 65

7 Examining Source Files

GDB can print parts of your program’s source, since the debugging information recorded in
the program tells GDB what source files were used to build it. When your program stops,
GDB spontaneously prints the line where it stopped. Likewise, when you select a stack frame
(see Section 6.3 [Selecting a frame], page 62), GDB prints the line where execution in that
frame has stopped. You can print other portions of source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs facilities
to view source; see Chapter 23 [Using GDB under GNU Emacs], page 227.

7.1 Printing source lines

To print lines from a source file, use the list command (abbreviated 1). By default, ten
lines are printed. There are several ways to specify what part of the file you want to print.

Here are the forms of the 1list command most commonly used:

list linenum
Print lines centered around line number linenum in the current source file.

list function
Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a 1ist command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Chapter 6
[Examining the Stack]|, page 59), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the 1ist command.
You can change this using set listsize:

set listsize count
Make the 1ist command display count source lines (unless the 1ist argument
explicitly specifies some other number).

show listsize
Display the number of lines that 1ist prints.

Repeating a list command with discards the argument, so it is equivalent to
typing just 1ist. This is more useful than listing the same lines again. An exception is
made for an argument of ‘-’; that argument is preserved in repetition so that each repetition
moves up in the source file.

In general, the 1ist command expects you to supply zero, one or two linespecs. Linespecs
specify source lines; there are several ways of writing them, but the effect is always to specify
some source line. Here is a complete description of the possible arguments for 1ist:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are linespecs.

66 Debugging with GDB

list ,last
Print lines ending with Ilast.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.
list - Print lines just before the lines last printed.
list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of linespec.

number Specifies line number of the current source file. When a 1list command has
two linespecs, this refers to the same source file as the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as the second
linespec in a 1ist command that has two, this specifies the line offset lines down
from the first linespec.

-offset Specifies the line offset lines before the last line printed.

filename :number
Specifies line number in the source file filename.

function Specifies the line that begins the body of the function function. For example:
in C, this is the line with the open brace.

filename :function
Specifies the line of the open-brace that begins the body of the function function
in the file filename. You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

xaddress Specifies the line containing the program address address. address may be any
expression.

7.2 Editing source files

To edit the lines in a source file, use the edit command. The editing program of your
choice is invoked with the current line set to the active line in the program. Alternatively,
there are several ways to specify what part of the file you want to print if you want to see
other parts of the program.

Here are the forms of the edit command most commonly used:
edit Edit the current source file at the active line number in the program.

edit number
Edit the current source file with number as the active line number.

edit function
Edit the file containing function at the beginning of its definition.

edit filename :number
Specifies line number in the source file filename.

Chapter 7: Examining Source Files 67

edit filename :function
Specifies the line that begins the body of the function function in the file file-
name. You only need the file name with a function name to avoid ambiguity
when there are identically named functions in different source files.

edit *address
Specifies the line containing the program address address. address may be any
expression.

7.2.1 Choosing your editor

You can customize GDB to use any editor you want!. By default, it is ‘/bin/ex’, but you
can change this by setting the environment variable EDITOR before using GDB. For example,
to configure GDB to use the vi editor, you could use these commands with the sh shell:

EDITOR=/usr/bin/vi
export EDITOR
gdb ...

or in the csh shell,

setenv EDITOR /usr/bin/vi
gdb ...

7.3 Searching source files

There are two commands for searching through the current source file for a regular expres-
sion.

forward-search regexp

search regexp
The command ‘forward-search regexp’ checks each line, starting with the
one following the last line listed, for a match for regexp. It lists the line that is
found. You can use the synonym ‘search regexp’ or abbreviate the command
name as fo.

reverse-search regexp
The command ‘reverse-search regexp’ checks each line, starting with the
one before the last line listed and going backward, for a match for regexp. It
lists the line that is found. You can abbreviate this command as rev.

7.4 Specifying source directories

Executable programs sometimes do not record the directories of the source files from which
they were compiled, just the names. Even when they do, the directories could be moved
between the compilation and your debugging session. GDB has a list of directories to search
for source files; this is called the source path. Each time GDB wants a source file, it tries all
the directories in the list, in the order they are present in the list, until it finds a file with
the desired name.

For example, suppose an executable references the file ‘/usr/src/foo-1.0/1ib/foo.c’,
and our source path is ‘/mnt/cross’. The file is first looked up literally; if this fails,

L' The only restriction is that your editor (say ex), recognizes the following command-line syntax:

ex +number file

The optional numeric value +number specifies the number of the line in the file where to start editing.

68 Debugging with GDB

‘/mnt/cross/usr/src/foo-1.0/1lib/foo.c’ is tried; if this fails, ‘/mnt/cross/foo.c’ is
opened; if this fails, an error message is printed. GDB does not look up the parts of the source
file name, such as ‘/mnt/cross/src/foo-1.0/1lib/foo.c’. Likewise, the subdirectories of
the source path are not searched: if the source path is ‘/mnt/cross’, and the binary refers
to ‘foo.c’, GDB would not find it under ‘/mnt/cross/usr/src/foo-1.0/1ib’.

Plain file names, relative file names with leading directories, file names containing dots,
etc. are all treated as described above; for instance, if the source path is ‘/mnt/cross’, and
the source file is recorded as ‘../1ib/foo.c’, GDB would first try ‘../1ib/foo.c’, then
‘/mnt/cross/../lib/foo.c’, and after that—‘/mnt/cross/foo.c’.

Note that the executable search path is not used to locate the source files.

Whenever you reset or rearrange the source path, GDB clears out any information it has
cached about where source files are found and where each line is in the file.

When you start GDB, its source path includes only ‘cdir’ and ‘cwd’, in that order. To
add other directories, use the directory command.

The search path is used to find both program source files and GDB script files (read using
the ‘~command’ option and ‘source’ command).

In addition to the source path, GDB provides a set of commands that manage a list of
source path substitution rules. A substitution rule specifies how to rewrite source directories
stored in the program’s debug information in case the sources were moved to a different
directory between compilation and debugging. A rule is made of two strings, the first
specifying what needs to be rewritten in the path, and the second specifying how it should
be rewritten. In [set substitute-path], page 69, we name these two parts from and to
respectively. GDB does a simple string replacement of from with to at the start of the
directory part of the source file name, and uses that result instead of the original file name
to look up the sources.

Using the previous example, suppose the ‘foo-1.0" tree has been moved from ‘/usr/src’
to ‘/mnt/cross’, then you can tell GDB to replace ‘/usr/src’ in all source path names with
‘/mnt/cross’. The first lookup will then be ‘/mnt/cross/foo-1.0/1ib/foo.c’ in place of
the original location of ‘/usr/src/foo-1.0/1ib/foo.c’. To define a source path substitu-
tion rule, use the set substitute-path command (see [set substitute-path], page 69).

To avoid unexpected substitution results, a rule is applied only if the from part
of the directory name ends at a directory separator. For instance, a rule substituting
‘/usr/source’ into ‘/mnt/cross’ will be applied to ‘/usr/source/foo-1.0’ but not to
‘/usr/sourceware/foo-2.0". And because the substitution is applied only at the begining
of the directory name, this rule will not be applied to ‘/root/usr/source/baz.c’ either.

In many cases, you can achieve the same result using the directory command. However,
set substitute-path can be more efficient in the case where the sources are organized in
a complex tree with multiple subdirectories. With the directory command, you need to
add each subdirectory of your project. If you moved the entire tree while preserving its
internal organization, then set substitute-path allows you to direct the debugger to all
the sources with one single command.

set substitute-path is also more than just a shortcut command. The source path
is only used if the file at the original location no longer exists. On the other hand, set
substitute-path modifies the debugger behavior to look at the rewritten location instead.
So, if for any reason a source file that is not relevant to your executable is located at the

Chapter 7: Examining Source Files 69

original location, a substitution rule is the only method available to point GDB at the new

location.

directory dirname ...
dir dirname ...

directory

Add directory dirname to the front of the source path. Several directory names
may be given to this command, separated by ‘:’ (‘;” on MS-DOS and MS-
Windows, where ‘:” usually appears as part of absolute file names) or white-
space. You may specify a directory that is already in the source path; this
moves it forward, so GDB searches it sooner.

You can use the string ‘$cdir’ to refer to the compilation directory (if one is
recorded), and ‘$cwd’ to refer to the current working directory. ‘$cwd’ is not
the same as ‘.’—the former tracks the current working directory as it changes
during your GDB session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

Reset the source path to its default value (‘$cdir:$cwd’ on Unix systems). This
requires confirmation.

show directories

Print the source path: show which directories it contains.

set substitute-path from to

Define a source path substitution rule, and add it at the end of the current list
of existing substitution rules. If a rule with the same from was already defined,
then the old rule is also deleted.

For example, if the file ‘/foo/bar/baz.c’ was moved to ‘/mnt/cross/baz.c’,
then the command
(gdb) set substitute-path /usr/src /mnt/cross

will tell GDB to replace ‘/usr/src’ with ‘/mnt/cross’, which will allow GDB to
find the file ‘baz.c’ even though it was moved.

In the case when more than one substitution rule have been defined, the rules
are evaluated one by one in the order where they have been defined. The first
one matching, if any, is selected to perform the substitution.

For instance, if we had entered the following commands:

(gdb) set substitute-path /usr/src/include /mnt/include
(gdb) set substitute-path /usr/src /mnt/src

GDB would then rewrite ‘/usr/src/include/defs.h’into ‘/mnt/include/defs.

by using the first rule. However, it would use the second rule to rewrite
‘/usr/src/lib/foo.c’ into ‘/mnt/src/lib/foo.c’.

unset substitute-path [path]

If a path is specified, search the current list of substitution rules for a rule that
would rewrite that path. Delete that rule if found. A warning is emitted by
the debugger if no rule could be found.

If no path is specified, then all substitution rules are deleted.

h7

70 Debugging with GDB

show substitute-path [path]
If a path is specified, then print the source path substitution rule which would
rewrite that path, if any.

If no path is specified, then print all existing source path substitution rules.

If your source path is cluttered with directories that are no longer of interest, GDB may
sometimes cause confusion by finding the wrong versions of source. You can correct the
situation as follows:

1. Use directory with no argument to reset the source path to its default value.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

7.5 Source and machine code

You can use the command info line to map source lines to program addresses (and vice
versa), and the command disassemble to display a range of addresses as machine instruc-
tions. When run under GNU Emacs mode, the info 1ine command causes the arrow to
point to the line specified. Also, info line prints addresses in symbolic form as well as
hex.

info line linespec
Print the starting and ending addresses of the compiled code for source line
linespec. You can specify source lines in any of the ways understood by the
list command (see Section 7.1 [Printing source lines|, page 65).

For example, we can use info line to discover the location of the object code for the
first line of function m4_changequote:

(gdb) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a par-
ticular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting
address of the line, so that ‘x/i’ is sufficient to begin examining the machine code (see
Section 8.5 [Examining memory], page 77). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9 [Convenience variables|, page 86).

disassemble
This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of
the selected frame. A single argument to this command is a program counter
value; GDB dumps the function surrounding this value. Two arguments specify
a range of addresses (first inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC
2.0 code:
(gdb) disas 0x32c4 0x32e4

Dump of assembler code from 0x32c4 to 0x32e4:
0x32c4 <main+204>: addil O,dp

Chapter 7: Examining Source Files 71

0x32c8 <main+208>: 1dw 0x22c(sr0,rl),r26
0x32cc <main+212>: 1dil 0x3000,r31
0x32d0 <main+216>: ble 0x3f8(sr4,r31)
0x32d4 <main+220>: ldo 0(r31),rp

0x32d8 <main+224>: addil -0x800,dp
0x32dc <main+228>: ldo 0x588(rl),r26
0x32e0 <main+232>: 1dil 0x3000,r31

End of assembler dump.

Some architectures have more than one commonly-used set of instruction mnemonics or
other syntax.

For programs that were dynamically linked and use shared libraries, instructions that
call functions or branch to locations in the shared libraries might show a seemingly bogus
location—it’s actually a location of the relocation table. On some architectures, GDB might
be able to resolve these to actual function names.

set disassembly-flavor instruction-set
Select the instruction set to use when disassembling the program via the
disassemble or x/i commands.

Currently this command is only defined for the Intel x86 family. You can set
instruction-set to either intel or att. The default is att, the AT&T flavor
used by default by Unix assemblers for x86-based targets.

show disassembly-flavor
Show the current setting of the disassembly flavor.

72

Debugging with GDB

Chapter 8: Examining Data 73

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated
p), or its synonym inspect. It evaluates and prints the value of an expression of the
language your program is written in (see Chapter 12 [Using GDB with Different Languages],
page 115).

print expr

print /f expr
expr is an expression (in the source language). By default the value of expr is
printed in a format appropriate to its data type; you can choose a different for-
mat by specifying ‘/f’, where f is a letter specifying the format; see Section 8.4
[Output formats], page 76.

print

print /f If you omit expr, GDB displays the last value again (from the value history; see
Section 8.8 [Value history|, page 85). This allows you to conveniently inspect
the same value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See Section 8.5 [Examining
memory|, page 77.

If you are interested in information about types, or about how the fields of a struct
or a class are declared, use the ptype exp command rather than print. See Chapter 13
[Examining the Symbol Table|, page 139.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any
kind of constant, variable or operator defined by the programming language you are using
is valid in an expression in GDB. This includes conditional expressions, function calls, casts,
and string constants. It also includes preprocessor macros, if you compiled your program
to include this information; see Section 4.1 [Compilation], page 25.

GDB supports array constants in expressions input by the user. The syntax is {element,
element. . .}. For example, you can use the command print {1, 2, 3} to build up an array
in memory that is malloced in the target program.

Because C is so widespread, most of the expressions shown in examples in this manual
are in C. See Chapter 12 [Using GDB with Different Languages|, page 115, for information
on how to use expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of
your programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@ ‘@’ is a binary operator for treating parts of memory as arrays. See Section 8.3
[Artificial arrays|, page 75, for more information.

74 Debugging with GDB

‘::7 allows you to specify a variable in terms of the file or function where it is
defined. See Section 8.2 [Program variables|, page 74.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3
[Selecting a frame], page 62); they must be either:

e global (or file-static)

or

e visible according to the scope rules of the programming language from the point of
execution in that frame

This means that in the function

foo (a)
int a;
{
bar (a);
{
int b = test ();
bar (b);
}
}
you can examine and use the variable a whenever your program is executing within the
function foo, but you can only use or examine the variable b while your program is executing

inside the block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to have
more than one such variable or function with the same name (in different source files). If
that happens, referring to that name has unpredictable effects. If you wish, you can specify
a static variable in a particular function or file, using the colon-colon (: :) notation:

file::variable

function::variable
Here file or function is the name of the context for the static variable. In the case of file
names, you can use quotes to make sure GDB parses the file name as a single word—for
example, to print a global value of x defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::7 is very rarely in conflict with the very similar use of the same notation

in C++. GDB also supports use of the C++ scope resolution operator in GDB expressions.
Warning: Occasionally, a local variable may appear to have the wrong value
at certain points in a function—just after entry to a new scope, and just before
exit.

Chapter 8: Examining Data 75

You may see this problem when you are stepping by machine instructions. This is
because, on most machines, it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local variable definitions may be gone.

This may also happen when the compiler does significant optimizations. To be sure of
always seeing accurate values, turn off all optimization when compiling.

Another possible effect of compiler optimizations is to optimize unused variables out of
existence, or assign variables to registers (as opposed to memory addresses). Depending
on the support for such cases offered by the debug info format used by the compiler, GDB
might not be able to display values for such local variables. If that happens, GDB will print
a message like this:

No symbol "foo" in current context.

To solve such problems, either recompile without optimizations, or use a different debug
info format, if the compiler supports several such formats. For example, Gcc, the GNU
C/C++ compiler, usually supports the ‘-gstabs+’ option. ‘-gstabs+’ produces debug info
in a format that is superior to formats such as COFF. You may be able to use DWARF
2 (‘-gdwarf-2’), which is also an effective form for debug info. See section “Options for
Debugging Your Program or GNU CC” in Using GNU CC. See Section 12.4.1 [Debugging
C++], page 119, for more info about debug info formats that are best suited to C++ programs.

If you ask to print an object whose contents are unknown to GDB, e.g., because its
data type is not completely specified by the debug information, GDB will say ‘<incomplete
type>’. See Chapter 13 [Symbols], page 139, for more about this.

8.3 Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a pointer
exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array, using
the binary operator ‘@’. The left operand of ‘@’ should be the first element of the desired
array and be an individual object. The right operand should be the desired length of the
array. The result is an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element comes from bytes of
memory immediately following those that hold the first element, and so on. Here is an
example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of ‘@ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value history
(see Section 8.8 [Value history], page 85), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

76 Debugging with GDB

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in ‘(type [1) value’) GDB calcu-
lates the size to fill the value (as ‘sizeof (value)/sizeof (type)’:

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9 [Convenience variables|, page 86)
as a counter in an expression that prints the first interesting value, and then repeat that
expression via (RET). For instance, suppose you have an array dtab of pointers to structures,
and you are interested in the values of a field fv in each structure. Here is an example of
what you might type:

set $i = 0
p dtab[$i++]->fv

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes this is not what you
want. For example, you might want to print a number in hex, or a pointer in decimal. Or
you might want to view data in memory at a certain address as a character string or as an
instruction. To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

X Regard the bits of the value as an integer, and print the integer in hexadecimal.
d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

) Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.!

a Print as an address, both absolute in hexadecimal and as an offset from the

nearest preceding symbol. You can use this format used to discover where (in
what function) an unknown address is located:

(gdb) p/a 0x54320

$3 = 0x54320 <_initialize_vx+396>
The command info symbol 0x54320 yields similar results. See Chapter 13
[Symbols], page 139.

1 4y cannot be used because these format letters are also used with the x command, where ‘b’ stands for
“byte”; see Section 8.5 [Examining memory]|, page 77.

Chapter 8: Examining Data 77

c Regard as an integer and print it as a character constant. This prints both the
numerical value and its character representation. The character representation
is replaced with the octal escape ‘\nnn’ for characters outside the 7-bit AsciI
range.

f Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 87),
type
p/x $pc
Note that no space is required before the slash; this is because command names in GDB
cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
print command with just a format and no expression. For example, ‘p/x’ reprints the last
value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in any of several formats,
independently of your program’s data types.

x/nfu addr
X addr
X Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how
to format it; addr is an expression giving the address where you want to start displaying
memory. If you use defaults for nfu, you need not type the slash ‘/’. Several commands set
convenient defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print (‘x’, ‘d’, ‘u’, ‘o’ ‘t’, ‘a’,
‘c’, ‘f’), and in addition ‘s’ (for null-terminated strings) and ‘i’ (for machine
instructions). The default is ‘x’ (hexadecimal) initially. The default changes
each time you use either x or print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

W Words (four bytes). This is the initial default.
g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the
next time you use x. (For the ‘s’ and ‘i’ formats, the unit size is ignored and
is normally not written.)

78 Debugging with GDB

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always inter-
preted as an integer address of a byte of memory. See Section 8.1 [Expressions],
page 73, for more information on expressions. The default for addr is usu-
ally just after the last address examined—but several other commands also set
the default address: info breakpoints (to the address of the last breakpoint
listed), info line (to the starting address of a line), and print (if you use it
to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (‘u’), starting at address 0x54320. ‘x/4xw $sp’
prints the four words (‘w’) of memory above the stack pointer (here, ‘$sp’; see Section 8.10
[Registers|, page 87) in hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either order
works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing. (However,
the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you might still want to
use a count n; for example, ‘3i’ specifies that you want to see three machine instructions,
including any operands. The command disassemble gives an alternative way of inspecting
machine instructions; see Section 7.5 [Source and machine code|, page 70.

All the defaults for the arguments to x are designed to make it easy to continue scanning
memory with minimal specifications each time you use x. For example, after you have
inspected three machine instructions with ‘x/3i addr’, you can inspect the next seven with
just ‘x/7’. If you use to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value history
because there is often too much of them and they would get in the way. Instead, GDB
makes these values available for subsequent use in expressions as values of the convenience
variables $_ and $__. After an x command, the last address examined is available for use
in expressions in the convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units were
printed on the last line of output.

When you are debugging a program running on a remote target machine (see Section 16.4
[Remote], page 164), you may wish to verify the program’s image in the remote machine’s
memory against the executable file you downloaded to the target. The compare-sections
command is provided for such situations.

compare-sections [section-name]
Compare the data of a loadable section section-name in the executable file
of the program being debugged with the same section in the remote machine’s
memory, and report any mismatches. With no arguments, compares all loadable
sections. This command’s availability depends on the target’s support for the
"qCRC" remote request.

Chapter 8: Examining Data 79

8.6 Automatic display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB prints its
value each time your program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values. As with displays
you request manually using x or print, you can specify the output format you prefer; in
fact, display decides whether to use print or x depending on how elaborate your format
specification is—it uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’)
that are only supported by x; otherwise it uses print.

display expr
Add the expression expr to the list of expressions to display each time your
program stops. See Section 8.1 [Expressions|, page 73.

display does not repeat if you press again after using it.

display/fmt expr
For fmt specifying only a display format and not a size or count, add the
expression expr to the auto-display list but arrange to display it each time in
the specified format fmt. See Section 8.4 [Output formats|, page 76.

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units, add the expres-
sion addr as a memory address to be examined each time your program stops.
Examining means in effect doing ‘x/fmt addr’. See Section 8.5 [Examining
memory|, page 77.

For example, ‘display/i $pc’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc’ is a common name for the program counter;
see Section 8.10 [Registers], page 87).

undisplay dnums. ..
delete display dnums. ..
Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press after using it. (Otherwise you
would just get the error ‘No display number ...’.)

disable display dnums...
Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums. ..
Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when
your program stops.

80 Debugging with GDB

info display
Print the list of expressions previously set up to display automatically, each
one with its item number, but without showing the values. This includes dis-
abled expressions, which are marked as such. It also includes expressions which
would not be displayed right now because they refer to automatic variables not
currently available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution enters
a context where one of its variables is not defined. For example, if you give the command
display last_char while inside a function with an argument last_char, GDB displays
this argument while your program continues to stop inside that function. When it stops
elsewhere—where there is no variable last_char—the display is disabled automatically.
The next time your program stops where last_char is meaningful, you can enable the
display expression once again.

8.7 Print settings

GDB provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address
set print address on
GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:
(gdb) £
#0 set_quotes (1gq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530
530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For example, this is the
same stack frame displayed with set print address off:
(gdb) set print addr off

(gdb) £
#0 set_quotes (1g="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use ‘set print address off’ to eliminate all machine dependent dis-
plays from the GDB interface. For example, with print address off, you
should get the same text for backtraces on all machines—whether or not they
involve pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus
an offset. If that symbol does not uniquely identify the address (for example, it is a name
whose scope is a single source file), you may need to clarify. One way to do this is with info

Chapter 8: Examining Data 81

line, for example ‘info line *0x4537’. Alternately, you can set GDB to print the source
file and line number when it prints a symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is when
disassembling code; GDB shows you the line number and source file that corresponds to each
instruction.

Also, you may wish to see the symbolic form only if the address being printed is reason-
ably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell ¢DB to only display the symbolic form of an address if the offset between
the closest earlier symbol and the address is less than max-offset. The default
is 0, which tells GDB to always print the symbolic form of an address if any
symbol precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try ‘set print
symbol-filename on’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer’. This interprets the address in symbolic
form. For example, here GDB shows that a variable ptt points at another variable t,
defined in ‘hi2.c’:

(gdb) set print symbol-filename on

(gdb) p/a ptt

$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does not show the
symbol name and filename of the referent, even with the appropriate set print
options turned on.

Other settings control how different kinds of objects are printed:

set print array

set print array on
Pretty print arrays. This format is more convenient to read, but uses more
space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

82 Debugging with GDB

set print array-indexes

set print array-indexes on
Print the index of each element when displaying arrays. May be more convenient
to locate a given element in the array or quickly find the index of a given element
in that printed array. The default is off.

set print array-indexes off
Stop printing element indexes when displaying arrays.

show print array-indexes
Show whether the index of each element is printed when displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array ¢DB will print. If GDB is printing
a large array, it stops printing after it has printed the number of elements set
by the set print elements command. This limit also applies to the display of
strings. When GDB starts, this limit is set to 200. Setting number-of-elements
to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print. If the
number is 0, then the printing is unlimited.

set print repeats
Set the threshold for suppressing display of repeated array elelments. When
the number of consecutive identical elements of an array exceeds the threshold,
GDB prints the string "<repeats n times>", where n is the number of identical
repetitions, instead of displaying the identical elements themselves. Setting the
threshold to zero will cause all elements to be individually printed. The default
threshold is 10.

show print repeats
Display the current threshold for printing repeated identical elements.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL
is encountered. This is useful when large arrays actually contain only short
strings. The default is off.

show print null-stop
Show whether GDB stops printing an array on the first NULL character.

set print pretty on
Cause GDB to print structures in an indented format with one member per line,

like this:
$1 = {

next = 0x0,
flags = {
sweet = 1,
sour = 1
},
meat = 0x54 "Pork"
}

Chapter 8: Examining Data 83

set print pretty off
Cause GDB to print structures in a compact format, like this:
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation \nnn.
This setting is best if you are working in English (Asci1) and you use the high-
order bit of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international char-
acter sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell ¢DB to print unions which are contained in structures and other unions.
This is the default setting.

set print union off
Tell DB not to print unions which are contained in structures and other unions.
GDB will print "{...}" instead.

show print union
Ask GDB whether or not it will print unions which are contained in structures
and other unions.

For example, given the declarations

typedef enum {Tree, Bugl} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpillar, Cocoon, Butterfly}
Bug_forms;

struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;
} form;

};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect ‘p foo’ would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}
and with set print union off in effect it would print
$1 = {it = Tree, form = {...}}
set print union affects programs written in C-like languages and in Pascal.

84 Debugging with GDB

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”)
form passed to the assembler and linker for type-safe linkage. The default is
on.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or de-
mangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names. The choices for style are currently:

auto Allow GDB to choose a decoding style by inspecting your program.

gnu Decode based on the GNU C++ compiler (g++) encoding algorithm.
This is the default.

hp Decode based on the HP ANSI C++ (aCC) encoding algorithm.

lucid Decode based on the Lucid C++ compiler (1cc) encoding algorithm.

arm Decode using the algorithm in the C++ Annotated Reference Man-

ual. Warning: this setting alone is not sufficient to allow debugging
cfront-generated executables. GDB would require further enhance-
ment to permit that.

If you omit style, you will see a list of possible formats.

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on
When displaying a pointer to an object, identify the actual (derived) type of
the object rather than the declared type, using the virtual function table.

set print object off
Display only the declared type of objects, without reference to the virtual func-
tion table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

Chapter 8: Examining Data 85

set print static-members
set print static-members on
Print static members when displaying a C++ object. The default is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed or not.

set print pascal_static-members
set print pascal_static-members on
Print static members when displaying a Pascal object. The default is on.

set print pascal_static-members off
Do not print static members when displaying a Pascal object.

show print pascal_static-members
Show whether Pascal static members are printed or not.

set print vtbl

set print vtbl on
Pretty print C++ virtual function tables. The default is off. (The vtbl com-
mands do not work on programs compiled with the HP ANSI C++ compiler
(aCC).)

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

8.8 Value history

Values printed by the print command are saved in the GDB value history. This allows you
to refer to them in other expressions. Values are kept until the symbol table is re-read or
discarded (for example with the file or symbol-file commands). When the symbol table
changes, the value history is discarded, since the values may contain pointers back to the
types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are successive integers starting with one. print shows you the history number assigned to
a value by printing ‘$num =’ before the value; here num is the history number.

To refer to any previous value, use ‘¢’ followed by the value’s history number. The way
print labels its output is designed to remind you of this. Just $ refers to the most recent
value in the history, and $$ refers to the value before that. $$n refers to the nth value from
the end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to
$.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points to the next one, you

can print the contents of the next one with this:

86 Debugging with GDB

p *$.next

You can print successive links in the chain by repeating this command—which you can do
by just typing RET).
Note that the history records values, not expressions. If the value of x is 4 and you type

these commands:

print x

set x=5
then the value recorded in the value history by the print command remains 4 even though
the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers. This is
like ‘p $$9’ repeated ten times, except that show values does not change the
history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Pressing to repeat show values n has exactly the same effect as ‘show values +.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB; they are not part of your
program, and setting a convenience variable has no direct effect on further execution of your
program. That is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’ can be used for
a convenience variable, unless it is one of the predefined machine-specific register names
(see Section 8.10 [Registers|, page 87). (Value history references, in contrast, are numbers
preceded by ‘$’. See Section 8.8 [Value history|, page 85.)

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example:
set $foo = xobject_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any
type of value, including structures and arrays, even if that variable already has a value of
a different type. The convenience variable, when used as an expression, has the type of its
current value.

show convenience
Print a list of convenience variables used so far, and their values. Abbreviated
show conv.

Chapter 8: Examining Data 87

init-if-undefined $variable = expression
Set a convenience variable if it has not already been set. This is useful for
user-defined commands that keep some state. It is similar, in concept, to using
local static variables with initializers in C (except that convenience variables
are global). It can also be used to allow users to override default values used in
a command script.

If the variable is already defined then the expression is not evaluated so any
side-effects do not occur.

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For example, to print a field from successive elements of an array
of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing RET).

Some convenience variables are created automatically by GDB and given values likely to
be useful.

$_ The variable $_ is automatically set by the x command to the last address
examined (see Section 8.5 [Examining memory|, page 77). Other commands
which provide a default address for x to examine also set $_ to that address;
these commands include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it is a pointer to the
type of $__.

$__ The variable $__ is automatically set by the x command to the value found in
the last address examined. Its type is chosen to match the format in which the
data was printed.

$_exitcode
The variable $_exitcode is automatically set to the exit code when the program
being debugged terminates.

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names starting
with ‘$¢’. The names of registers are different for each machine; use info registers to see
the names used on your machine.

info registers
Print the names and values of all registers except floating-point and vector
registers (in the selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point and vector
registers (in the selected stack frame).

88 Debugging with GDB

info registers regname ...
Print the relativized value of each specified register regname. As discussed in
detail below, register values are normally relative to the selected stack frame.
regname may be any register name valid on the machine you are using, with or
without the initial ‘§’.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics for
registers. The register names $pc and $sp are used for the program counter register and
the stack pointer. $£fp is used for a register that contains a pointer to the current stack
frame, and $ps is used for a register that contains the processor status. For example, you
could print the program counter in hex with
p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer? with
set $sp += 4

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no conflict.
The info registers command shows the canonical names. For example, on the SPARC,
info registers displays the processor status register as $psr but you can also refer to it
as $ps; and on x86-based machines $ps is an alias for the EFLAGS register.

GDB always considers the contents of an ordinary register as an integer when the register
is examined in this way. Some machines have special registers which can hold nothing but
floating point; these registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value (although you can
print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This means that the data
format in which the register contents are saved by the operating system is not the same
one that your program normally sees. For example, the registers of the 68881 floating point
coprocessor are always saved in “extended” (raw) format, but all C programs expect to work
with “double” (virtual) format. In such cases, GDB normally works with the virtual format
only (the format that makes sense for your program), but the info registers command
prints the data in both formats.

Some machines have special registers whose contents can be interpreted in several differ-
ent ways. For example, modern x86-based machines have SSE and MMX registers that can
hold several values packed together in several different formats. GDB refers to such registers
in struct notation:

(gdb) print $xmml

$1 ={
vd_float = {0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044},
v2_double = {9.92129282474342e-303, 2.7585945287983262e-313},

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use return; see Section 14.4 [Returning from a function], page 147.

Chapter 8: Examining Data 89

v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
v8_int16 = {0, 0, 14072, 315, 11, 0, 13, O},

v4_int32 = {0, 20657912, 11, 13},

v2_int64 = {88725056443645952, 55834574859},

uint128 = 0x000000040000000b013b36£800000000
}

To set values of such registers, you need to tell GDB which view of the register you wish to
change, as if you were assigning value to a struct member:

(gdb) set $xmml.uint128 = 0x000000000000000000000000FFFFFFFF

Normally, register values are relative to the selected stack frame (see Section 6.3 [Select-
ing a frame|, page 62). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to see
the true contents of hardware registers, you must select the innermost frame (with ‘frame
0).

However, GDB must deduce where registers are saved, from the machine code generated
by your compiler. If some registers are not saved, or if GDB is unable to locate the saved
registers, the selected stack frame makes no difference.

8.11 Floating point hardware

Depending on the configuration, GDB may be able to give you more information about the
status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit. The
exact contents and layout vary depending on the floating point chip. Currently,
‘info float’ is supported on the ARM and x86 machines.

8.12 Vector Unit

Depending on the configuration, GDB may be able to give you more information about the
status of the vector unit.

info vector
Display information about the vector unit. The exact contents and layout vary
depending on the hardware.

8.13 Operating system auxiliary information
GDB provides interfaces to useful OS facilities that can help you debug your program.

When GDB runs on a Posix system (such as GNU or Unix machines), it interfaces with the
inferior via the ptrace system call. The operating system creates a special sata structure,
called struct user, for this interface. You can use the command info udot to display the
contents of this data structure.

info udot Display the contents of the struct user maintained by the OS kernel for the
program being debugged. GDB displays the contents of struct user as a list
of hex numbers, similar to the examine command.

90 Debugging with GDB

Some operating systems supply an auxiliary vector to programs at startup. This is akin
to the arguments and environment that you specify for a program, but contains a system-
dependent variety of binary values that tell system libraries important details about the
hardware, operating system, and process. Each value’s purpose is identified by an inte-
ger tag; the meanings are well-known but system-specific. Depending on the configuration
and operating system facilities, GDB may be able to show you this information. For re-
mote targets, this functionality may further depend on the remote stub’s support of the
‘gXfer:auxv:read’ packet, see [qXfer auxiliary vector read|, page 341.

info auxv Display the auxiliary vector of the inferior, which can be either a live process
or a core dump file. GDB prints each tag value numerically, and also shows
names and text descriptions for recognized tags. Some values in the vector are
numbers, some bit masks, and some pointers to strings or other data. GDB
displays each value in the most appropriate form for a recognized tag, and in
hexadecimal for an unrecognized tag.

8.14 Memory region attributes

Memory region attributes allow you to describe special handling required by regions of
your target’s memory. GDB uses attributes to determine whether to allow certain types
of memory accesses; whether to use specific width accesses; and whether to cache target
memory. By default the description of memory regions is fetched from the target (if the
current target supports this), but the user can override the fetched regions.

Defined memory regions can be individually enabled and disabled. When a memory
region is disabled, GDB uses the default attributes when accessing memory in that region.
Similarly, if no memory regions have been defined, GDB uses the default attributes when
accessing all memory.

When a memory region is defined, it is given a number to identify it; to enable, disable,
or remove a memory region, you specify that number.

mem lower upper attributes...
Define a memory region bounded by Ilower and upper with attributes
attributes. . ., and add it to the list of regions monitored by GDB. Note that
upper == 0 is a special case: it is treated as the the target’s maximum
memory address. (Oxffff on 16 bit targets, Oxfffff on 32 bit targets, etc.)

mem auto Discard any user changes to the memory regions and use target-supplied regions,
if available, or no regions if the target does not support.

delete mem nums. ..
Remove memory regions nums. . . from the list of regions monitored by GDB.

disable mem nums. ..
Disable monitoring of memory regions nums. ... A disabled memory region is
not forgotten. It may be enabled again later.

enable mem nums. . .
Enable monitoring of memory regions nums. . ..

info mem Print a table of all defined memory regions, with the following columns for each
region:

Chapter 8: Examining Data 91

Memory Region Number

Enabled or Disabled.
Enabled memory regions are marked with ‘y’. Disabled memory
regions are marked with ‘n’.

Lo Address
The address defining the inclusive lower bound of the memory re-
gion.

Hi Address
The address defining the exclusive upper bound of the memory
region.

Attributes The list of attributes set for this memory region.
8.14.1 Attributes
8.14.1.1 Memory Access Mode

The access mode attributes set whether GDB may make read or write accesses to a memory
region.

While these attributes prevent GDB from performing invalid memory accesses, they do
nothing to prevent the target system, I/O DMA, etc. from accessing memory.

ro Memory is read only.
WO Memory is write only.
v Memory is read/write. This is the default.

8.14.1.2 Memory Access Size

The acccess size attributes tells GDB to use specific sized accesses in the memory region.
Often memory mapped device registers require specific sized accesses. If no access size
attribute is specified, GDB may use accesses of any size.

8 Use 8 bit memory accesses.

16 Use 16 bit memory accesses.
32 Use 32 bit memory accesses.
64 Use 64 bit memory accesses.

8.14.1.3 Data Cache

The data cache attributes set whether GDB will cache target memory. While this generally
improves performance by reducing debug protocol overhead, it can lead to incorrect results
because GDB does not know about volatile variables or memory mapped device registers.

cache Enable ¢DB to cache target memory.

nocache Disable GDB from caching target memory. This is the default.

92 Debugging with GDB

8.15 Copy between memory and a file

You can use the commands dump, append, and restore to copy data between target memory
and a file. The dump and append commands write data to a file, and the restore command
reads data from a file back into the inferior’s memory. Files may be in binary, Motorola
S-record, Intel hex, or Tektronix Hex format; however, GDB can only append to binary files.

dump [format| memory filename start_addr end_addr

dump [format| value filename expr
Dump the contents of memory from start_addr to end_addr, or the value of
expr, to filename in the given format.

The format parameter may be any one of:

binary Raw binary form.

ihex Intel hex format.

srec Motorola S-record format.
tekhex Tektronix Hex format.

GDB uses the same definitions of these formats as the GNU binary utilities, like
‘objdump’ and ‘objcopy’. If format is omitted, GDB dumps the data in raw
binary form.

append [binary| memory filename start_addr end_addr

append [binary| value filename expr
Append the contents of memory from start_addr to end_addr, or the value of
expr, to the file filename, in raw binary form. (GDB can only append data to
files in raw binary form.)

restore filename |[binary| bias start end
Restore the contents of file filename into memory. The restore command can
automatically recognize any known BFD file format, except for raw binary. To
restore a raw binary file you must specify the optional keyword binary after
the filename.

If bias is non-zero, its value will be added to the addresses contained in the file.
Binary files always start at address zero, so they will be restored at address
bias. Other bfd files have a built-in location; they will be restored at offset bias
from that location.

If start and/or end are non-zero, then only data between file offset start and
file offset end will be restored. These offsets are relative to the addresses in the
file, before the bias argument is applied.

8.16 How to Produce a Core File from Your Program

A core file or core dump is a file that records the memory image of a running process
and its process status (register values etc.). Its primary use is post-mortem debugging of a
program that crashed while it ran outside a debugger. A program that crashes automatically
produces a core file, unless this feature is disabled by the user. See Section 15.1 [Files],
page 151, for information on invoking GDB in the post-mortem debugging mode.

Chapter 8: Examining Data 93

Occasionally, you may wish to produce a core file of the program you are debugging in
order to preserve a snapshot of its state. GDB has a special command for that.

generate-core-file [file]

gcore [file]
Produce a core dump of the inferior process. The optional argument file specifies
the file name where to put the core dump. If not specified, the file name defaults
to ‘core.pid’, where pid is the inferior process ID.

Note that this command is implemented only for some systems (as of this
writing, GNU/Linux, FreeBSD, Solaris, Unixware, and S390).

8.17 Character Sets

If the program you are debugging uses a different character set to represent characters and
strings than the one GDB uses itself, GDB can automatically translate between the character
sets for you. The character set GDB uses we call the host character set; the one the inferior
program uses we call the target character set.

For example, if you are running GDB on a GNU/Linux system, which uses the ISO Latin 1
character set, but you are using GDB’s remote protocol (see Section 16.4 [Remote], page 164)
to debug a program running on an IBM mainframe, which uses the EBCDIC character set,
then the host character set is Latin-1, and the target character set is EBCDIC. If you give
GDB the command set target-charset EBCDIC-US, then GDB translates between EBCDIC
and Latin 1 as you print character or string values, or use character and string literals in
expressions.

GDB has no way to automatically recognize which character set the inferior program
uses; you must tell it, using the set target-charset command, described below.

Here are the commands for controlling GDB’s character set support:

set target-charset charset
Set the current target character set to charset. We list the character set
names GDB recognizes below, but if you type set target-charset followed
by (TAB)(TAB), GDB will list the target character sets it supports.

set host-charset charset
Set the current host character set to charset.

By default, GDB uses a host character set appropriate to the system it is running
on; you can override that default using the set host-charset command.

GDB can only use certain character sets as its host character set. We list the
character set names GDB recognizes below, and indicate which can be host
character sets, but if you type set target-charset followed by (TAB)(TAB),
GDB will list the host character sets it supports.

set charset charset
Set the current host and target character sets to charset. As above, if you type
set charset followed by (TAB)(TAB), GDB will list the name of the character sets
that can be used for both host and target.

94 Debugging with GDB

show charset
Show the names of the current host and target charsets.

show host-charset
Show the name of the current host charset.

show target-charset
Show the name of the current target charset.

GDB currently includes support for the following character sets:
ASCII Seven-bit U.S. ASCII. GDB can use this as its host character set.

IS0-8859-1
The ISO Latin 1 character set. This extends ASCII with accented characters
needed for French, German, and Spanish. GDB can use this as its host character
set.

EBCDIC-US

IBM1047 Variants of the EBCDIC character set, used on some of IBM’s mainframe op-
erating systems. (GNU/Linux on the S/390 uses U.S. ASCII.) GDB cannot use
these as its host character set.

Note that these are all single-byte character sets. More work inside GDB is needed
to support multi-byte or variable-width character encodings, like the UTF-8 and UCS-2
encodings of Unicode.

Here is an example of GDB’s character set support in action. Assume that the following
source code has been placed in the file ‘charset-test.c’:
#include <stdio.h>

char ascii_hello[]
= {72, 101, 108, 108, 111, 44, 32, 119,
111, 114, 108, 100, 33, 10, 0};
char ibm1047_hello[]
= {200, 133, 147, 147, 150, 107, 64, 166,
150, 153, 147, 132, 90, 37, 0};

main ()
{
printf ("Hello, world!\n");
}
In this program, ascii_hello and ibm1047_hello are arrays containing the string
‘Hello, world!’ followed by a newline, encoded in the AscIt and 1BM1047 character sets.

We compile the program, and invoke the debugger on it:

$ gcc -g charset-test.c -o charset-test

$ gdb -nw charset-test

GNU gdb 2001-12-19-cvs

Copyright 2001 Free Software Foundation, Inc.

(gdb)
We can use the show charset command to see what character sets GDB is currently

using to interpret and display characters and strings:

(gdb) show charset
The current host and target character set is ‘IS0-8859-1°.

Chapter 8: Examining Data 95

(gdb)

For the sake of printing this manual, let’s use ASCII as our initial character set:
(gdb) set charset ASCII
(gdb) show charset

The current host and target character set is ‘ASCII’.
(gdb)

Let’s assume that ASCII is indeed the correct character set for our host system — in
other words, let’s assume that if GDB prints characters using the Ascil character set, our
terminal will display them properly. Since our current target character set is also ASCII, the
contents of ascii_hello print legibly:

(gdb) print ascii_hello

$1 = 0x401698 "Hello, world!\n"
(gdb) print ascii_hello[0]

$2 = 72 W’

(gdb)

GDB uses the target character set for character and string literals you use in expressions:
(gdb) print ’+’
$3 = 43 4
(gdb)

The ASCII character set uses the number 43 to encode the ‘+’ character.

GDB relies on the user to tell it which character set the target program uses. If we print
ibm1047_hello while our target character set is still ASCII, we get jibberish:

(gdb) print ibm1047_hello

$4 = 0x4016a8 "\310\205\223\223\226k0\246\226\231\223\2042%"
(gdb) print ibm1047_hellol[0]

$5 = 200 ’\310’

(gdb)

If we invoke the set target-charset followed by (TAB)(TAB), GDB tells us the character
sets it supports:
(gdb) set target-charset

ASCII EBCDIC-US IBM1047 IS0-8859-1
(gdb) set target-charset

We can select 1IBM1047 as our target character set, and examine the program’s strings
again. Now the ASCII string is wrong, but GDB translates the contents of ibm1047_hello
from the target character set, IBM1047, to the host character set, Ascii, and they display
correctly:

(gdb) set target-charset IBM1047

(gdb) show charset

The current host character set is ‘ASCII’.

The current target character set is ‘IBM1047°’.
(gdb) print ascii_hello

$6 = 0x401698 "\110\145%%7\054\040\1677\162%\144\041\012"
(gdb) print ascii_hello[0]

$7 = 72 ’\110°

(gdb) print ibm1047_hello

$8 = 0x4016a8 "Hello, world!\n"

(gdb) print ibm1047_hello[0]

$9 = 200 ’H’

(gdb)

As above, GDB uses the target character set for character and string literals you use in
expressions:

96 Debugging with GDB

(gdb) print ’+’
$10 = 78 *+°
(gdb)

The 1BM1047 character set uses the number 78 to encode the ‘+’ character.

8.18 Caching Data of Remote Targets

GDB can cache data exchanged between the debugger and a remote target (see Section 16.4
[Remote], page 164). Such caching generally improves performance, because it reduces the
overhead of the remote protocol by bundling memory reads and writes into large chunks.
Unfortunately, GDB does not currently know anything about volatile registers, and thus
data caching will produce incorrect results when volatile registers are in use.

set remotecache on

set remotecache off
Set caching state for remote targets. When ON, use data caching. By default,
this option is OFF.

show remotecache
Show the current state of data caching for remote targets.

info dcache
Print the information about the data cache performance. The information
displayed includes: the dcache width and depth; and for each cache line, how
many times it was referenced, and its data and state (dirty, bad, ok, etc.). This
command is useful for debugging the data cache operation.

Chapter 9: C Preprocessor Macros 97

9 C Preprocessor Macros

Some languages, such as C and C++, provide a way to define and invoke “preprocessor
macros” which expand into strings of tokens. GDB can evaluate expressions containing
macro invocations, show the result of macro expansion, and show a macro’s definition,
including where it was defined.

You may need to compile your program specially to provide GDB with information about
preprocessor macros. Most compilers do not include macros in their debugging information,
even when you compile with the ‘-g’ flag. See Section 4.1 [Compilation], page 25.

A program may define a macro at one point, remove that definition later, and then
provide a different definition after that. Thus, at different points in the program, a macro
may have different definitions, or have no definition at all. If there is a current stack frame,
GDB uses the macros in scope at that frame’s source code line. Otherwise, GDB uses the
macros in scope at the current listing location; see Section 7.1 [List], page 65.

At the moment, GDB does not support the ## token-splicing operator, the # stringification
operator, or variable-arity macros.

Whenever GDB evaluates an expression, it always expands any macro invocations present
in the expression. GDB also provides the following commands for working with macros
explicitly.

macro expand expression

macro exp expression
Show the results of expanding all preprocessor macro invocations in expression.
Since GDB simply expands macros, but does not parse the result, expression
need not be a valid expression; it can be any string of tokens.

macro expand-once expression

macro expl expression
(This command is not yet implemented.) Show the results of expanding those
preprocessor macro invocations that appear explicitly in expression. Macro
invocations appearing in that expansion are left unchanged. This command
allows you to see the effect of a particular macro more clearly, without being
confused by further expansions. Since GDB simply expands macros, but does
not parse the result, expression need not be a valid expression; it can be any
string of tokens.

info macro macro
Show the definition of the macro named macro, and describe the source location
where that definition was established.

macro define macro replacement-1ist

macro define macro (arglist) replacement-1list
(This command is not yet implemented.) Introduce a definition for a preproces-
sor macro named macro, invocations of which are replaced by the tokens given
in replacement-list. The first form of this command defines an “object-like”
macro, which takes no arguments; the second form defines a “function-like”
macro, which takes the arguments given in arglist.

98

Debugging with GDB

A definition introduced by this command is in scope in every expression eval-
uated in GDB, until it is removed with the macro undef command, described
below. The definition overrides all definitions for macro present in the program
being debugged, as well as any previous user-supplied definition.

macro undef macro

(This command is not yet implemented.) Remove any user-supplied definition
for the macro named macro. This command only affects definitions provided
with the macro define command, described above; it cannot remove definitions
present in the program being debugged.

macro list

(This command is not yet implemented.) List all the macros defined using the
macro define command.

Here is a transcript showing the above commands in action. First, we show our source

files:

$ cat sample.c
#include <stdio.h>
#include "sample.h"

#define M 42
#define ADD(x) (M + x)

main ()
{
#define N 28

printf ("Hello, world!\n");
#undef N

printf ("We’re so creative.\n");
#define N 1729

printf ("Goodbye, world!\n");
}
$ cat sample.h
#define Q <
$

Now, we compile the program using the GNU C compiler, Gcc. We pass the ‘~gdwarf-2’
and ‘-g3’ flags to ensure the compiler includes information about preprocessor macros in
the debugging information.

$ gcc -gdwarf-2 -g3 sample.c -o sample
$

Now, we start GDB on our sample program:

$ gdb -nw sample

GNU gdb 2002-05-06-cvs

Copyright 2002 Free Software Foundation, Inc.
GDB is free software,

(gdb)

We can expand macros and examine their definitions, even when the program is not
running. GDB uses the current listing position to decide which macro definitions are in
scope:

(gdb) list main
3
4 #define M 42

Chapter 9: C Preprocessor Macros 99

5 #define ADD(x) (M + x)

6

7 main ()

8 {

9 #define N 28

10 printf ("Hello, world!\n");

11 #undef N

12 printf ("We’re so creative.\n");

(gdb) info macro ADD

Defined at /home/jimb/gdb/macros/play/sample.c:5

#define ADD(x) (M + x)

(gdb) info macro Q

Defined at /home/jimb/gdb/macros/play/sample.h:1
included at /home/jimb/gdb/macros/play/sample.c:2

#define Q <

(gdb) macro expand ADD(1)

expands to: (42 + 1)

(gdb) macro expand-once ADD(1)

expands to: once (M + 1)

(gdb)

In the example above, note that macro expand-once expands only the macro invocation
explicit in the original text — the invocation of ADD — but does not expand the invocation
of the macro M, which was introduced by ADD.

Once the program is running, GDB uses the macro definitions in force at the source line
of the current stack frame:

(gdb) break main

Breakpoint 1 at 0x8048370: file sample.c, line 10.
(gdb) run

Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10
10 printf ("Hello, world!\n");
(gdb)

At line 10, the definition of the macro N at line 9 is in force:

(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28

(gdb) macro expand N Q M

expands to: 28 < 42

(gdb) print N Q M

$1 =1

(gdb)

As we step over directives that remove N’s definition, and then give it a new definition,
GDB finds the definition (or lack thereof) in force at each point:

(gdb) next
Hello, world!
12 printf ("We’re so creative.\n");

(gdb) info macro N

The symbol ‘N’ has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12

(gdb) next

We’re so creative.

14 printf ("Goodbye, world!\n");

(gdb) info macro N

Defined at /home/jimb/gdb/macros/play/sample.c:13

100 Debugging with GDB

#define N 1729

(gdb) macro expand N Q M
expands to: 1729 < 42
(gdb) print N Q M

$2 =0

(gdb)

Chapter 10: Tracepoints 101

10 Tracepoints

In some applications, it is not feasible for the debugger to interrupt the program’s execution
long enough for the developer to learn anything helpful about its behavior. If the program’s
correctness depends on its real-time behavior, delays introduced by a debugger might cause
the program to change its behavior drastically, or perhaps fail, even when the code itself is
correct. It is useful to be able to observe the program’s behavior without interrupting it.

Using GDB’s trace and collect commands, you can specify locations in the program,
called tracepoints, and arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the tfind command, you can examine the values those expressions had when
the program hit the tracepoints. The expressions may also denote objects in memory—
structures or arrays, for example—whose values GDB should record; while visiting a partic-
ular tracepoint, you may inspect those objects as if they were in memory at that moment.
However, because GDB records these values without interacting with you, it can do so quickly
and unobtrusively, hopefully not disturbing the program’s behavior.

The tracepoint facility is currently available only for remote targets. See Chapter 16
[Targets], page 161. In addition, your remote target must know how to collect trace data.
This functionality is implemented in the remote stub; however, none of the stubs distributed
with GDB support tracepoints as of this writing. The format of the remote packets used to
implement tracepoints are described in Section D.6 [Tracepoint Packets]|, page 343.

This chapter describes the tracepoint commands and features.

10.1 Commands to Set Tracepoints

Before running such a trace experiment, an arbitrary number of tracepoints can be set. Like
a breakpoint (see Section 5.1.1 [Set Breaks|, page 38), a tracepoint has a number assigned
to it by GDB. Like with breakpoints, tracepoint numbers are successive integers starting
from one. Many of the commands associated with tracepoints take the tracepoint number
as their argument, to identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set of data that you
want the target to collect in the trace buffer when it hits that tracepoint. The collected data
can include registers, local variables, or global data. Later, you can use GDB commands to
examine the values these data had at the time the tracepoint was hit.

This section describes commands to set tracepoints and associated conditions and ac-
tions.

10.1.1 Create and Delete Tracepoints

trace The trace command is very similar to the break command. Its argument can
be a source line, a function name, or an address in the target program. See
Section 5.1.1 [Set Breaks], page 38. The trace command defines a tracepoint,
which is a point in the target program where the debugger will briefly stop,
collect some data, and then allow the program to continue. Setting a tracepoint
or changing its commands doesn’t take effect until the next tstart command;
thus, you cannot change the tracepoint attributes once a trace experiment is
running.

Here are some examples of using the trace command:

102

Debugging with GDB

(gdb) trace foo.c:121 // a source file and line number
(gdb) trace +2 // 2 lines forward

(gdb) trace my_function // first source line of function
(gdb) trace *my_function // EXACT start address of function

(gdb) trace *0x2117c4 // an address
You can abbreviate trace as tr.

The convenience variable $tpnum records the tracepoint number of the most
recently set tracepoint.

delete tracepoint [num|

Permanently delete one or more tracepoints. With no argument, the default is
to delete all tracepoints.

Examples:
(gdb) delete trace 1 23 // remove three tracepoints
(gdb) delete trace // remove all tracepoints

You can abbreviate this command as del tr.

10.1.2 Enable and Disable Tracepoints

disable tracepoint |[num]

Disable tracepoint num, or all tracepoints if no argument num is given. A
disabled tracepoint will have no effect during the next trace experiment, but
it is not forgotten. You can re-enable a disabled tracepoint using the enable
tracepoint command.

enable tracepoint [num|

Enable tracepoint num, or all tracepoints. The enabled tracepoints will become
effective the next time a trace experiment is run.

10.1.3 Tracepoint Passcounts

passcount [n [num]]

Set the passcount of a tracepoint. The passcount is a way to automatically
stop a trace experiment. If a tracepoint’s passcount is n, then the trace exper-
iment will be automatically stopped on the n’th time that tracepoint is hit. If
the tracepoint number num is not specified, the passcount command sets the
passcount of the most recently defined tracepoint. If no passcount is given, the
trace experiment will run until stopped explicitly by the user.

Examples:

(gdb) passcount 5 2 // Stop on the 5th execution of
// tracepoint 2

(gdb) passcount 12 // Stop on the 12th execution of the
// most recently defined tracepoint.

(gdb) trace foo

(gdb) pass 3

(gdb) trace bar

Chapter 10: Tracepoints 103

(gdb) pass 2

(gdb) trace baz

(gdb) pass 1 // Stop tracing when foo has been
// executed 3 times OR when bar has
// been executed 2 times
// OR when baz has been executed 1 time.

10.1.4 Tracepoint Action Lists

actions [num|

This command will prompt for a list of actions to be taken when the tracepoint
is hit. If the tracepoint number num is not specified, this command sets the
actions for the one that was most recently defined (so that you can define a
tracepoint and then say actions without bothering about its number). You
specify the actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just end. So far, the only
defined actions are collect and while-stepping.

To remove all actions from a tracepoint, type ‘actions num’ and follow it im-
mediately with ‘end’.
(gdb) collect data // collect some data

(gdb) while-stepping 5 // single-step 5 times, collect data

(gdb) end // signals the end of actionms.

In the following example, the action list begins with collect commands in-
dicating the things to be collected when the tracepoint is hit. Then, in order
to single-step and collect additional data following the tracepoint, a while-
stepping command is used, followed by the list of things to be collected while
stepping. The while-stepping command is terminated by its own separate
end command. Lastly, the action list is terminated by an end command.

(gdb) trace foo
(gdb) actions
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
> collect $fp, $sp
> end
end

collect exprl, expr2, ...
Collect values of the given expressions when the tracepoint is hit. This com-
mand accepts a comma-separated list of any valid expressions. In addition to
global, static, or local variables, the following special arguments are supported:

$regs collect all registers
$args collect all function arguments
$locals collect all local variables.

You can give several consecutive collect commands, each one with a single
argument, or one collect command with several arguments separated by com-
mas: the effect is the same.

104 Debugging with GDB

The command info scope (see Chapter 13 [Symbols|, page 139) is particularly
useful for figuring out what data to collect.

while-stepping n
Perform n single-step traces after the tracepoint, collecting new data at each
step. The while-stepping command is followed by the list of what to collect
while stepping (followed by its own end command):

> while-stepping 12
> collect $regs, myglobal
> end

>

You may abbreviate while-stepping as ws or stepping.

10.1.5 Listing Tracepoints

info tracepoints [num]
Display information about the tracepoint num. If you don’t specify a tracepoint
number, displays information about all the tracepoints defined so far. For each
tracepoint, the following information is shown:

e its number

e whether it is enabled or disabled

e its address

e its passcount as given by the passcount n command

e its step count as given by the while-stepping n command
e where in the source files is the tracepoint set

e its action list as given by the actions command

(gdb) info trace
Num Enb Address PassC StepC What

1y 0x002117c4 O 0 <gdb_asm>

2 y 0x0020dc64 0 0 in g_test at g_test.c:1375
3 y 0x0020b1f4 O 0 in get_data at ../foo.c:41
(gdb)

This command can be abbreviated info tp.

10.1.6 Starting and Stopping Trace Experiment

tstart This command takes no arguments. It starts the trace experiment, and begins
collecting data. This has the side effect of discarding all the data collected in
the trace buffer during the previous trace experiment.

tstop This command takes no arguments. It ends the trace experiment, and stops
collecting data.

Note: a trace experiment and data collection may stop automatically if any
tracepoint’s passcount is reached (see Section 10.1.3 [Tracepoint Passcounts],
page 102), or if the trace buffer becomes full.

tstatus This command displays the status of the current trace data collection.

Here is an example of the commands we described so far:

Chapter 10: Tracepoints 105

(gdb) trace gdb_c_test
(gdb) actions
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11
> collect $regs
> end
> end
(gdb) tstart
[time passes ...]
(gdb) tstop

10.2 Using the collected data

After the tracepoint experiment ends, you use GDB commands for examining the trace
data. The basic idea is that each tracepoint collects a trace snapshot every time it is
hit and another snapshot every time it single-steps. All these snapshots are consecutively
numbered from zero and go into a buffer, and you can examine them later. The way you
examine them is to focus on a specific trace snapshot. When the remote stub is focused on a
trace snapshot, it will respond to all GDB requests for memory and registers by reading from
the buffer which belongs to that snapshot, rather than from real memory or registers of the
program being debugged. This means that all GbB commands (print, info registers,
backtrace, etc.) will behave as if we were currently debugging the program state as it was
when the tracepoint occurred. Any requests for data that are not in the buffer will fail.

10.2.1 tfind n

The basic command for selecting a trace snapshot from the buffer is tfind n, which finds
trace snapshot number n, counting from zero. If no argument n is given, the next snapshot
is selected.

Here are the various forms of using the tfind command.

tfind start
Find the first snapshot in the buffer. This is a synonym for tfind 0 (since 0 is
the number of the first snapshot).

tfind none
Stop debugging trace snapshots, resume live debugging.

tfind end Same as ‘tfind none’.
tfind No argument means find the next trace snapshot.

tfind - Find the previous trace snapshot before the current one. This permits retracing
earlier steps.

tfind tracepoint num
Find the next snapshot associated with tracepoint num. Search proceeds for-
ward from the last examined trace snapshot. If no argument num is given, it
means find the next snapshot collected for the same tracepoint as the current
snapshot.

tfind pc addr
Find the next snapshot associated with the value addr of the program counter.
Search proceeds forward from the last examined trace snapshot. If no argument

106 Debugging with GDB

addr is given, it means find the next snapshot with the same value of PC as
the current snapshot.

tfind outside addrl1, addr2
Find the next snapshot whose PC is outside the given range of addresses.

tfind range addri, addr2
Find the next snapshot whose PC is between addrl and addr2.

tfind line [file:|n
Find the next snapshot associated with the source line n. If the optional argu-
ment file is given, refer to line n in that source file. Search proceeds forward
from the last examined trace snapshot. If no argument n is given, it means find
the next line other than the one currently being examined; thus saying tfind
line repeatedly can appear to have the same effect as stepping from line to
line in a live debugging session.

The default arguments for the tfind commands are specifically designed to make it easy
to scan through the trace buffer. For instance, tfind with no argument selects the next
trace snapshot, and tfind - with no argument selects the previous trace snapshot. So, by
giving one tfind command, and then simply hitting repeatedly you can examine all
the trace snapshots in order. Or, by saying tfind - and then hitting repeatedly you
can examine the snapshots in reverse order. The tfind line command with no argument
selects the snapshot for the next source line executed. The tfind pc command with no
argument selects the next snapshot with the same program counter (PC) as the current
frame. The tfind tracepoint command with no argument selects the next trace snapshot
collected by the same tracepoint as the current one.

In addition to letting you scan through the trace buffer manually, these commands make
it easy to construct GDB scripts that scan through the trace buffer and print out whatever
collected data you are interested in. Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

(gdb) tfind start

(gdb) while ($trace_frame != -1)

> printf "Frame Jd, PC = %08X, SP = 708X, FP = 708X\n", \
$trace_frame, $pc, $sp, $fp

> tfind

> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44

Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14

Or, if we want to examine the variable X at each source line in the buffer:

(gdb) tfind start
(gdb) while ($trace_frame != -1)

Chapter 10: Tracepoints

> printf "Frame %d, == %d\n", $trace_frame, X
> tfind line
> end

Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255

10.2.2 tdump

107

This command takes no arguments. It prints all the data collected at the current trace

snapshot.

(gdb) trace 444

(gdb) actions

Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end

(gdb) tstart

(gdb) tfind line 444

#0 gdb_test (pl=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)

at gdb_test.c:444

444 printp("%s: arguments = O0x%X Ox%X Ox%X O0x%X O0x%X Ox%X\n",)

(gdb) tdump
Data collected at tracepoint 2, trace frame 1:

do 0xc4aa0085 -995491707
d1 0x18 24

d2 0x80 128

d3 0x33 51

d4 0x71aea3d 119204413
d5 0x22 34

dé 0xe0 224

a7 0x380035 3670069

a0 0x19e24a 1696330

al 0x3000668 50333288
a2 0x100 256

a3 0x322000 3284992

a4 0x3000698 50333336
ab Oxlad3cc 1758156

fp 0x30bf3c 0x30bf3c

sp 0x30b£f34 0x30bf34

ps 0x0 0

pc 0x20b2c8 0x20b2c8
fpcontrol 0x0 0

fpstatus 0x0 0

fpiaddr 0x0 0

p = 0x20ebb4 "gdb-test"
pl = (void *) 0Ox11
p2 = (void *) 0x22
p3 = (void *) 0x33

p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66

gdb_long_test = 17 ’\021°

(gdb)

108 Debugging with GDB

10.2.3 save-tracepoints filename

This command saves all current tracepoint definitions together with their actions and pass-
counts, into a file ‘filename’ suitable for use in a later debugging session. To read the
saved tracepoint definitions, use the source command (see Section 20.3 [Command Files],
page 215).

10.3 Convenience Variables for Tracepoints

(int) $trace_frame
The current trace snapshot (a.k.a. frame) number, or -1 if no snapshot is se-
lected.

(int) $tracepoint
The tracepoint for the current trace snapshot.

(int) $trace_line
The line number for the current trace snapshot.

(char [1) $trace_file
The source file for the current trace snapshot.

(char []) $trace_func
The name of the function containing $tracepoint.

Note: $trace_file is not suitable for use in printf, use output instead.

Here’s a simple example of using these convenience variables for stepping through all the
trace snapshots and printing some of their data.
(gdb) tfind start

(gdb) while $trace_frame != -1

> output $trace_file

> printf ", line %d (tracepoint #)d)\n", $trace_line, $tracepoint
> tfind

> end

Chapter 11: Debugging Programs That Use Overlays 109

11 Debugging Programs That Use Overlays

If your program is too large to fit completely in your target system’s memory, you can some-
times use overlays to work around this problem. GDB provides some support for debugging
programs that use overlays.

11.1 How Overlays Work

Suppose you have a computer whose instruction address space is only 64 kilobytes long, but
which has much more memory which can be accessed by other means: special instructions,
segment registers, or memory management hardware, for example. Suppose further that
you want to adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively independent,
and need not call each other directly; call these modules overlays. Separate the overlays
from the main program, and place their machine code in the larger memory. Place your
main program in instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that overlay’s machine
code from the large memory into the space set aside for it in the instruction memory, and
then jump to its entry point there.

Data Instruction Larger

Address Space Address Space Address Space

oo + Fommm e + Fommm e +

| | | | | |
Fomm + Fomm + Fomm +<-- overlay 1
| program | | main | .——--| overlay 1 | load address

| variables | | program | | . +

| and heap | | | | | |
Fmm + | | | Fmm +<-- overlay 2
| | Fommmm e + | | load address

oo mmm o + | | | .-| overlay 2 |

| I [|

mapped -—->+----—--—--- S B B +

address | | [|

| overlay | <=2 | |

| area | === +=—m————— +<-- overlay 3
| | <=——. | | load address

it + ‘-—] overlay 3 |

| I | |

R + | |

o +

| |

Fommm +

A code overlay

The diagram (see [A code overlay], page 109) shows a system with separate data and
instruction address spaces. To map an overlay, the program copies its code from the larger
address space to the instruction address space. Since the overlays shown here all use the
same mapped address, only one may be mapped at a time. For a system with a single
address space for data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main program and the
overlay area.

110 Debugging with GDB

An overlay loaded into instruction memory and ready for use is called a mapped overlay;
its mapped address is its address in the instruction memory. An overlay not present (or only
partially present) in instruction memory is called unmapped; its load address is its address
in the larger memory. The mapped address is also called the virtual memory address, or
VMA; the load address is also called the load memory address, or LMA.

Unfortunately, overlays are not a completely transparent way to adapt a program to
limited instruction memory. They introduce a new set of global constraints you must keep
in mind as you design your program:

e Before calling or returning to a function in an overlay, your program must make sure
that overlay is actually mapped. Otherwise, the call or return will transfer control to
the right address, but in the wrong overlay, and your program will probably crash.

e If the process of mapping an overlay is expensive on your system, you will need to
choose your overlays carefully to minimize their effect on your program’s performance.

e The executable file you load onto your system must contain each overlay’s instruc-
tions, appearing at the overlay’s load address, not its mapped address. However, each
overlay’s instructions must be relocated and its symbols defined as if the overlay were
at its mapped address. You can use GNU linker scripts to specify different load and
relocation addresses for pieces of your program; see section “Overlay Description” in
Using Id: the GNU linker.

e The procedure for loading executable files onto your system must be able to load their
contents into the larger address space as well as the instruction and data spaces.

The overlay system described above is rather simple, and could be improved in many
ways:

e If your system has suitable bank switch registers or memory management hardware,
you could use those facilities to make an overlay’s load area contents simply appear at
their mapped address in instruction space. This would probably be faster than copying
the overlay to its mapped area in the usual way.

e If your overlays are small enough, you could set aside more than one overlay area, and
have more than one overlay mapped at a time.

e You can use overlays to manage data, as well as instructions. In general, data overlays
are even less transparent to your design than code overlays: whereas code overlays only
require care when you call or return to functions, data overlays require care every time
you access the data. Also, if you change the contents of a data overlay, you must copy
its contents back out to its load address before you can copy a different data overlay
into the same mapped area.

11.2 Overlay Commands

To use GDB’s overlay support, each overlay in your program must correspond to a separate
section of the executable file. The section’s virtual memory address and load memory
address must be the overlay’s mapped and load addresses. Identifying overlays with sections
allows GDB to determine the appropriate address of a function or variable, depending on
whether the overlay is mapped or not.

GDB’s overlay commands all start with the word overlay; you can abbreviate this as ov
or ovly. The commands are:

Chapter 11: Debugging Programs That Use Overlays 111

overlay off
Disable GDB’s overlay support. When overlay support is disabled, GDB assumes
that all functions and variables are always present at their mapped addresses.
By default, GDB’s overlay support is disabled.

overlay manual
Enable manual overlay debugging. In this mode, GDB relies on you to tell it
which overlays are mapped, and which are not, using the overlay map-overlay
and overlay unmap-overlay commands described below.

overlay map-overlay overlay

overlay map overlay
Tell cDB that overlay is now mapped; overlay must be the name of the object
file section containing the overlay. When an overlay is mapped, GDB assumes it
can find the overlay’s functions and variables at their mapped addresses. GDB
assumes that any other overlays whose mapped ranges overlap that of overlay
are now unmapped.

overlay unmap-overlay overlay

overlay unmap overlay
Tell GDB that overlay is no longer mapped; overlay must be the name of the
object file section containing the overlay. When an overlay is unmapped, GDB
assumes it can find the overlay’s functions and variables at their load addresses.

overlay auto
Enable automatic overlay debugging. In this mode, GDB consults a data struc-
ture the overlay manager maintains in the inferior to see which overlays are
mapped. For details, see Section 11.3 [Automatic Overlay Debugging], page 112.

overlay load-target

overlay load
Re-read the overlay table from the inferior. Normally, GDB re-reads the table
GDB automatically each time the inferior stops, so this command should only
be necessary if you have changed the overlay mapping yourself using GDB. This
command is only useful when using automatic overlay debugging.

overlay list-overlays

overlay list
Display a list of the overlays currently mapped, along with their mapped ad-
dresses, load addresses, and sizes.

Normally, when GDB prints a code address, it includes the name of the function the
address falls in:
(gdb) print main
$3 = {int ()} 0x11a0 <main>
When overlay debugging is enabled, GDB recognizes code in unmapped overlays, and prints
the names of unmapped functions with asterisks around them. For example, if foo is a
function in an unmapped overlay, GDB prints it this way:

(gdb) overlay list
No sections are mapped.
(gdb) print foo

112 Debugging with GDB

$5 = {int (int)} 0x100000 <*foo*>

When foo’s overlay is mapped, GDB prints the function’s name normally:

(gdb) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
mapped at 0x1016 - 0x104a
(gdb) print foo
$6 = {int (int)} 0x1016 <foo>
When overlay debugging is enabled, GDB can find the correct address for functions and

variables in an overlay, whether or not the overlay is mapped. This allows most GDB com-
mands, like break and disassemble, to work normally, even on unmapped code. However,

GDB’s breakpoint support has some limitations:

e You can set breakpoints in functions in unmapped overlays, as long as GDB can write
to the overlay at its load address.

e GDB can not set hardware or simulator-based breakpoints in unmapped overlays. How-
ever, if you set a breakpoint at the end of your overlay manager (and tell GDB which
overlays are now mapped, if you are using manual overlay management), GDB will re-set
its breakpoints properly.

11.3 Automatic Overlay Debugging

GDB can automatically track which overlays are mapped and which are not, given some
simple co-operation from the overlay manager in the inferior. If you enable automatic
overlay debugging with the overlay auto command (see Section 11.2 [Overlay Commands],
page 110), GDB looks in the inferior’s memory for certain variables describing the current
state of the overlays.

Here are the variables your overlay manager must define to support GDB’s automatic
overlay debugging:

_ovly_table:
This variable must be an array of the following structures:
struct
{

/* The overlay’s mapped address. */
unsigned long vma;

/* The size of the overlay, in bytes. */
unsigned long size;

/* The overlay’s load address. */
unsigned long lma;

/* Non-zero if the overlay is currently mapped;
zero otherwise. */
unsigned long mapped;

}

_novlys: This variable must be a four-byte signed integer, holding the total number of
elements in _ovly_table.

To decide whether a particular overlay is mapped or not, GDB looks for an entry in
_ovly_table whose vma and 1lma members equal the VMA and LMA of the overlay’s section

Chapter 11: Debugging Programs That Use Overlays 113

in the executable file. When GDB finds a matching entry, it consults the entry’s mapped
member to determine whether the overlay is currently mapped.

In addition, your overlay manager may define a function called _ovly_debug_event. If
this function is defined, GDB will silently set a breakpoint there. If the overlay manager
then calls this function whenever it has changed the overlay table, this will enable GDB to
accurately keep track of which overlays are in program memory, and update any breakpoints
that may be set in overlays. This will allow breakpoints to work even if the overlays are
kept in ROM or other non-writable memory while they are not being executed.

11.4 Overlay Sample Program

When linking a program which uses overlays, you must place the overlays at their load
addresses, while relocating them to run at their mapped addresses. To do this, you must
write a linker script (see section “Overlay Description” in Using Id: the GNU linker). Un-
fortunately, since linker scripts are specific to a particular host system, target architecture,
and target memory layout, this manual cannot provide portable sample code demonstrating
GDB’s overlay support.

However, the GDB source distribution does contain an overlaid program, with linker
scripts for a few systems, as part of its test suite. The program consists of the following
files from ‘gdb/testsuite/gdb.base’:

‘overlays.c’
The main program file.

‘ovlymgr.c’
A simple overlay manager, used by ‘overlays.c’.

‘foo.c’
‘bar.c’
‘baz.c’
‘grbx.c’ Overlay modules, loaded and used by ‘overlays.c’.

‘d10v.1d’
‘m32r.1d’ Linker scripts for linking the test program on the d10v-elf and m32r-elf
targets.

You can build the test program using the d10v-elf GCC cross-compiler like this:

d10v-elf-gcc -g -c overlays.c

d10v-elf-gcc -g -c ovlymgr.c

d10v-elf-gcc -g -c foo.c

d10v-elf-gcc -g -c bar.c

d10v-elf-gcc -g -c baz.c

d10v-elf-gcc -g -c grbx.c

d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \

baz.o grbx.o -W1l,-Td10v.1ld -o overlays

@B P B P B BB

The build process is identical for any other architecture, except that you must substitute
the appropriate compiler and linker script for the target system for d10v-elf-gcc and
d10v.1d.

114 Debugging with GDB

Chapter 12: Using ¢DB with Different Languages 115

12 Using GDB with Different Languages

Although programming languages generally have common aspects, they are rarely expressed
in the same manner. For instance, in ANSI C, dereferencing a pointer p is accomplished
by *p, but in Modula-2, it is accomplished by p~. Values can also be represented (and
displayed) differently. Hex numbers in C appear as ‘Oxlae’, while in Modula-2 they appear
as ‘1AEH’.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the above in your program’s native language, and allowing GDB to
output values in a manner consistent with the syntax of your program’s native language.
The language you use to build expressions is called the working language.

12.1 Switching between source languages

There are two ways to control the working language—either have GDB set it automatically,
or select it manually yourself. You can use the set language command for either purpose.
On startup, GDB defaults to setting the language automatically. The working language is
used to determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate which
language a particular source file is in. However, most of the time GDB infers the language
from the name of the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within GDB, but you can set the
language associated with a filename extension. See Section 12.2 [Displaying the language],
page 116.

This is most commonly a problem when you use a program, such as cfront or £2c, that
generates C but is written in another language. In that case, make the program use #line
directives in its C output; that way GDB will know the correct language of the source code
of the original program, and will display that source code, not the generated C code.

12.1.1 List of filename extensions and languages

If a source file name ends in one of the following extensions, then GDB infers that its language
is the one indicated.

4 9

.ada
.ads
‘.adb’

“.a’ Ada source file.

3)

.C C source file

. Cpp

. CXX
‘Lot C++ source file

116 Debugging with GDB

‘om’ Objective-C source file

3 . f?

CF Fortran source file

‘.mod’ Modula-2 source file

3 . s7

©.8’ Assembler source file. This actually behaves almost like C, but GDB does not

skip over function prologues when stepping.

In addition, you may set the language associated with a filename extension. See Sec-
tion 12.2 [Displaying the language], page 116.

12.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same
way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command ‘set
language lang’, where lang is the name of a language, such as ¢ or modula-2. For a list
of the supported languages, type ‘set language’.

Setting the language manually prevents GDB from updating the working language au-
tomatically. This can lead to confusion if you try to debug a program when the working
language is not the same as the source language, when an expression is acceptable to both
languages—but means different things. For instance, if the current source file were written
in C, and GDB was parsing Modula-2, a command such as:

print a =b + ¢

might not have the effect you intended. In C, this means to add b and ¢ and place the
result in a. The result printed would be the value of a. In Modula-2, this means to compare
a to the result of b+c, yielding a BOOLEAN value.

12.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use ‘set language local’ or ‘set
language auto’. GDB then infers the working language. That is, when your program stops
in a frame (usually by encountering a breakpoint), GDB sets the working language to the
language recorded for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is not changed, and
GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source
language. However, program modules and libraries written in one source language can be
used by a main program written in a different source language. Using ‘set language auto’
in this case frees you from having to set the working language manually.

12.2 Displaying the language

The following commands help you find out which language is the working language, and
also what language source files were written in.

Chapter 12: Using ¢DB with Different Languages 117

show language
Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame
Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See Section 6.4 [Information
about a frame], page 63, to identify the other information listed here.

info source
Display the source language of this source file. See Chapter 13 [Examining the
Symbol Table], page 139, to identify the other information listed here.

In unusual circumstances, you may have source files with extensions not in the standard
list. You can then set the extension associated with a language explicitly:

set extension-language ext language
Tell GDB that source files with extension ext are to be assumed as written in
the source language language.

info extensions
List all the filename extensions and the associated languages.

12.3 Type and range checking

Warning: In this release, the GDB commands for type and range checking are
included, but they do not yet have any effect. This section documents the
intended facilities.

Some languages are designed to guard you against making seemingly common errors
through a series of compile- and run-time checks. These include checking the type of
arguments to functions and operators, and making sure mathematical overflows are caught
at run time. Checks such as these help to ensure a program’s correctness once it has been
compiled by eliminating type mismatches, and providing active checks for range errors when
your program is running.

GDB can check for conditions like the above if you wish. Although ¢DB does not check
the statements in your program, it can check expressions entered directly into GDB for
evaluation via the print command, for example. As with the working language, GDB can
also decide whether or not to check automatically based on your program’s source language.
See Section 12.4 [Supported languages|, page 119, for the default settings of supported
languages.

12.3.1 An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that the arguments to

operators and functions have to be of the correct type, otherwise an error occurs. These

checks prevent type mismatch errors from ever causing any run-time problems. For example,
1+2 =3

1+2.3

but

118 Debugging with GDB

The second example fails because the CARDINAL 1 is not type-compatible with the REAL
2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to
skip checking; to treat any mismatches as errors and abandon the expression; or to only
issue warnings when type mismatches occur, but evaluate the expression anyway. When
you choose the last of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know how to add
an int and a struct foo. These particular type errors have nothing to do with the language
in use, and usually arise from expressions, such as the one described above, which make
little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both Modula-
2 and C require the arguments to arithmetical operators to be numbers. In C, enumerated
types and pointers can be represented as numbers, so that they are valid arguments to
mathematical operators. See Section 12.4 [Supported languages|, page 119, for further
details on specific languages.

GDB provides some additional commands for controlling the type checker:

set check type auto
Set type checking on or off based on the current working language. See Sec-
tion 12.4 [Supported languages|, page 119, for the default settings for each
language.

set check type on

set check type off
Set type checking on or off, overriding the default setting for the current working
language. Issue a warning if the setting does not match the language default.
If any type mismatches occur in evaluating an expression while type checking
is on, GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression. Evaluating the expression may still be impossible for other reasons.
For example, GDB cannot add numbers and structures.

show type Show the current setting of the type checker, and whether or not GDB is setting
it automatically.

12.3.2 An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the bounds of a type; this is
enforced with run-time checks. Such range checking is meant to ensure program correctness
by making sure computations do not overflow, or indices on an array element access do not
exceed the bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat range errors in one
of three ways: ignore them, always treat them as errors and abandon the expression, or
issue warnings but evaluate the expression anyway.

Chapter 12: Using ¢DB with Different Languages 119

A range error can result from numerical overflow, from exceeding an array index bound,
or when you type a constant that is not a member of any type. Some languages, however,
do not treat overflows as an error. In many implementations of C, mathematical overflow
causes the result to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m+ 1= s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. See Section 12.4 [Supported languages], page 119, for further details
on specific languages.

GDB provides some additional commands for controlling the range checker:

set check range auto
Set range checking on or off based on the current working language. See Sec-
tion 12.4 [Supported languages|, page 119, for the default settings for each
language.

set check range on

set check range off
Set range checking on or off, overriding the default setting for the current work-
ing language. A warning is issued if the setting does not match the language
default. If a range error occurs and range checking is on, then a message is
printed and evaluation of the expression is aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but at-
tempt to evaluate the expression anyway. Evaluating the expression may still
be impossible for other reasons, such as accessing memory that the process does
not own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being
set automatically by GDB.

12.4 Supported languages

GDB supports C, C++, Objective-C, Fortran, Java, Pascal, assembly, Modula-2, and Ada.
Some GDB features may be used in expressions regardless of the language you use: the GDB
@ and : : operators, and the ‘{type}addr’ construct (see Section 8.1 [Expressions|, page 73)
can be used with the constructs of any supported language.

The following sections detail to what degree each source language is supported by GDB.
These sections are not meant to be language tutorials or references, but serve only as a
reference guide to what the GDB expression parser accepts, and what input and output
formats should look like for different languages. There are many good books written on
each of these languages; please look to these for a language reference or tutorial.

12.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply to both languages.
Whenever this is the case, we discuss those languages together.

120 Debugging with GDB

The C++ debugging facilities are jointly implemented by the C++ compiler and GDB.
Therefore, to debug your C++ code effectively, you must compile your C++ programs with
a supported C++ compiler, such as GNU g++, or the HP ANSI C++ compiler (aCC).

For best results when using GNU C++, use the DWARF 2 debugging format; if it doesn’t
work on your system, try the stabs+ debugging format. You can select those formats
explicitly with the g++ command-line options ‘-gdwarf-2’ and ‘-gstabs+’. See section
“Options for Debugging Your Program or ¢Nu CC” in Using aGNU CC.

12.4.1.1 C and C++ operators

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on structures. Operators are often defined on groups of types.

For the purposes of C and C++, the following definitions hold:

o Integral types include int with any of its storage-class specifiers; char; enum; and, for
C++, bool.

e Floating-point types include float, double, and long double (if supported by the
target platform).

e Pointer types include all types defined as (type *).
e Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing prece-
dence:

R The comma or sequencing operator. Expressions in a comma-separated list are
evaluated from left to right, with the result of the entire expression being the
last expression evaluated.

= Assignment. The value of an assignment expression is the value assigned. De-
fined on scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op=
and = have the same precedence. op is any one of the operators |, =, &, <<, >>,
+7 _7 *7 /7 %‘

7: The ternary operator. a ? b : ¢ can be thought of as: if a then b else ¢. a

should be of an integral type.
[Logical OR. Defined on integral types.
&& Logical AND. Defined on integral types.
| Bitwise OR. Defined on integral types.
Bitwise exclusive-OR. Defined on integral types.
& Bitwise AND. Defined on integral types.

== I= Equality and inequality. Defined on scalar types. The value of these expressions
is 0 for false and non-zero for true.

Less than, greater than, less than or equal, greater than or equal. Defined on
scalar types. The value of these expressions is 0 for false and non-zero for true.

Chapter 12: Using ¢DB with Different Languages 121

<<, >> left shift, and right shift. Defined on integral types.
Q The GDB “artificial array” operator (see Section 8.1 [Expressions|, page 73).
+, - Addition and subtraction. Defined on integral types, floating-point types and

pointer types.

* /% Multiplication, division, and modulus. Multiplication and division are defined
on integral and floating-point types. Modulus is defined on integral types.

++, == Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the variable’s value is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same precedence as ++.

& Address operator. Defined on variables. Same precedence as ++.
For debugging C++, GDB implements a use of ‘&’ beyond what is allowed in the
C++ language itself: you can use ‘&(&ref)’ (or, if you prefer, simply ‘&&ref’)
to examine the address where a C++ reference variable (declared with ‘&ref’)
is stored.

- Negative. Defined on integral and floating-point types. Same precedence as ++.
! Logical negation. Defined on integral types. Same precedence as ++.

Bitwise complement operator. Defined on integral types. Same precedence as
4.

., = Structure member, and pointer-to-structure member. For convenience, GDB
regards the two as equivalent, choosing whether to dereference a pointer based
on the stored type information. Defined on struct and union data.

Dk, D% Dereferences of pointers to members.
1l Array indexing. a[i] is defined as *(a+i). Same precedence as ->.
O Function parameter list. Same precedence as —=>.

C++ scope resolution operator. Defined on struct, union, and class types.

Doubled colons also represent the GDB scope operator (see Section 8.1 [Expres-
sions|, page 73). Same precedence as : :, above.

If an operator is redefined in the user code, GDB usually attempts to invoke the redefined
version instead of using the operator’s predefined meaning.

12.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:

e Integer constants are a sequence of digits. Octal constants are specified by a leading
‘0’ (i.e. zero), and hexadecimal constants by a leading ‘0x’ or ‘0X’. Constants may also
end with a letter ‘1’ specifying that the constant should be treated as a long value.

e Floating point constants are a sequence of digits, followed by a decimal point, followed
by a sequence of digits, and optionally followed by an exponent. An exponent is of
the form: ‘e[[+]|-]nnn’, where nnn is another sequence of digits. The ‘+’ is optional

122

Debugging with GDB

for positive exponents. A floating-point constant may also end with a letter ‘f” or ‘F’,
specifying that the constant should be treated as being of the float (as opposed to the
default double) type; or with a letter ‘1’ or ‘L’, which specifies a long double constant.

Enumerated constants consist of enumerated identifiers, or their integral equivalents.

Character constants are a single character surrounded by single quotes (’), or a
number—the ordinal value of the corresponding character (usually its Ascir value).
Within quotes, the single character may be represented by a letter or by escape
sequences, which are of the form ‘\nnn’, where nnn is the octal representation of
the character’s ordinal value; or of the form ‘\x’, where ‘x’ is a predefined special
character—for example, ‘\n’ for newline.

String constants are a sequence of character constants surrounded by double quotes (").
Any valid character constant (as described above) may appear. Double quotes within
the string must be preceded by a backslash, so for instance ‘"a\"b’c"’ is a string of
five characters.

Pointer constants are an integral value. You can also write pointers to constants using
the C operator ‘&’.

Array constants are comma-separated lists surrounded by braces ‘{’ and ‘}’; for ex-
ample, ‘{1,2,3} is a three-element array of integers, ‘{{1,2}, {3,4}, {5,6}} is a
three-by-two array, and ‘{&"hi", &"there", &"fred"}’ is a three-element array of
pointers.

12.4.1.3 C++ expressions

GDB expression handling can interpret most C++ expressions.

1.

2.

3.

Warning: GDB can only debug C++ code if you use the proper compiler and
the proper debug format. Currently, GDB works best when debugging C++
code that is compiled with ccc 2.95.3 or with Gce 3.1 or newer, using the
options ‘-gdwarf-2’ or ‘-gstabs+’. DWARF 2 is preferred over stabs+. Most
configurations of GoC emit either DWARF 2 or stabs+ as their default debug
format, so you usually don’t need to specify a debug format explicitly. Other
compilers and/or debug formats are likely to work badly or not at all when
using GDB to debug C++ code.

Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

While a member function is active (in the selected stack frame), your expressions have
the same namespace available as the member function; that is, ¢DB allows implicit
references to the class instance pointer this following the same rules as C++.

You can call overloaded functions; GDB resolves the function call to the right definition,
with some restrictions. GDB does not perform overload resolution involving user-defined
type conversions, calls to constructors, or instantiations of templates that do not exist
in the program. It also cannot handle ellipsis argument lists or default arguments.

It does perform integral conversions and promotions, floating-point promotions, arith-
metic conversions, pointer conversions, conversions of class objects to base classes, and
standard conversions such as those of functions or arrays to pointers; it requires an
exact match on the number of function arguments.

Chapter 12: Using ¢DB with Different Languages 123

Overload resolution is always performed, unless you have specified set overload-
resolution off. See Section 12.4.1.7 [GDB features for C++|, page 124.

You must specify set overload-resolution off in order to use an explicit function
signature to call an overloaded function, as in

p ’foo(char,int)’(°x’, 13)
The GDB command-completion facility can simplify this; see Section 3.2 [Command
completion|, page 19.

4. DB understands variables declared as C++ references; you can use them in expressions
just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference variables
are not displayed (unlike other variables); this avoids clutter, since references are often
used for large structures. The address of a reference variable is always shown, unless
you have specified ‘set print address off’.

5. GDB supports the C++ name resolution operator : :—your expressions can use it just as

expressions in your program do. Since one scope may be defined in another, you can use

: repeatedly if necessary, for example in an expression like ‘scopel : : scope2: : name’.

GDB also allows resolving name scope by reference to source files, in both C and C++
debugging (see Section 8.2 [Program variables|, page 74).

In addition, when used with HP’s C++ compiler, GDB supports calling virtual functions
correctly, printing out virtual bases of objects, calling functions in a base subobject, casting
objects, and invoking user-defined operators.

12.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to off
whenever the working language changes to C or C++. This happens regardless of whether
you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose names
end with ‘.¢’, ©.C’, or ‘. cc’, etc, and when GDB enters code compiled from one of these files,
it sets the working language to C or C++. See Section 12.1.3 [Having GDB infer the source
language], page 116, for further details.

12.4.1.5 C and C++ type and range checks
By default, when GDB parses C or C++ expressions, type checking is not used. However, if
you turn type checking on, GDB considers two variables type equivalent if:
e The two variables are structured and have the same structure, union, or enumerated
tag.
e The two variables have the same type name, or types that have been declared equivalent
through typedef.

Range checking, if turned on, is done on mathematical operations. Array indices are not
checked, since they are often used to index a pointer that is not itself an array.

12.4.1.6 GDB and C

The set print union and show print union commands apply to the union type. When
set to ‘on’, any union that is inside a struct or class is also printed. Otherwise, it appears

as ‘{...}.

124 Debugging with GDB

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See Section 8.1 [Expressions|, page 73.

12.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed specifically
for use with C++. Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want. See
Section 5.1.8 [Breakpoint menus|, page 49.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints
on overloaded functions that are not members of any special classes. See Sec-
tion 5.1.1 [Setting breakpoints], page 38.

catch throw

catch catch
Debug C++ exception handling using these commands. See Section 5.1.3 [Set-
ting catchpoints|, page 44.

ptype typename
Print inheritance relationships as well as other information for type typename.
See Chapter 13 [Examining the Symbol Table|, page 139.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle
Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See Section 8.7 [Print
settings], page 80.

set print object

show print object
Choose whether to print derived (actual) or declared types of objects. See
Section 8.7 [Print settings|, page 80.

set print vtbl
show print vtbl
Control the format for printing virtual function tables. See Section 8.7 [Print

settings], page 80. (The vtbl commands do not work on programs compiled
with the HP ANSI C++ compiler (aCC).)

set overload-resolution on
Enable overload resolution for C++ expression evaluation. The default is on. For
overloaded functions, GDB evaluates the arguments and searches for a function
whose signature matches the argument types, using the standard C++ conver-
sion rules (see Section 12.4.1.3 [C++ expressions|, page 122, for details). If it
cannot find a match, it emits a message.

Chapter 12: Using ¢DB with Different Languages 125

set overload-resolution off
Disable overload resolution for C++ expression evaluation. For overloaded func-
tions that are not class member functions, GDB chooses the first function of
the specified name that it finds in the symbol table, whether or not its argu-
ments are of the correct type. For overloaded functions that are class member
functions, GDB searches for a function whose signature ezactly matches the
argument types.

show overload-resolution
Show the current setting of overload resolution.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: type symbol (types)
rather than just symbol. You can also use the GDB command-line word com-
pletion facilities to list the available choices, or to finish the type list for you.
See Section 3.2 [Command completion|, page 19, for details on how to do this.

12.4.2 Objective-C

This section provides information about some commands and command options that are
useful for debugging Objective-C code. See also Chapter 13 [Symbols], page 139, and
Chapter 13 [Symbols], page 139, for a few more commands specific to Objective-C support.

12.4.2.1 Method Names in Commands

The following commands have been extended to accept Objective-C method names as line
specifications:

e clear

e break

e info line

e jump

e list

A fully qualified Objective-C method name is specified as
-[Class methodName]

where the minus sign is used to indicate an instance method and a plus sign (not shown)
is used to indicate a class method. The class name Class and method name methodName
are enclosed in brackets, similar to the way messages are specified in Objective-C source
code. For example, to set a breakpoint at the create instance method of class Fruit in
the program currently being debugged, enter:
break -[Fruit create]
To list ten program lines around the initialize class method, enter:
list +[NSText initialize]
In the current version of GDB, the plus or minus sign is required. In future versions of

GDB, the plus or minus sign will be optional, but you can use it to narrow the search. It is
also possible to specify just a method name:

126 Debugging with GDB

break create

You must specify the complete method name, including any colons. If your program’s
source files contain more than one create method, you'll be presented with a numbered
list of classes that implement that method. Indicate your choice by number, or type ‘0’ to
exit if none apply.

As another example, to clear a breakpoint established at the makeKeyAndOrderFront:
method of the NSWindow class, enter:
clear -[NSWindow makeKeyAndOrderFront:]

12.4.2.2 The Print Command With Objective-C

The print command has also been extended to accept methods. For example:

print -[object hash]
will tell GDB to send the hash message to object and print the result. Also, an additional
command has been added, print-object or po for short, which is meant to print the

description of an object. However, this command may only work with certain Objective-C
libraries that have a particular hook function, _NSPrintForDebugger, defined.

12.4.3 Fortran

GDB can be used to debug programs written in Fortran, but it currently supports only the
features of Fortran 77 language.

Some Fortran compilers (GNU Fortran 77 and Fortran 95 compilers among them) append
an underscore to the names of variables and functions. When you debug programs com-
piled by those compilers, you will need to refer to variables and functions with a trailing
underscore.

12.4.3.1 Fortran operators and expressions

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on characters or other non- arithmetic types. Operators are often defined on groups
of types.

*% The exponentiation operator. It raises the first operand to the power of the
second one.

The range operator. Normally used in the form of array(low:high) to represent
a section of array.

12.4.3.2 Fortran Defaults

Fortran symbols are usually case-insensitive, so GDB by default uses case-insensitive matches
for Fortran symbols. You can change that with the ‘set case-insensitive’ command, see
Chapter 13 [Symbols|, page 139, for the details.

12.4.3.3 Special Fortran commands

GDB had some commands to support Fortran specific feature, such as common block dis-
playing.

Chapter 12: Using ¢DB with Different Languages 127

info common [common-name]
This command prints the values contained in the Fortran COMMON block whose
name is common-name. With no argument, the names of all COMMON blocks
visible at current program location are printed.

12.4.4 Pascal

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

The Pascal-specific command set print pascal_static-members controls whether
static members of Pascal objects are displayed. See Section 8.7 [Print Settings|, page 80.

12.4.5 Modula-2

The extensions made to GDB to support Modula-2 only support output from the GNU
Modula-2 compiler (which is currently being developed). Other Modula-2 compilers are not
currently supported, and attempting to debug executables produced by them is most likely
to give an error as GDB reads in the executable’s symbol table.

12.4.5.1 Operators

Operators must be defined on values of specific types. For instance, + is defined on numbers,
but not on structures. Operators are often defined on groups of types. For the purposes of
Modula-2, the following definitions hold:

e Integral types consist of INTEGER, CARDINAL, and their subranges.

e Character types consist of CHAR and its subranges.

e Floating-point types consist of REAL.

e Pointer types consist of anything declared as POINTER TO type.

e Scalar types consist of all of the above.

e Set types consist of SET and BITSET types.

e Boolean types consist of BOOLEAN.
The following operators are supported, and appear in order of increasing precedence:
, Function argument or array index separator.
= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, floating-point, or enumerated types.

, >= Less than or equal to, greater than or equal to on integral, floating-point and
enumerated types, or set inclusion on set types. Same precedence as <.

= <> # Equality and two ways of expressing inequality, valid on scalar types. Same
precedence as <. In GDB scripts, only <> is available for inequality, since #
conflicts with the script comment character.

IN Set membership. Defined on set types and the types of their members. Same
precedence as <.

OR Boolean disjunction. Defined on boolean types.

128 Debugging with GDB

AND, & Boolean conjunction. Defined on boolean types.
Q The GDB “artificial array” operator (see Section 8.1 [Expressions|, page 73).
+, - Addition and subtraction on integral and floating-point types, or union and

difference on set types.

* Multiplication on integral and floating-point types, or set intersection on set
types.
/ Division on floating-point types, or symmetric set difference on set types. Same

precedence as *.

DIV, MOD Integer division and remainder. Defined on integral types. Same precedence as
*,

- Negative. Defined on INTEGER and REAL data.
Pointer dereferencing. Defined on pointer types.
NOT Boolean negation. Defined on boolean types. Same precedence as ~
RECORD field selector. Defined on RECORD data. Same precedence as ~.
0 Array indexing. Defined on ARRAY data. Same precedence as ~.
O Procedure argument list. Defined on PROCEDURE objects. Same precedence as

~

HE GDB and Modula-2 scope operators.

Warning: Set expressions and their operations are not yet supported, so GDB
treats the use of the operator IN, or the use of operators +, —, *, /, =, , <>, #,
<=, and >= on sets as an error.

12.4.5.2 Built-in functions and procedures

Modula-2 also makes available several built-in procedures and functions. In describing these,
the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identifier that belongs to a set. Generally used in the same func-

tion with the metavariable s. The type of s should be SET OF mtype (where
mtype is the type of m).

n represents a variable or constant of integral or floating-point type.

r represents a variable or constant of floating-point type.

t represents a type.

v represents a variable.

b'e represents a variable or constant of one of many types. See the explanation of

the function for details.

Chapter 12: Using ¢DB with Different Languages 129

All Modula-2 built-in procedures also return a result, described below.

ABS(n)
CAP(c)

CHR (i)
DEC(v)
DEC(v,1i)
EXCL(m, s)

FLOAT (1)
HIGH(a)
INC(v)
INC(v,1)
INCL(m,s)

MAX(t)
MIN(t)
0DD (1)
ORD(x)

SIZE(x)
TRUNC(r)
VAL(t,1i)

Returns the absolute value of n.

If ¢ is a lower case letter, it returns its upper case equivalent, otherwise it
returns its argument.

Returns the character whose ordinal value is i.
Decrements the value in the variable v by one. Returns the new value.

Decrements the value in the variable v by i. Returns the new value.

Removes the element m from the set s. Returns the new set.

Returns the floating point equivalent of the integer i.

Returns the index of the last member of a.

Increments the value in the variable v by one. Returns the new value.

Increments the value in the variable v by i. Returns the new value.

Adds the element m to the set s if it is not already there. Returns the new set.
Returns the maximum value of the type t.

Returns the minimum value of the type t.

Returns boolean TRUE if i is an odd number.

Returns the ordinal value of its argument. For example, the ordinal value of a
character is its ASCII value (on machines supporting the Ascii character set). x
must be of an ordered type, which include integral, character and enumerated

types.

Returns the size of its argument. x can be a variable or a type.
Returns the integral part of r.

Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so GDB treats the
use of procedures INCL and EXCL as an error.

12.4.5.3 Constants

GDB allows you to express the constants of Modula-2 in the following ways:

e Integer constants are simply a sequence of digits. When used in an expression, a con-
stant is interpreted to be type-compatible with the rest of the expression. Hexadecimal
integers are specified by a trailing ‘H’, and octal integers by a trailing ‘B’.

e Floating point constants appear as a sequence of digits, followed by a decimal point
and another sequence of digits. An optional exponent can then be specified, in the form
‘E[+|~]nnn’, where ‘[+|-]nnn’ is the desired exponent. All of the digits of the floating
point constant must be valid decimal (base 10) digits.

130 Debugging with GDB

e Character constants consist of a single character enclosed by a pair of like quotes, either
single (?) or double ("). They may also be expressed by their ordinal value (their ASCI1
value, usually) followed by a ‘C’.

e String constants consist of a sequence of characters enclosed by a pair of like quotes,
either single (°) or double ("). Escape sequences in the style of C are also allowed.
See Section 12.4.1.2 [C and C++ constants|, page 121, for a brief explanation of escape
sequences.

e Enumerated constants consist of an enumerated identifier.
e Boolean constants consist of the identifiers TRUE and FALSE.
e Pointer constants consist of integral values only.

e Set constants are not yet supported.

12.4.5.4 Modula-2 Types

Currently ¢DB can print the following data types in Modula-2 syntax: array types, record
types, set types, pointer types, procedure types, enumerated types, subrange types and base
types. You can also print the contents of variables declared using these type. This section
gives a number of simple source code examples together with sample GDB sessions.

The first example contains the following section of code:
VAR
s: SET OF CHAR ;
r: [20..40] ;
and you can request GDB to interrogate the type and value of r and s.
(gdb) print s
{;A) .)C),)Z}}
(gdb) ptype s
SET OF CHAR
(gdb) print r
21
(gdb) ptype r
[20. .40]
Likewise if your source code declares s as:
VAR
s: SET [’A’..°2°] ;
then you may query the type of s by:
(gdb) ptype s
type = SET [’A’..°Z’]
Note that at present you cannot interactively manipulate set expressions using the debugger.

The following example shows how you might declare an array in Modula-2 and how you
can interact with GDB to print its type and contents:

VAR
s: ARRAY [-10..10] OF CHAR ;

(gdb) ptype s
ARRAY [-10..10] OF CHAR
Note that the array handling is not yet complete and although the type is printed
correctly, expression handling still assumes that all arrays have a lower bound of zero and
not -10 as in the example above. Unbounded arrays are also not yet recognized in GDB.

Here are some more type related Modula-2 examples:

Chapter 12: Using ¢DB with Different Languages 131

TYPE
colour = (blue, red, yellow, green) ;
t = [blue..yellow] ;
VAR
s: t ;
BEGIN
s := blue ;

The GDB interaction shows how you can query the data type and value of a variable.
(gdb) print s
$1 = blue
(gdb) ptype t
type = [blue..yellow]

In this example a Modula-2 array is declared and its contents displayed. Observe that the
contents are written in the same way as their C counterparts.
VAR
s: ARRAY [1..5] OF CARDINAL ;
BEGIN
s[1] =1 ;
(gdb) print s
$1 = {1, 0, 0, 0, 0}
(gdb) ptype s
type = ARRAY [1..5] OF CARDINAL

The Modula-2 language interface to GDB also understands pointer types as shown in this
example:

VAR

s: POINTER TO ARRAY [1..5] OF CARDINAL ;
BEGIN

NEW(s) ;

s~ [1] =1 ;

and you can request that GDB describes the type of s.
(gdb) ptype s
type = POINTER TO ARRAY [1..5] OF CARDINAL

GDB handles compound types as we can see in this example. Here we combine array
types, record types, pointer types and subrange types:

TYPE
foo = RECORD
f1: CARDINAL ;
£2: CHAR ;
£3: myarray ;
END ;

myarray = ARRAY myrange OF CARDINAL ;
myrange = [-2..2] ;

VAR
s: POINTER TO ARRAY myrange OF foo ;

and you can ask GDB to describe the type of s as shown below.

(gdb) ptype s

type = POINTER TO ARRAY [-2..2] OF foo = RECORD
f1 : CARDINAL;
f2 : CHAR;
£3 : ARRAY [-2..2] OF CARDINAL;

END

132 Debugging with GDB

12.4.5.5 Modula-2 defaults

If type and range checking are set automatically by GDB, they both default to on whenever
the working language changes to Modula-2. This happens regardless of whether you or GDB
selected the working language.

If you allow GDB to set the language automatically, then entering code compiled from a
file whose name ends with ‘.mod’ sets the working language to Modula-2. See Section 12.1.3
[Having GDB set the language automatically|, page 116, for further details.

12.4.5.6 Deviations from standard Modula-2
A few changes have been made to make Modula-2 programs easier to debug. This is done
primarily via loosening its type strictness:

e Unlike in standard Modula-2, pointer constants can be formed by integers. This allows
you to modify pointer variables during debugging. (In standard Modula-2, the actual
address contained in a pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that returned a
pointer.)

e (C escape sequences can be used in strings and characters to represent non-printable
characters. GDB prints out strings with these escape sequences embedded. Single non-
printable characters are printed using the ‘CHR(nnn)’ format.

e The assignment operator (:=) returns the value of its right-hand argument.

e All built-in procedures both modify and return their argument.

12.4.5.7 Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or range checking.
GDB considers two Modula-2 variables type equivalent if:
e They are of types that have been declared equivalent via a TYPE t1 = t2 statement
e They have been declared on the same line. (Note: This is true of the GNU Modula-2
compiler, but it may not be true of other compilers.)
As long as type checking is enabled, any attempt to combine variables whose types are
not equivalent is an error.

Range checking is done on all mathematical operations, assignment, array index bounds,
and all built-in functions and procedures.

12.4.5.8 The scope operators :: and .

There are a few subtle differences between the Modula-2 scope operator (.) and the GDB
scope operator (::). The two have similar syntax:

module . id
scope :: id
where scope is the name of a module or a procedure, module the name of a module, and id
is any declared identifier within your program, except another module.
Using the :: operator makes GDB search the scope specified by scope for the identifier
id. If it is not found in the specified scope, then GDB searches all scopes enclosing the one
specified by scope.

Chapter 12: Using ¢DB with Different Languages 133

Using the . operator makes GDB search the current scope for the identifier specified by
id that was imported from the definition module specified by module. With this operator,
it is an error if the identifier id was not imported from definition module module, or if id is
not an identifier in module.

12.4.5.9 ¢DB and Modula-2

Some GDB commands have little use when debugging Modula-2 programs. Five subcom-
mands of set print and show print apply specifically to C and C++: ‘vtbl’, ‘demangle’,
‘asm-demangle’, ‘object’, and ‘union’. The first four apply to C++, and the last to the C
union type, which has no direct analogue in Modula-2.

The @ operator (see Section 8.1 [Expressions|, page 73), while available with any lan-
guage, is not useful with Modula-2. Its intent is to aid the debugging of dynamic arrays,
which cannot be created in Modula-2 as they can in C or C++. However, because an address
can be specified by an integral constant, the construct ‘{type}adrexp’ is still useful.

In GDB scripts, the Modula-2 inequality operator # is interpreted as the beginning of a
comment. Use <> instead.

12.4.6 Ada

The extensions made to GDB for Ada only support output from the GNU Ada (GNAT)
compiler. Other Ada compilers are not currently supported, and attempting to debug
executables produced by them is most likely to be difficult.

12.4.6.1 Introduction

The Ada mode of GDB supports a fairly large subset of Ada expression syntax, with some
extensions. The philosophy behind the design of this subset is

e That GDB should provide basic literals and access to operations for arithmetic, deref-
erencing, field selection, indexing, and subprogram calls, leaving more sophisticated
computations to subprograms written into the program (which therefore may be called
from GDB).

e That type safety and strict adherence to Ada language restrictions are not particularly
important to the GDB user.

e That brevity is important to the GDB user.

Thus, for brevity, the debugger acts as if there were implicit with and use clauses in
effect for all user-written packages, making it unnecessary to fully qualify most names with
their packages, regardless of context. Where this causes ambiguity, GDB asks the user’s
intent.

The debugger will start in Ada mode if it detects an Ada main program. As for other
languages, it will enter Ada mode when stopped in a program that was translated from an
Ada source file.

¢

While in Ada mode, you may use ‘==’ for comments. This is useful mostly for docu-
menting command files. The standard GDB comment (‘#’) still works at the beginning of a
line in Ada mode, but not in the middle (to allow based literals).

The debugger supports limited overloading. Given a subprogram call in which the func-
tion symbol has multiple definitions, it will use the number of actual parameters and some

134 Debugging with GDB

information about their types to attempt to narrow the set of definitions. It also makes
very limited use of context, preferring procedures to functions in the context of the call
command, and functions to procedures elsewhere.

12.4.6.2 Omissions from Ada

Here are the notable omissions from the subset:
e Only a subset of the attributes are supported:
— ’First, ’Last, and ’Length on array objects (not on types and subtypes).
— ’Min and ’Max.
— ’Pos and ’Val.
— ’Tag.
— ’Range on array objects (not subtypes), but only as the right operand of the
membership (in) operator.

— ’Access, ’Unchecked_Access, and ’Unrestricted_Access (a GNAT extension).
— ’Address.

e The names in Characters.Latin_1 are not available and concatenation is not imple-
mented. Thus, escape characters in strings are not currently available.

e Equality tests (‘=" and ‘/=") on arrays test for bitwise equality of representations. They
will generally work correctly for strings and arrays whose elements have integer or
enumeration types. They may not work correctly for arrays whose element types have
user-defined equality, for arrays of real values (in particular, IEEE-conformant floating
point, because of negative zeroes and NaNs), and for arrays whose elements contain
unused bits with indeterminate values.

e The other component-by-component array operations (and, or, xor, not, and relational
tests other than equality) are not implemented.

e There is limited support for array and record aggregates. They are permitted only on
the right sides of assignments, as in these examples:

(1, 2, 3, 4, 5, 6)

set An_Array (1, others => 0)

set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)

set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))

set A_Record := (1, "Peter", True);

set A_Record := (Name => "Peter", Id => 1, Alive => True)

set An_Array :

Changing a discriminant’s value by assigning an aggregate has an undefined effect if
that discriminant is used within the record. However, you can first modify discriminants
by directly assigning to them (which normally would not be allowed in Ada), and then
performing an aggregate assignment. For example, given a variable A_Rec declared to
have a type such as:

type Rec (Len : Small_Integer := 0) is record
Id : Integer;
Vals : IntArray (1 .. Len);

end record;

you can assign a value with a different size of Vals with two assignments:

set A_Rec.Len := 4
set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))

Ch

12
As

apter 12: Using GDB with Different Languages 135

As this example also illustrates, GDB is very loose about the usual rules concerning
aggregates. You may leave out some of the components of an array or record aggre-
gate (such as the Len component in the assignment to A_Rec above); they will retain
their original values upon assignment. You may freely use dynamic values as indices in
component associations. You may even use overlapping or redundant component asso-
ciations, although which component values are assigned in such cases is not defined.

Calls to dispatching subprograms are not implemented.

The overloading algorithm is much more limited (i.e., less selective) than that of real
Ada. It makes only limited use of the context in which a subexpression appears to
resolve its meaning, and it is much looser in its rules for allowing type matches. As a
result, some function calls will be ambiguous, and the user will be asked to choose the
proper resolution.

The new operator is not implemented.
Entry calls are not implemented.

Aside from printing, arithmetic operations on the native VAX floating-point formats
are not supported.

It is not possible to slice a packed array.

.4.6.3 Additions to Ada

it does for other languages, GDB makes certain generic extensions to Ada (see Section 8.1

[Expressions|, page 73):

If the expression E is a variable residing in memory (typically a local variable or array
element) and N is a positive integer, then E@N displays the values of E and the N-1
adjacent variables following it in memory as an array. In Ada, this operator is generally
not necessary, since its prime use is in displaying parts of an array, and slicing will
usually do this in Ada. However, there are occasional uses when debugging programs
in which certain debugging information has been optimized away.

B::var means “the variable named var that appears in function or file B.” When B is
a file name, you must typically surround it in single quotes.

The expression {type} addr means “the variable of type type that appears at address
addr.”

A name starting with ‘$’ is a convenience variable (see Section 8.9 [Convenience Vars|,
page 86) or a machine register (see Section 8.10 [Registers|, page 87).

In addition, GDB provides a few other shortcuts and outright additions specific to Ada:

The assignment statement is allowed as an expression, returning its right-hand operand
as its value. Thus, you may enter

set x :=y + 3

print A(tmp :=y + 1)
The semicolon is allowed as an “operator,” returning as its value the value of its right-
hand operand. This allows, for example, complex conditional breaks:

break f
condition 1 (report(i); k += 1; A(k) > 100)

Rather than use catenation and symbolic character names to introduce special charac-
ters into strings, one may instead use a special bracket notation, which is also used to

136

Debugging with GDB

print strings. A sequence of characters of the form ‘["XX"]’ within a string or character
literal denotes the (single) character whose numeric encoding is XX in hexadecimal.
The sequence of characters ‘["""]” also denotes a single quotation mark in strings. For
example,

"One line.["0a"]Next line.["0a"]"
contains an ASCII newline character (Ada.Characters.Latin_1.LF) after each period.

The subtype used as a prefix for the attributes ’Pos, *Min, and ’Max is optional (and
is ignored in any case). For example, it is valid to write

print ’max(x, y)
When printing arrays, GDB uses positional notation when the array has a lower bound
of 1, and uses a modified named notation otherwise. For example, a one-dimensional
array of three integers with a lower bound of 3 might print as

(3 => 10, 17, 1

That is, in contrast to valid Ada, only the first component has a => clause.

You may abbreviate attributes in expressions with any unique, multi-character subse-
quence of their names (an exact match gets preference). For example, you may use
a’len, a’gth, or a’lh in place of a’length.

Since Ada is case-insensitive, the debugger normally maps identifiers you type to lower
case. The GNAT compiler uses upper-case characters for some of its internal identifiers,
which are normally of no interest to users. For the rare occasions when you actually
have to look at them, enclose them in angle brackets to avoid the lower-case mapping.
For example,

gdb print <JMPBUF_SAVE>[0]

Printing an object of class-wide type or dereferencing an access-to-class-wide value will
display all the components of the object’s specific type (as indicated by its run-time
tag). Likewise, component selection on such a value will operate on the specific type
of the object.

12.4.6.4 Stopping at the Very Beginning

It is sometimes necessary to debug the program during elaboration, and before reaching the
main procedure. As defined in the Ada Reference Manual, the elaboration code is invoked
from a procedure called adainit. To run your program up to the beginning of elaboration,
simply use the following two commands: tbreak adainit and run.

12.4.6.5 Known Peculiarities of Ada Mode

Besides the omissions listed previously (see Section 12.4.6.2 [Omissions from Adal,
page 134), we know of several problems with and limitations of Ada mode in GDB, some
of which will be fixed with planned future releases of the debugger and the GNU Ada
compiler.

Currently, the debugger has insufficient information to determine whether certain point-
ers represent pointers to objects or the objects themselves. Thus, the user may have
to tack an extra .all after an expression to get it printed properly.

Static constants that the compiler chooses not to materialize as objects in storage are
invisible to the debugger.

Named parameter associations in function argument lists are ignored (the argument
lists are treated as positional).

Chapter 12: Using ¢DB with Different Languages 137

e Many useful library packages are currently invisible to the debugger.

Fixed-point arithmetic, conversions, input, and output is carried out using floating-
point arithmetic, and may give results that only approximate those on the host machine.

The type of the >Address attribute may not be System.Address.

The GNAT compiler never generates the prefix Standard for any of the standard
symbols defined by the Ada language. GDB knows about this: it will strip the prefix
from names when you use it, and will never look for a name you have so qualified
among local symbols, nor match against symbols in other packages or subprograms. If
you have defined entities anywhere in your program other than parameters and local
variables whose simple names match names in Standard, GNAT’s lack of qualification
here can cause confusion. When this happens, you can usually resolve the confusion
by qualifying the problematic names with package Standard explicitly.

12.5 Unsupported languages

In addition to the other fully-supported programming languages, GDB also provides a
pseudo-language, called minimal. It does not represent a real programming language, but
provides a set of capabilities close to what the C or assembly languages provide. This should
allow most simple operations to be performed while debugging an application that uses a
language currently not supported by GDB.

If the language is set to auto, GDB will automatically select this language if the current
frame corresponds to an unsupported language.

138 Debugging with GDB

Chapter 13: Examining the Symbol Table 139

13 Examining the Symbol Table

The commands described in this chapter allow you to inquire about the symbols (names
of variables, functions and types) defined in your program. This information is inherent in
the text of your program and does not change as your program executes. GDB finds it in
your program’s symbol table, in the file indicated when you started GDB (see Section 2.1.1
[Choosing files], page 12), or by one of the file-management commands (see Section 15.1
[Commands to specify files], page 151).

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to static
variables in other source files (see Section 8.2 [Program variables|, page 74). File names are
recorded in object files as debugging symbols, but GDB would ordinarily parse a typical file
name, like ‘foo.c’, as the three words ‘foo’ *.” ‘c’. To allow GDB to recognize ‘foo.c’ as a
single symbol, enclose it in single quotes; for example,

p ’foo.c’::x

looks up the value of x in the scope of the file ‘foo.c’.

set case-sensitive on

set case-sensitive off

set case-sensitive auto
Normally, when GDB looks up symbols, it matches their names with case sensi-
tivity determined by the current source language. Occasionally, you may wish
to control that. The command set case-sensitive lets you do that by specify-
ing on for case-sensitive matches or off for case-insensitive ones. If you specify
auto, case sensitivity is reset to the default suitable for the source language.
The default is case-sensitive matches for all languages except for Fortran, for
which the default is case-insensitive matches.

show case-sensitive
This command shows the current setting of case sensitivity for symbols lookups.

info address symbol
Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the
stack-frame offset at which the variable is always stored.

Note the contrast with ‘print &symbol’, which does not work at all for a regis-
ter variable, and for a stack local variable prints the exact address of the current
instantiation of the variable.

info symbol addr
Print the name of a symbol which is stored at the address addr. If no symbol
is stored exactly at addr, GDB prints the nearest symbol and an offset from it:
(gdb) info symbol 0x54320
_initialize_vx + 396 in section .text
This is the opposite of the info address command. You can use it to find out
the name of a variable or a function given its address.

whatis [arg]
Print the data type of arg, which can be either an expression or a data type.
With no argument, print the data type of $, the last value in the value history.

140

Debugging with GDB

If arg is an expression, it is not actually evaluated, and any side-effecting oper-
ations (such as assignments or function calls) inside it do not take place. If arg
is a type name, it may be the name of a type or typedef, or for C code it may
have the form ‘class class-name’, ‘struct struct-tag’, ‘union union-tag’
or ‘enum enum-tag’. See Section 8.1 [Expressions|, page 73.

ptype [arg]

info types
info types

info scope

ptype accepts the same arguments as whatis, but prints a detailed description
of the type, instead of just the name of the type. See Section 8.1 [Expressions],
page 73.

For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {
double real;
double imag;
}
As with whatis, using ptype without an argument refers to the type of $, the

last value in the value history.

Sometimes, programs use opaque data types or incomplete specifications of
complex data structure. If the debug information included in the program
does not allow GDB to display a full declaration of the data type, it will say
‘<incomplete type>’. For example, given these declarations:
struct foo;
struct foo *fooptr;
but no definition for struct foo itself, GDB will say:
(gdb) ptype foo
$1 = <incomplete type>
“Incomplete type” is C terminology for data types that are not completely
specified.

regexp

Print a brief description of all types whose names match the regular expression
regexp (or all types in your program, if you supply no argument). Each complete
typename is matched as though it were a complete line; thus, ‘i type value’
gives information on all types in your program whose names include the string
value, but ‘i type “value$’ gives information only on types whose complete
name is value.

This command differs from ptype in two ways: first, like whatis, it does not
print a detailed description; second, it lists all source files where a type is
defined.

location
List all the variables local to a particular scope. This command accepts a
location argument—a function name, a source line, or an address preceded by

Chapter 13: Examining the Symbol Table 141

a ‘*’ and prints all the variables local to the scope defined by that location.
For example:

(gdb) info scope command_line_handler
Scope for command_line_handler:
Symbol rl is an argument at stack/frame offset 8, length 4.
Symbol linebuffer is in static storage at address 0x150al8, length 4.
Symbol linelength is in static storage at address 0Ox150alc, length 4.
Symbol p is a local variable in register $esi, length 4.
Symbol pl is a local variable in register $ebx, length 4.
Symbol nline is a local variable in register $edx, length 4.
Symbol repeat is a local variable at frame offset -8, length 4.
This command is especially useful for determining what data to collect during

a trace experiment, see Section 10.1.4 [Tracepoint Actions]|, page 103.

info source
Show information about the current source file—that is, the source file for the
function containing the current point of execution:

e the name of the source file, and the directory containing it,
e the directory it was compiled in,

e its length, in lines,

e which programming language it is written in,

e whether the executable includes debugging information for that file, and if
so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and

e whether the debugging information includes information about preproces-
SOr MAacros.

info sources
Print the names of all source files in your program for which there is debugging
information, organized into two lists: files whose symbols have already been
read, and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a
match for regular expression regexp. Thus, ‘info fun step’ finds all functions
whose names include step; ‘info fun “step’ finds those whose names start
with step. If a function name contains characters that conflict with the regular
expression language (e.g. ‘operator*()’), they may be quoted with a backslash.

info variables
Print the names and data types of all variables that are declared outside of
functions (i.e. excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp.

142 Debugging with GDB

info classes

info classes regexp
Display all Objective-C classes in your program, or (with the regexp argument)
all those matching a particular regular expression.

info selectors

info selectors regexp
Display all Objective-C selectors in your program, or (with the regexp argu-
ment) all those matching a particular regular expression.

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. For example, in Vx-
Works you can simply recompile a defective object file and keep on running.
If you are running on one of these systems, you can allow GDB to reload the
symbols for automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file when
an object file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when encountering object files of
the same name more than once. This is the default state; if you
are not running on a system that permits automatic relinking of
modules, you should leave symbol-reloading off, since otherwise
GDB may discard symbols when linking large programs, that may
contain several modules (from different directories or libraries) with
the same name.

show symbol-reloading
Show the current on or off setting.

set opaque-type-resolution on
Tell GDB to resolve opaque types. An opaque type is a type declared as a
pointer to a struct, class, or union—for example, struct MyType *—that
is used in one source file although the full declaration of struct MyType is in
another source file. The default is on.

A change in the setting of this subcommand will not take effect until the next
time symbols for a file are loaded.

set opaque-type-resolution off
Tell DB not to resolve opaque types. In this case, the type is printed as follows:

{<no data fields>}

show opaque-type-resolution
Show whether opaque types are resolved or not.

maint print symbols filename

maint print psymbols filename

maint print msymbols filename
Write a dump of debugging symbol data into the file filename. These commands
are used to debug the GDB symbol-reading code. Only symbols with debugging

Chapter 13:

maint info
maint info

Examining the Symbol Table 143

data are included. If you use ‘maint print symbols’, GDB includes all the
symbols for which it has already collected full details: that is, filename reflects
symbols for only those files whose symbols GDB has read. You can use the
command info sources to find out which files these are. If you use ‘maint
print psymbols’ instead, the dump shows information about symbols that GDB
only knows partially—that is, symbols defined in files that GDB has skimmed,
but not yet read completely. Finally, ‘maint print msymbols’ dumps just the
minimal symbol information required for each object file from which ¢DB has
read some symbols. See Section 15.1 [Commands to specify files], page 151, for
a discussion of how GDB reads symbols (in the description of symbol-file).

symtabs [regexp |

psymtabs [regexp |

List the struct symtab or struct partial_symtab structures whose names
match regexp. If regexp is not given, list them all. The output includes expres-
sions which you can copy into a GDB debugging this one to examine a particular
structure in more detail. For example:

(gdb) maint info psymtabs dwarf2read
{ objfile /home/gnu/build/gdb/gdb
((struct objfile *) 0x82e69d0)
{ psymtab /home/gnu/src/gdb/dwarf2read.c
((struct partial_symtab *) 0x8474b10)
readin no
fullname (null)
text addresses 0x814d3c8 -- 0x8158074
globals (* (struct partial_symbol **) 0x8507a08 @ 9)
statics (* (struct partial_symbol **) 0x40e95b78 @ 2882)
dependencies (none)
}
}
(gdb) maint info symtabs
(gdb)

We see that there is one partial symbol table whose filename contains the string
‘dwarf2read’, belonging to the ‘gdb’ executable; and we see that GDB has not
read in any symtabs yet at all. If we set a breakpoint on a function, that will
cause GDB to read the symtab for the compilation unit containing that function:

(gdb) break dwarf2_psymtab_to_symtab
Breakpoint 1 at Ox814ebda: file /home/gnu/src/gdb/dwarf2read.c,
line 1574.
(gdb) maint info symtabs
{ objfile /home/gnu/build/gdb/gdb
((struct objfile *) 0x82e69d0)
{ symtab /home/gnu/src/gdb/dwarf2read.c
((struct symtab *) 0x86c1£38)
dirname (null)
fullname (null)
blockvector ((struct blockvector *) 0x86c1bd0) (primary)
debugformat DWARF 2
}
}
(gdb)

144 Debugging with GDB

Chapter 14: Altering Execution 145

14 Altering Execution

Once you think you have found an error in your program, you might want to find out for
certain whether correcting the apparent error would lead to correct results in the rest of the
run. You can find the answer by experiment, using the GDB features for altering execution
of the program.

For example, you can store new values into variables or memory locations, give your pro-
gram a signal, restart it at a different address, or even return prematurely from a function.

14.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See Section 8.1 [Ex-
pressions], page 73. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression
(which is 4). See Chapter 12 [Using GDB with Different Languages|, page 115, for more
information on operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the expression’s
value is not printed and is not put in the value history (see Section 8.8 [Value history],
page 85). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a
set subcommand, use the set variable command instead of just set. This command is
identical to set except for its lack of subcommands. For example, if your program has a
variable width, you get an error if you try to set a new value with just ‘set width=13’,
because GDB has the command set width:

(gdb) whatis width

type = double

(gdb) p width

$4 = 13

(gdb) set width=47

Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the program’s variable
width, use

(gdb) set var width=47

Because the set command has many subcommands that can conflict with the names of
program variables, it is a good idea to use the set variable command instead of just set.
For example, if your program has a variable g, you run into problems if you try to set a
new value with just ‘set g=4’, because GDB has the command set gnutarget, abbreviated
set g:

146 Debugging with GDB

(gdb) whatis g

type = double

(gdb) p g

$1 =1

(gdb) set g=4

(gdb) p g

$2 =1

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/smith/cc_progs/a.out

"/home/smith/cc_progs/a.out": can’t open to read symbols:

Invalid bfd target.

(gdb) show g

The current BFD target is "=4".
The program variable g did not change, and you silently set the gnutarget to an invalid
value. In order to set the variable g, use

(gdb) set var g=4

GDB allows more implicit conversions in assignments than C; you can freely store an

integer value into a pointer variable or vice versa, and you can convert any structure to any

other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{. ..} construct to generate a
value of specified type at a specified address (see Section 8.1 [Expressions|, page 73). For
example, {int}0x83040 refers to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

14.2 Continuing at a different address

Ordinarily, when you continue your program, you do so at the place where it stopped, with

the continue command. You can instead continue at an address of your own choosing,

with the following commands:

jump Iinespec
Resume execution at line linespec. Execution stops again immediately if there
is a breakpoint there. See Section 7.1 [Printing source lines|, page 65, for a
description of the different forms of linespec. It is common practice to use
the tbreak command in conjunction with jump. See Section 5.1.1 [Setting
breakpoints], page 38.
The jump command does not change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than the
program counter. If line linespec is in a different function from the one cur-
rently executing, the results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For this reason, the jump command
requests confirmation if the specified line is not in the function currently exe-
cuting. However, even bizarre results are predictable if you are well acquainted
with the machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

Chapter 14: Altering Execution 147

On many systems, you can get much the same effect as the jump command by storing

a new value into the register $pc. The difference is that this does not start your program

running; it only changes the address of where it will run when you continue. For example,
set $pc = 0x485

makes the next continue command or stepping command execute at address 0x485, rather
than at the address where your program stopped. See Section 5.2 [Continuing and stepping],
page H1.

The most common occasion to use the jump command is to back up—perhaps with more
breakpoints set—over a portion of a program that has already executed, in order to examine
its execution in more detail.

14.3 Giving your program a signal

signal signal
Resume execution where your program stopped, but immediately give it the
signal signal. signal can be the name or the number of a signal. For example,
on many systems signal 2 and signal SIGINT are both ways of sending an
interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinary
see the signal when resumed with the continue command; ‘signal 0’ causes it
to resume without a signal.

signal does not repeat when you press a second time after executing the
command.

Invoking the signal command is not the same as invoking the kill utility from the shell.
Sending a signal with kill causes GDB to decide what to do with the signal depending on
the signal handling tables (see Section 5.3 [Signals|, page 54). The signal command passes
the signal directly to your program.

14.4 Returning from a function

return

return expression
You can cancel execution of a function call with the return command. If you
give an expression argument, its value is used as the function’s return value.

When you use return, GDB discards the selected stack frame (and all frames within it).
You can think of this as making the discarded frame return prematurely. If you wish to
specify a value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.3 [Selecting a frame], page 62), and any
other frames inside of it, leaving its caller as the innermost remaining frame. That frame
becomes selected. The specified value is stored in the registers used for returning values of
functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned. In contrast, the finish command
(see Section 5.2 [Continuing and stepping|, page 51) resumes execution until the selected
stack frame returns naturally.

148 Debugging with GDB

14.5 Calling program functions

print expr
Evaluate the expression expr and display the resuling value. expr may include
calls to functions in the program being debugged.

call expr
Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function
from your program that does not return anything (a.k.a. a void function), but
without cluttering the output with void returned values that GDB will otherwise
print. If the result is not void, it is printed and saved in the value history.

It is possible for the function you call via the print or call command to generate a
signal (e.g., if there’s a bug in the function, or if you passed it incorrect arguments). What
happens in that case is controlled by the set unwindonsignal command.

set unwindonsignal
Set unwinding of the stack if a signal is received while in a function that GDB
called in the program being debugged. If set to on, GDB unwinds the stack it
created for the call and restores the context to what it was before the call. If
set to off (the default), GDB stops in the frame where the signal was received.

show unwindonsignal
Show the current setting of stack unwinding in the functions called by GDB.

Sometimes, a function you wish to call is actually a weak alias for another function. In
such case, GDB might not pick up the type information, including the types of the function
arguments, which causes GDB to call the inferior function incorrectly. As a result, the called
function will function erroneously and may even crash. A solution to that is to use the
name of the aliased function instead.

14.6 Patching programs

By default, GDB opens the file containing your program’s executable code (or the corefile)
read-only. This prevents accidental alterations to machine code; but it also prevents you
from intentionally patching your program’s binary.

If you’d like to be able to patch the binary, you can specify that explicitly with the set
write command. For example, you might want to turn on internal debugging flags, or even
to make emergency repairs.

set write on

set write off
If you specify ‘set write on’, GDB opens executable and core files for both
reading and writing; if you specify ‘set write off’ (the default), GDB opens
them read-only.

If you have already loaded a file, you must load it again (using the exec-file
or core-file command) after changing set write, for your new setting to take
effect.

Chapter 14: Altering Execution 149

show write
Display whether executable files and core files are opened for writing as well as
reading.

150 Debugging with GDB

Chapter 15: ¢DB Files 151

15 GDB Files

GDB needs to know the file name of the program to be debugged, both in order to read its
symbol table and in order to start your program. To debug a core dump of a previous run,
you must also tell GDB the name of the core dump file.

15.1 Commands to specify files

You may want to specify executable and core dump file names. The usual way to do this is
at start-up time, using the arguments to GDB’s start-up commands (see Chapter 2 [Getting
In and Out of GDB|, page 11).

Occasionally it is necessary to change to a different file during a GDB session. Or you
may run GDB and forget to specify a file you want to use. Or you are debugging a remote
target via gdbserver (see Section 17.2 [Server], page 166). In these situations the GDB
commands to specify new files are useful.

file filename

Use filename as the program to be debugged. It is read for its symbols and for
the contents of pure memory. It is also the program executed when you use
the run command. If you do not specify a directory and the file is not found
in the GDB working directory, GDB uses the environment variable PATH as a list
of directories to search, just as the shell does when looking for a program to
run. You can change the value of this variable, for both GDB and your program,
using the path command.

You can load unlinked object .o’ files into GDB using the file command. You
will not be able to “run” an object file, but you can disassemble functions and
inspect variables. Also, if the underlying BFD functionality supports it, you
could use gdb -write to patch object files using this technique. Note that GDB
can neither interpret nor modify relocations in this case, so branches and some
initialized variables will appear to go to the wrong place. But this feature is
still handy from time to time.

file file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol table) is found in file-
name. GDB searches the environment variable PATH if necessary to locate your
program. Omitting filename means to discard information on the executable
file.

symbol-file | filename |
Read symbol table information from file filename. PATH is searched when nec-
essary. Use the file command to get both symbol table and program to run
from the same file.

symbol-file with no argument clears out GDB information on your program’s
symbol table.

The symbol-file command causes GDB to forget the contents of some break-
points and auto-display expressions. This is because they may contain pointers

152

Debugging with GDB

to the internal data recording symbols and data types, which are part of the
old symbol table data being discarded inside GDB.

symbol-file does not repeat if you press again after executing it once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment;
you may use either a GNU compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from GNU compilers; for example,
using gcc you can generate debugging information for optimized code.

For most kinds of object files, with the exception of old SVR3 systems using
COFF, the symbol-file command does not normally read the symbol table in
full right away. Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read later, one source file
at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster.
For the most part, it is invisible except for occasional pauses while the symbol
table details for a particular source file are being read. (The set verbose
command can turn these pauses into messages if desired. See Section 19.7
[Optional warnings and messages|, page 209.)

We have not implemented the two-stage strategy for COFF yet. When the
symbol table is stored in COFF format, symbol-file reads the symbol table
data in full right away. Note that “stabs-in-COFF” still does the two-stage
strategy, since the debug info is actually in stabs format.

symbol-file filename | -readnow |
file filename [-readnow]

You can override the GDB two-stage strategy for reading symbol tables by us-
ing the ‘-readnow’ option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table available.

core-file [filename]

core

Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address space
of the process that generated them; GDB can access the executable file itself for
other parts.

core-file with no argument specifies that no core file is to be used.

Note that the core file is ignored when your program is actually running under
GDB. So, if you have been running your program and you wish to debug a
core file instead, you must kill the subprocess in which the program is running.
To do this, use the kill command (see Section 4.8 [Killing the child process],
page 31).

add-symbol-file filename address
add-symbol-file filename address | -readnow |
add-symbol-file filename -ssection address ...

The add-symbol-file command reads additional symbol table information
from the file filename. You would use this command when filename has been
dynamically loaded (by some other means) into the program that is running.

Chapter 15: GDB Files 153

address should be the memory address at which the file has been loaded; GDB
cannot figure this out for itself. You can additionally specify an arbitrary
number of ‘-ssection address’ pairs, to give an explicit section name and
base address for that section. You can specify any address as an expression.

The symbol table of the file filename is added to the symbol table originally read
with the symbol-file command. You can use the add-symbol-file command
any number of times; the new symbol data thus read keeps adding to the old.
To discard all old symbol data instead, use the symbol-file command without
any arguments.

Although filename is typically a shared library file, an executable file, or some
other object file which has been fully relocated for loading into a process, you
can also load symbolic information from relocatable ‘.o’ files, as long as:

e the file’s symbolic information refers only to linker symbols defined in that
file, not to symbols defined by other object files,

e every section the file’s symbolic information refers to has actually been
loaded into the inferior, as it appears in the file, and

e you can determine the address at which every section was loaded, and
provide these to the add-symbol-file command.

Some embedded operating systems, like Sun Chorus and VxWorks, can load
relocatable files into an already running program; such systems typically make
the requirements above easy to meet. However, it’s important to recognize that
many native systems use complex link procedures (.linkonce section factoring
and C++ constructor table assembly, for example) that make the requirements
difficult to meet. In general, one cannot assume that using add-symbol-file
to read a relocatable object file’s symbolic information will have the same effect
as linking the relocatable object file into the program in the normal way.

add-symbol-file does not repeat if you press after using it.

add-symbol-file-from-memory address

Load symbols from the given address in a dynamically loaded object file whose
image is mapped directly into the inferior’s memory. For example, the Linux
kernel maps a syscall DSO into each process’s address space; this DSO provides
kernel-specific code for some system calls. The argument can be any expres-
sion whose evaluation yields the address of the file’s shared object file header.
For this command to work, you must have used symbol-file or exec-file
commands in advance.

add-shared-symbol-files library-file

assf library-file
The add-shared-symbol-files command can currently be used only in the
Cygwin build of GDB on MS-Windows OS, where it is an alias for the d11-
symbols command (see Section 18.1.5 [Cygwin Native|, page 179). GDB auto-
matically looks for shared libraries, however if GDB does not find yours, you can
invoke add-shared-symbol-files. It takes one argument: the shared library’s
file name. assf is a shorthand alias for add-shared-symbol-files.

154 Debugging with GDB

section section addr
The section command changes the base address of the named section of the
exec file to addr. This can be used if the exec file does not contain section
addresses, (such as in the a.out format), or when the addresses specified in the
file itself are wrong. Each section must be changed separately. The info files
command, described below, lists all the sections and their addresses.

info files

info target
info files and info target are synonymous; both print the current target
(see Chapter 16 [Specifying a Debugging Target]|, page 161), including the
names of the executable and core dump files currently in use by GDB, and
the files from which symbols were loaded. The command help target lists all
possible targets rather than current ones.

maint info sections
Another command that can give you extra information about program sections
is maint info sections. In addition to the section information displayed by
info files, this command displays the flags and file offset of each section in
the executable and core dump files. In addition, maint info sections provides
the following command options (which may be arbitrarily combined):

ALLOBJ Display sections for all loaded object files, including shared li-
braries.

sections Display info only for named sections.

section-flags
Display info only for sections for which section-flags are true. The
section flags that GDB currently knows about are:

ALLOC Section will have space allocated in the process when
loaded. Set for all sections except those containing de-
bug information.

LOAD Section will be loaded from the file into the child pro-
cess memory. Set for pre-initialized code and data,
clear for .bss sections.

RELOC Section needs to be relocated before loading.
READONLY Section cannot be modified by the child process.

CODE Section contains executable code only.

DATA Section contains data only (no executable code).
ROM Section will reside in ROM.

CONSTRUCTOR

Section contains data for constructor/destructor lists.

HAS_CONTENTS
Section is not empty.

Chapter 15: GDB Files 155

NEVER_LOAD
An instruction to the linker to not output the section.

COFF_SHARED_LIBRARY
A notification to the linker that the section contains
COFF shared library information.

IS_COMMON
Section contains common symbols.

set trust-readonly-sections on
Tell GDB that readonly sections in your object file really are read-only (i.e.
that their contents will not change). In that case, GDB can fetch values from
these sections out of the object file, rather than from the target program. For
some targets (notably embedded ones), this can be a significant enhancement
to debugging performance.

The default is off.

set trust-readonly-sections off
Tell GDB not to trust readonly sections. This means that the contents of the
section might change while the program is running, and must therefore be
fetched from the target when needed.

show trust-readonly-sections
Show the current setting of trusting readonly sections.

All file-specifying commands allow both absolute and relative file names as arguments.
GDB always converts the file name to an absolute file name and remembers it that way.

GDB supports GNU/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix, and IBM RS /6000
ATIX shared libraries.

GDB automatically loads symbol definitions from shared libraries when you use the run
command, or when you examine a core file. (Before you issue the run command, GDB
does not understand references to a function in a shared library, however—unless you are
debugging a core file).

On HP-UX, if the program loads a library explicitly, GbDB automatically loads the symbols
at the time of the shl_load call.

There are times, however, when you may wish to not automatically load symbol defini-
tions from shared libraries, such as when they are particularly large or there are many of
them.

To control the automatic loading of shared library symbols, use the commands:

set auto-solib-add mode

If mode is on, symbols from all shared object libraries will be loaded auto-
matically when the inferior begins execution, you attach to an independently
started inferior, or when the dynamic linker informs GDB that a new library
has been loaded. If mode is off, symbols must be loaded manually, using the
sharedlibrary command. The default value is on.

If your program uses lots of shared libraries with debug info that takes large
amounts of memory, you can decrease the GDB memory footprint by prevent-
ing it from automatically loading the symbols from shared libraries. To that

156 Debugging with GDB

end, type set auto-solib-add off before running the inferior, then load each
library whose debug symbols you do need with sharedlibrary regexp, where
regexp is a regular expresion that matches the libraries whose symbols you want
to be loaded.

show auto-solib-add
Display the current autoloading mode.

To explicitly load shared library symbols, use the sharedlibrary command:

info share
info sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedlibrary regex

share regex
Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after typing run. If regex is omitted all shared libraries
required by your program are loaded.

nosharedlibrary
Unload all shared object library symbols. This discards all symbols that have
been loaded from all shared libraries. Symbols from shared libraries that were
loaded by explicit user requests are not discarded.

Sometimes you may wish that GDB stops and gives you control when any of shared
library events happen. Use the set stop-on-solib-events command for this:

set stop-on-solib-events
This command controls whether GDB should give you control when the dynamic
linker notifies it about some shared library event. The most common event of
interest is loading or unloading of a new shared library.

show stop-on-solib-events
Show whether GDB stops and gives you control when shared library events
happen.

Shared libraries are also supported in many cross or remote debugging configurations.
A copy of the target’s libraries need to be present on the host system; they need to be the
same as the target libraries, although the copies on the target can be stripped as long as
the copies on the host are not.

For remote debugging, you need to tell GDB where the target libraries are, so that it
can load the correct copies—otherwise, it may try to load the host’s libraries. GDB has two
variables to specify the search directories for target libraries.

set solib-absolute-prefix path
If this variable is set, path will be used as a prefix for any absolute shared
library paths; many runtime loaders store the absolute paths to the shared
library in the target program’s memory. If you use ‘solib-absolute-prefix’
to find shared libraries, they need to be laid out in the same way that they are
on the target, with e.g. a ‘/usr/1ib’ hierarchy under path.

Chapter 15: GDB Files 157

You can set the default value of ‘solib-absolute-prefix’ by using the
configure-time ‘--with-sysroot’ option.

show solib-absolute-prefix
Display the current shared library prefix.

set solib-search-path path
If this variable is set, path is a colon-separated list of directories to search for
shared libraries. ‘solib-search-path’ is used after ‘solib-absolute-prefix’
fails to locate the library, or if the path to the library is relative
instead of absolute. If you want to use ‘solib-search-path’ instead of
‘solib-absolute-prefix’, be sure to set ‘solib-absolute-prefix’ to a
nonexistant directory to prevent GDB from finding your host’s libraries.

show solib-search-path
Display the current shared library search path.

15.2 Debugging Information in Separate Files

GDB allows you to put a program’s debugging information in a file separate from the ex-
ecutable itself, in a way that allows GDB to find and load the debugging information au-
tomatically. Since debugging information can be very large — sometimes larger than the
executable code itself — some systems distribute debugging information for their executa-
bles in separate files, which users can install only when they need to debug a problem.

If an executable’s debugging information has been extracted to a separate file, the ex-
ecutable should contain a debug link giving the name of the debugging information file
(with no directory components), and a checksum of its contents. (The exact form of a
debug link is described below.) If the full name of the directory containing the executable
is execdir, and the executable has a debug link that specifies the name debugfile, then GDB
will automatically search for the debugging information file in three places:

e the directory containing the executable file (that is, it will look for a file named ‘ex-
ecdir/debugfile’,

¢

e a subdirectory of that directory named ‘.debug’ (that is, the file ‘ex-
ecdir/.debug/debugfile’, and

e a subdirectory of the global debug file directory that includes the executable’s full path,
and the name from the link (that is, the file ‘globaldebugdir/execdir/debugfile’,
where globaldebugdir is the global debug file directory, and execdir has been turned
into a relative path).

GDB checks under each of these names for a debugging information file whose checksum
matches that given in the link, and reads the debugging information from the first one it
finds.

So, for example, if you ask GDB to debug ‘/usr/bin/1ls’, which has a link containing
the name ‘ls.debug’, and the global debug directory is ‘/usr/lib/debug’, then GDB will
look for debug information in ‘/usr/bin/ls.debug’, ‘/usr/bin/.debug/ls.debug’, and
‘/usr/1ib/debug/usr/bin/ls.debug’.

You can set the global debugging info directory’s name, and view the name GDB is
currently using.

158 Debugging with GDB

set debug-file-directory directory
Set the directory which GDB searches for separate debugging information files
to directory.

show debug-file-directory
Show the directory GDB searches for separate debugging information files.

A debug link is a special section of the executable file named .gnu_debuglink. The
section must contain:

e A filename, with any leading directory components removed, followed by a zero byte,

e zero to three bytes of padding, as needed to reach the next four-byte boundary within
the section, and

e a four-byte CRC checksum, stored in the same endianness used for the executable file
itself. The checksum is computed on the debugging information file’s full contents by
the function given below, passing zero as the crc argument.

Any executable file format can carry a debug link, as long as it can contain a section
named .gnu_debuglink with the contents described above.

The debugging information file itself should be an ordinary executable, containing a full
set of linker symbols, sections, and debugging information. The sections of the debugging
information file should have the same names, addresses and sizes as the original file, but
they need not contain any data — much like a .bss section in an ordinary executable.

As of December 2002, there is no standard GNU utility to produce separated executable
/ debugging information file pairs. Ulrich Drepper’s ‘elfutils’ package, starting with
version 0.53, contains a version of the strip command such that the command strip foo
-f foo.debug removes the debugging information from the executable file ‘foo’, places it
in the file ‘foo.debug’, and leaves behind a debug link in ‘foo’.

Since there are many different ways to compute CRC’s (different polynomials, reversals,
byte ordering, etc.), the simplest way to describe the CRC used in .gnu_debuglink sections
is to give the complete code for a function that computes it:

unsigned long
gnu_debuglink_crc32 (unsigned long crc,
unsigned char *buf, size_t len)
{
static const unsigned long crc32_table[256] =
{

0x00000000, 0x77073096, Oxeele612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963ab535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0dbe91le, 0x97d2d988, 0x09b64c2b, 0x7ebl7cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84bedlde,
Oxladad47d, Ox6dddedeb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0£3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4dl, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35bba8fa, 0x42b2986¢c, Oxdbbbc9d6, Oxacbcf940, 0x32d86ce3,
0x45df5c75, Oxdcd60dcf, Oxabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, O0xcfba9599,
0xb8bdab0f, 0x2802b89%e, 0x5£058808, 0xc60cd9b2, 0xb10be924,
0x2f6£7c87, 0x58684c1l, Oxcl6lldab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, Oxefdb5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4ab, 0xe8b8d433, 0x7807c9a2, 0x0f00£f934, 0x9609a88e,

Chapter 15: GDB Files 159

0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01ab57b, 0x8208f4cl, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62ddiddf, Ox15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
Ox4adfab41, 0x3dd895d7, Oxaddlc46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d473, 0x33031de5,
OxaaOad4cbf, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbeOb1010,
0xc90c2086, 0x5768b525, 0x206£85b3, 0xb966d409, Oxce61e49f,
Ox5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, OxcObabcad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74bl1d29a, Oxead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7ab6abaal8,
Oxe40ecfOb, 0x9309ff9d, 0x0a00ae27, 0x7d079ebl, 0xf00£9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7aba,
0x67dd4acc, 0xf9b9df6f, Ox8ebeeff9, 0x17b7bed3, 0x60b08ed5,
0xd6d6a3e8, 0xaldl1937e, 0x38d8c2c4, 0x4fdff252, 0xdlbb67f1,
0xabbc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, OxaflOalbdc,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831la, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, Oxcbba3bbe,
0xb2bd0b28, 0x2bb45a92, 0xbcb36a04, Oxc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, Ox5bdeaeld, 0x9b64c2b0, Oxec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87al4, 0x7bbl2bae, 0x0cb61b38, 0x92d28e9b,
OxebdbbeOd, 0x7cdcefb7, 0xObdbdf21, 0x86d3d2d4, Oxfild4e242,
0x68ddb3f8, 0x1fda836e, 0x81belbcd, 0xf6b9265b, 0x6fb077el,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010bbc,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccfd5, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, Oxaedl6ada, 0xd9d6b5adc, 0x40df0b66,
0x37d83bf0, 0xa9bcaeb3, 0Oxdebb9ech, 0x47b2cf7f, 0x30b5ffe9,
Oxbdbdf21c, Oxcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54deb729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe3d7, 0xc30cB8eal, 0x5a05dfilb,
0x2d02ef8d
};

unsigned char *end;

crc = “crc & Oxffffffff;
for (end = buf + len; buf < end; ++buf)

crc = crc32_table[(crc ~ *buf) & Oxff] ~ (crc >> 8);
return “crc & Oxffffffff;

15.3 Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems, such as symbol types
it does not recognize, or known bugs in compiler output. By default, GDB does not notify
you of such problems, since they are relatively common and primarily of interest to peo-
ple debugging compilers. If you are interested in seeing information about ill-constructed
symbol tables, you can either ask GDB to print only one message about each such type of
problem, no matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints command
(see Section 19.7 [Optional warnings and messages|, page 209).

160 Debugging with GDB

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at
the start of a function or a block of statements). This error indicates that an
inner scope block is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the same
scope as the outer block. In the error message, symbol may be shown as “(don’t
know)” if the outer block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur in order of in-
creasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in
the source file whose symbols it is reading. (You can often determine what
source file is affected by specifying set verbose on. See Section 19.7 [Optional
warnings and messages|, page 209.)

bad block start address patched
The symbol information for a symbol scope block has a start address smaller
than the address of the preceding source line. This is known to occur in the
SunOS 4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting
on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table which is larger than
the size of the string table.

GDB circumvents the problem by considering the symbol to have the name foo,
which may cause other problems if many symbols end up with this name.

unknown symbol type Oxnn
The symbol information contains new data types that GDB does not yet know
how to read. Oxnn is the symbol type of the uncomprehended information, in
hexadecimal.

GDB circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain, then go up to the function read_dbx_symtab
and examine *bufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++ member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the compiler.

Chapter 16: Specifying a Debugging Target 161

16 Specifying a Debugging Target

A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program; in that case, the de-
bugging target is specified as a side effect when you use the file or core commands.
When you need more flexibility—for example, running GDB on a physically separate host,
or controlling a standalone system over a serial port or a realtime system over a TCP /IP
connection—you can use the target command to specify one of the target types configured
for GDB (see Section 16.2 [Commands for managing targets], page 162).

It is possible to build GDB for several different target architectures. When GDB is built
like that, you can choose one of the available architectures with the set architecture
command.

set architecture arch
This command sets the current target architecture to arch. The value of arch
can be "auto", in addition to one of the supported architectures.

show architecture
Show the current target architecture.

set processor

processor
These are alias commands for, respectively, set architecture and show
architecture.

16.1 Active targets

There are three classes of targets: processes, core files, and executable files. GDB can
work concurrently on up to three active targets, one in each class. This allows you to (for
example) start a process and inspect its activity without abandoning your work on a core
file.

For example, if you execute ‘gdb a.out’, then the executable file a. out is the only active
target. If you designate a core file as well—presumably from a prior run that crashed and
coredumped—then GDB has two active targets and uses them in tandem, looking first in
the corefile target, then in the executable file, to satisfy requests for memory addresses.
(Typically, these two classes of target are complementary, since core files contain only a
program’s read-write memory—variables and so on—plus machine status, while executable
files contain only the program text and initialized data.)

When you type run, your executable file becomes an active process target as well. When a
process target is active, all GDB commands requesting memory addresses refer to that target;
addresses in an active core file or executable file target are obscured while the process target
is active.

Use the core-file and exec-file commands to select a new core file or executable
target (see Section 15.1 [Commands to specify files|, page 151). To specify as a target a
process that is already running, use the attach command (see Section 4.7 [Debugging an
already-running process|, page 30).

162 Debugging with GDB

16.2 Commands for managing targets

target type parameters
Connects the GDB host environment to a target machine or process. A target
is typically a protocol for talking to debugging facilities. You use the argument
type to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

The target command does not repeat if you press again after executing
the command.

help target
Displays the names of all targets available. To display targets currently selected,
use either info target or info files (see Section 15.1 [Commands to specify
files], page 151).

help target name
Describe a particular target, including any parameters necessary to select it.

set gnutarget args
GDB uses its own library BFD to read your files. GDB knows whether it is
reading an executable, a core, or a .o file; however, you can specify the file
format with the set gnutarget command. Unlike most target commands,
with gnutarget the target refers to a program, not a machine.

Warning: To specify a file format with set gnutarget, you must
know the actual BFD name.

See Section 15.1 [Commands to specify files], page 151.

show gnutarget
Use the show gnutarget command to display what file format gnutarget is set
to read. If you have not set gnutarget, GDB will determine the file format for
each file automatically, and show gnutarget displays ‘The current BDF target
is "auto"’.

Here are some common targets (available, or not, depending on the GDB configuration):

target exec program
An executable file. ‘target exec program’ is the same as ‘exec-file pro-
gram’.

target core filename
A core dump file. ‘target core filename’ is the same as ‘core-file file-
)
name’.

target remote medium
A remote system connected to GDB via a serial line or network connection. This
command tells GDB to use its own remote protocol over medium for debugging.
See Chapter 17 [Remote Debugging], page 165.

For example, if you have a board connected to ‘/dev/ttya’ on the machine
running GDB, you could say:

Chapter 16: Specifying a Debugging Target 163

target remote /dev/ttya

target remote supports the load command. This is only useful if you have
some other way of getting the stub to the target system, and you can put it
somewhere in memory where it won'’t get clobbered by the download.

target sim
Builtin CPU simulator. GDB includes simulators for most architectures. In
general,

target sim

load

run
works; however, you cannot assume that a specific memory map, device drivers,
or even basic I/0 is available, although some simulators do provide these. For
info about any processor-specific simulator details, see the appropriate section
in Section 18.3 [Embedded Processors], page 186.

Some configurations may include these targets as well:

target nrom dev
NetROM ROM emulator. This target only supports downloading.

Different targets are available on different configurations of GDB; your configuration may
have more or fewer targets.

Many remote targets require you to download the executable’s code once you’ve success-
fully established a connection. You may wish to control various aspects of this process.

set hash This command controls whether a hash mark ‘#’ is displayed while downloading
a file to the remote monitor. If on, a hash mark is displayed after each S-record
is successfully downloaded to the monitor.

show hash Show the current status of displaying the hash mark.

set debug monitor
Enable or disable display of communications messages between GDB and the
remote monitor.

show debug monitor
Show the current status of displaying communications between GDB and the
remote monitor.

load filename
Depending on what remote debugging facilities are configured into GDB, the
load command may be available. Where it exists, it is meant to make filename
(an executable) available for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the filename symbol table
in GDB, like the add-symbol-file command.

If your GDB does not have a load command, attempting to execute it gets the
error message “You can’t do that when your target is ...”

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

164 Debugging with GDB

Depending on the remote side capabilities, GDB may be able to load programs
into flash memory.

load does not repeat if you press again after using it.

16.3 Choosing target byte order

Some types of processors, such as the MIPS, PowerPC, and Renesas SH, offer the ability
to run either big-endian or little-endian byte orders. Usually the executable or symbol will
include a bit to designate the endian-ness, and you will not need to worry about which to
use. However, you may still find it useful to adjust GDB’s idea of processor endian-ness
manually.

set endian big
Instruct ¢DB to assume the target is big-endian.

set endian little
Instruct GDB to assume the target is little-endian.

set endian auto
Instruct GDB to use the byte order associated with the executable.

show endian
Display GDB’s current idea of the target byte order.

Note that these commands merely adjust interpretation of symbolic data on the host,
and that they have absolutely no effect on the target system.

16.4 Remote debugging

If you are trying to debug a program running on a machine that cannot run GDB in the
usual way, it is often useful to use remote debugging. For example, you might use remote
debugging on an operating system kernel, or on a small system which does not have a
general purpose operating system powerful enough to run a full-featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this work
with particular debugging targets. In addition, GDB comes with a generic serial protocol
(specific to GDB, but not specific to any particular target system) which you can use if you
write the remote stubs—the code that runs on the remote system to communicate with
GDB.

Other remote targets may be available in your configuration of GDB; use help target
to list them.

Once you’ve connected to the remote target, GDB allows you to send arbitrary commands
to the remote monitor:

remote command
Send an arbitrary command string to the remote monitor.

Chapter 17: Debugging remote programs 165

17 Debugging remote programs

17.1 Connecting to a remote target

On the GDB host machine, you will need an unstripped copy of your program, since GDB
needs symobl and debugging information. Start up GDB as usual, using the name of the
local copy of your program as the first argument.

GDB can communicate with the target over a serial line, or over an IP network using TCP
or UDP. In each case, GDB uses the same protocol for debugging your program; only the
medium carrying the debugging packets varies. The target remote command establishes
a connection to the target. Its arguments indicate which medium to use:

target remote serial-device
Use serial-device to communicate with the target. For example, to use a serial
line connected to the device named ‘/dev/ttyb’:
target remote /dev/ttyb

If you’re using a serial line, you may want to give GDB the ‘--baud’ option,

or use the set remotebaud command (see Section 17.3 [Remote configuration],
page 168) before the target command.

target remote host :port

target remote tcp:host :port
Debug using a TCP connection to port on host. The host may be either a host
name or a numeric IP address; port must be a decimal number. The host could
be the target machine itself, if it is directly connected to the net, or it might
be a terminal server which in turn has a serial line to the target.

For example, to connect to port 2828 on a terminal server named manyfarms:

target remote manyfarms:2828

If your remote target is actually running on the same machine as your debugger

session (e.g. a simulator for your target running on the same host), you can omit

the hostname. For example, to connect to port 1234 on your local machine:
target remote :1234

Note that the colon is still required here.

target remote udp:host :port
Debug using UDP packets to port on host. For example, to connect to UDP
port 2828 on a terminal server named manyfarms:
target remote udp:manyfarms:2828

When using a UDP connection for remote debugging, you should keep in mind
that the ‘U’ stands for “Unreliable”. UDP can silently drop packets on busy or
unreliable networks, which will cause havoc with your debugging session.

target remote | command
Run command in the background and communicate with it using a pipe. The
command is a shell command, to be parsed and expanded by the system’s com-
mand shell, /bin/sh; it should expect remote protocol packets on its standard
input, and send replies on its standard output. You could use this to run a

166 Debugging with GDB

stand-alone simulator that speaks the remote debugging protocol, to make net
connections using programs like ssh, or for other similar tricks.

If command closes its standard output (perhaps by exiting), GDB will try to
send it a SIGTERM signal. (If the program has already exited, this will have no
effect.)

Once the connection has been established, you can use all the usual commands to examine
and change data and to step and continue the remote program.

Whenever GDB is waiting for the remote program, if you type the interrupt character
(often Ctrl-c), GDB attempts to stop the program. This may or may not succeed, depending
in part on the hardware and the serial drivers the remote system uses. If you type the
interrupt character once again, GDB displays this prompt:

Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)

If you type y, GDB abandons the remote debugging session. (If you decide you want to
try again later, you can use ‘target remote’ again to connect once more.) If you type n,
GDB goes back to waiting.

detach When you have finished debugging the remote program, you can use the detach
command to release it from GDB control. Detaching from the target normally
resumes its execution, but the results will depend on your particular remote
stub. After the detach command, GDB is free to connect to another target.

disconnect
The disconnect command behaves like detach, except that the target is gener-
ally not resumed. It will wait for GDB (this instance or another one) to connect
and continue debugging. After the disconnect command, GDB is again free to
connect to another target.

monitor cmd
This command allows you to send arbitrary commands directly to the remote
monitor. Since GDB doesn’t care about the commands it sends like this, this
command is the way to extend GDB—you can add new commands that only
the external monitor will understand and implement.

17.2 Using the gdbserver program

gdbserver is a control program for Unix-like systems, which allows you to connect your
program with a remote GDB via target remote—but without linking in the usual debugging
stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that GDB itself does. In fact, a system that
can run gdbserver to connect to a remote GDB could also run GDB locally! gdbserver is
sometimes useful nevertheless, because it is a much smaller program than GDB itself. It is
also easier to port than all of GDB, so you may be able to get started more quickly on a
new system by using gdbserver. Finally, if you develop code for real-time systems, you
may find that the tradeoffs involved in real-time operation make it more convenient to do
as much development work as possible on another system, for example by cross-compiling.
You can use gdbserver to make a similar choice for debugging.

Chapter 17: Debugging remote programs 167

GDB and gdbserver communicate via either a serial line or a TCP connection, using the
standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug. gdbserver does
not need your program’s symbol table, so you can strip the program if necessary
to save space. GDB on the host system does all the symbol handling.

To use the server, you must tell it how to communicate with GDB; the name of
your program; and the arguments for your program. The usual syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument ‘foo.txt’ and
communicate with GDB over the serial port ‘/dev/com1’:

target> gdbserver /dev/coml emacs foo.txt
gdbserver waits passively for the host GDB to communicate with it.

To use a TCP connection instead of a serial line:
target> gdbserver host:2345 emacs foo.txt

The only difference from the previous example is the first argument, specifying
that you are communicating with the host GDB via TCP. The ‘host:2345’
argument means that gdbserver is to expect a TCP connection from machine
‘host’ to local TCP port 2345. (Currently, the ‘host’ part is ignored.) You
can choose any number you want for the port number as long as it does not
conflict with any TCP ports already in use on the target system (for example,
23 is reserved for telnet).! You must use the same port number with the host
GDB target remote command.

On some targets, gdbserver can also attach to running programs. This is
accomplished via the ——attach argument. The syntax is:

target> gdbserver comm --attach pid

pid is the process ID of a currently running process. It isn’t necessary to point
gdbserver at a binary for the running process.

You can debug processes by name instead of process ID if your target has the
pidof utility:

target> gdbserver comm --attach ‘pidof PROGRAM®
In case more than one copy of PROGRAM is running, or PROGRAM has
multiple threads, most versions of pidof support the -s option to only return
the first process ID.

On the host machine,
connect to your target (see Section 17.1 [Connecting to a remote target],
page 165). For TCP connections, you must start up gdbserver prior to
using the target remote command. Otherwise you may get an error whose
text depends on the host system, but which usually looks something like
‘Connection refused’. You don’t need to use the load command in GDB

L If you choose a port number that conflicts with another service, gdbserver prints an error message and
exits.

168 Debugging with GDB

when using gdbserver, since the program is already on the target. However, if
you want to load the symbols (as you normally would), do that with the file
command, and issue it before connecting to the server; otherwise, you will get
an error message saying "Program is already running", since the program is
considered running after the connection.

17.3 Remote configuration

This section documents the configuration options available when debugging remote pro-
grams. For the options related to the File I/O extensions of the remote protocol, see
[system], page 354.

set remoteaddresssize bits
Set the maximum size of address in a memory packet to the specified number
of bits. GDB will mask off the address bits above that number, when it passes
addresses to the remote target. The default value is the number of bits in the
target’s address.

show remoteaddresssize
Show the current value of remote address size in bits.

set remotebaud n
Set the baud rate for the remote serial I/O to n baud. The value is used to set
the speed of the serial port used for debugging remote targets.

show remotebaud
Show the current speed of the remote connection.

set remotebreak
If set to on, GDB sends a BREAK signal to the remote when you type Ctrl-c
to interrupt the program running on the remote. If set to off, GDB sends the
‘Ctrl-C’ character instead. The default is off, since most remote systems expect
to see ‘Ctrl-C’ as the interrupt signal.

show remotebreak
Show whether GDB sends BREAK or ‘Ctrl-C’ to interrupt the remote program.

set remotedevice device
Set the name of the serial port through which to communicate to the remote
target to device. This is the device used by GDB to open the serial communi-
cations line to the remote target. There’s no default, so you must set a valid
port name for the remote serial communications to work. (Some varieties of
the target command accept the port name as part of their arguments.)

show remotedevice
Show the current name of the serial port.

set remotelogbase base
Set the base (a.k.a. radix) of logging serial protocol communications to base.
Supported values of base are: ascii, octal, and hex. The default is ascii.

show remotelogbase
Show the current setting of the radix for logging remote serial protocol.

Chapter 17: Debugging remote programs 169

set remotelogfile file
Record remote serial communications on the named file. The default is not to
record at all.

show remotelogfile.
Show the current setting of the file name on which to record the serial commu-
nications.

set remotetimeout num
Set the timeout limit to wait for the remote target to respond to num seconds.
The default is 2 seconds.

show remotetimeout
Show the current number of seconds to wait for the remote target responses.

set remote hardware-watchpoint-limit 1imit

set remote hardware-breakpoint-limit limit
Restrict GDB to using limit remote hardware breakpoint or watchpoints. A
limit of -1, the default, is treated as unlimited.

The GDB remote protocol autodetects the packets supported by your debugging stub. If
you need to override the autodetection, you can use these commands to enable or disable
individual packets. Each packet can be set to ‘on’ (the remote target supports this packet),
‘off’ (the remote target does not support this packet), or ‘auto’ (detect remote target
support for this packet). They all default to ‘auto’. For more information about each
packet, see Appendix D [Remote Protocol], page 327.

During normal use, you should not have to use any of these commands. If you do, that
may be a bug in your remote debugging stub, or a bug in GDB. You may want to report
the problem to the ¢DB developers.

The available settings are:

Command Name Remote Packet Related Features
fetch-register-packet P info registers
set-register—-packet P set
binary-download-packet X load, set

read-aux-vector-packet gXfer:auxv:readinfo auxv
symbol-lookup-packet gSymbol Detecting multiple threads

verbose-resume-packet vCont Stepping or resuming multi-
ple threads

software-breakpoint- Z0 break
packet
hardware-breakpoint- Z1 hbreak

packet

170 Debugging with GDB

write-watchpoint- zZ2 watch

packet

read-watchpoint-packet Z3 rwatch

access-watchpoint- z4 awatch

packet

get-thread-local- qGetTLSAddr Displaying __thread vari-

storage-address-packet ables

supported-packets gqSupported Remote communications pa-
rameters

17.4 Implementing a remote stub

The stub files provided with GDB implement the target side of the communication protocol,
and the GDB side is implemented in the GDB source file ‘remote.c’. Normally, you can simply
allow these subroutines to communicate, and ignore the details. (If you’re implementing
your own stub file, you can still ignore the details: start with one of the existing stub files.
‘sparc-stub.c’ is the best organized, and therefore the easiest to read.)

To debug a program running on another machine (the debugging target machine), you
must first arrange for all the usual prerequisites for the program to run by itself. For
example, for a C program, you need:

1. A startup routine to set up the C runtime environment; these usually have a name like
‘crt0’. The startup routine may be supplied by your hardware supplier, or you may
have to write your own.

2. A C subroutine library to support your program’s subroutine calls, notably managing
input and output.

3. A way of getting your program to the other machine—for example, a download pro-
gram. These are often supplied by the hardware manufacturer, but you may have to
write your own from hardware documentation.

The next step is to arrange for your program to use a serial port to communicate with
the machine where GDB is running (the host machine). In general terms, the scheme looks
like this:

On the host,
GDB already understands how to use this protocol; when everything else is
set up, you can simply use the ‘target remote’ command (see Chapter 16
[Specifying a Debugging Target], page 161).

On the target,
you must link with your program a few special-purpose subroutines that imple-
ment the GDB remote serial protocol. The file containing these subroutines is
called a debugging stub.
On certain remote targets, you can use an auxiliary program gdbserver instead

of linking a stub into your program. See Section 17.2 [Using the gdbserver
program], page 166, for details.

Chapter 17: Debugging remote programs

171

The debugging stub is specific to the architecture of the remote machine; for example,

use ‘sparc-stub.c’ to debug programs on SPARC boards.
These working remote stubs are distributed with G¢DB:

i386-stub.c
For Intel 386 and compatible architectures.

m68k-stub.c
For Motorola 680x0 architectures.

sh-stub.c
For Renesas SH architectures.

sparc-stub.c
For SPARC architectures.

sparcl-stub.c
For Fujitsu SPARCLITE architectures.

The ‘README’ file in the GDB distribution may list other recently added stubs.

17.4.1 What the stub can do for you
The debugging stub for your architecture supplies these three subroutines:

set_debug_traps

This routine arranges for handle_exception to run when your program stops.
You must call this subroutine explicitly near the beginning of your program.

handle_exception

This is the central workhorse, but your program never calls it explicitly—the
setup code arranges for handle_exception to run when a trap is triggered.

handle_exception takes control when your program stops during execution
(for example, on a breakpoint), and mediates communications with GDB on
the host machine. This is where the communications protocol is implemented;
handle_exception acts as the GDB representative on the target machine. It
begins by sending summary information on the state of your program, then con-
tinues to execute, retrieving and transmitting any information GDB needs, until
you execute a GDB command that makes your program resume; at that point,
handle_exception returns control to your own code on the target machine.

breakpoint

Use this auxiliary subroutine to make your program contain a breakpoint. De-
pending on the particular situation, this may be the only way for GDB to get
control. For instance, if your target machine has some sort of interrupt button,
you won’t need to call this; pressing the interrupt button transfers control to
handle_exception—in effect, to GDB. On some machines, simply receiving
characters on the serial port may also trigger a trap; again, in that situation,
you don’t need to call breakpoint from your own program—simply running

‘target remote’ from the host GDB session gets control.

Call breakpoint if none of these is true, or if you simply want to make certain
your program stops at a predetermined point for the start of your debugging

session.

172 Debugging with GDB

17.4.2 What you must do for the stub

The debugging stubs that come with GDB are set up for a particular chip architecture, but
they have no information about the rest of your debugging target machine.

First of all you need to tell the stub how to communicate with the serial port.

int getDebugChar ()
Write this subroutine to read a single character from the serial port. It may be
identical to getchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

void putDebugChar (int)
Write this subroutine to write a single character to the serial port. It may be
identical to putchar for your target system; a different name is used to allow
you to distinguish the two if you wish.

If you want GDB to be able to stop your program while it is running, you need to use
an interrupt-driven serial driver, and arrange for it to stop when it receives a ~C (‘\003’,
the control-C character). That is the character which GDB uses to tell the remote system
to stop.

Getting the debugging target to return the proper status to GDB probably requires
changes to the standard stub; one quick and dirty way is to just execute a breakpoint
instruction (the “dirty” part is that GDB reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception_number, void *exception_address)

Write this function to install exception_address in the exception handling ta-
bles. You need to do this because the stub does not have any way of knowing
what the exception handling tables on your target system are like (for example,
the processor’s table might be in ROM, containing entries which point to a table
in RAM). exception_number is the exception number which should be changed;
its meaning is architecture-dependent (for example, different numbers might
represent divide by zero, misaligned access, etc). When this exception occurs,
control should be transferred directly to exception_address, and the processor
state (stack, registers, and so on) should be just as it is when a processor excep-
tion occurs. So if you want to use a jump instruction to reach exception_address,
it should be a simple jump, not a jump to subroutine.

For the 386, exception_address should be installed as an interrupt gate so that
interrupts are masked while the handler runs. The gate should be at privilege
level 0 (the most privileged level). The SPARC and 68k stubs are able to mask
interrupts themselves without help from exceptionHandler.

void flush_i_cache()
On SPARC and SPARCLITE only, write this subroutine to flush the instruction
cache, if any, on your target machine. If there is no instruction cache, this
subroutine may be a no-op.

On target machines that have instruction caches, GDB requires this function to
make certain that the state of your program is stable.

You must also make sure this library routine is available:

Chapter 17: Debugging remote programs 173

void *memset (void *, int, int)
This is the standard library function memset that sets an area of memory to a
known value. If you have one of the free versions of 1ibc.a, memset can be found
there; otherwise, you must either obtain it from your hardware manufacturer,
or write your own.

If you do not use the GNU C compiler, you may need other standard library subroutines
as well; this varies from one stub to another, but in general the stubs are likely to use any
of the common library subroutines which gcc generates as inline code.

17.4.3 Putting it all together

In summary, when your program is ready to debug, you must follow these steps.

1. Make sure you have defined the supporting low-level routines (see Section 17.4.2 [What
you must do for the stub], page 172):

getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines near the top of your program:
set_debug_traps();
breakpoint () ;
3. For the 680x0 stub only, you need to provide a variable called exceptionHook. Nor-
mally you just use:
void (*exceptionHook) () = 0;

but if before calling set_debug_traps, you set it to point to a function in your program,
that function is called when GDB continues after stopping on a trap (for example, bus
error). The function indicated by exceptionHook is called with one parameter: an int
which is the exception number.

4. Compile and link together: your program, the ¢DB debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the GDB host,
and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means the
manufacturer provides), and start it.

7. Start GDB on the host, and connect to the target (see Section 17.1 [Connecting to a
remote target], page 165).

174 Debugging with GDB

Chapter 18: Configuration-Specific Information 175

18 Configuration-Specific Information

While nearly all GDB commands are available for all native and cross versions of the de-
bugger, there are some exceptions. This chapter describes things that are only available in
certain configurations.

There are three major categories of configurations: native configurations, where the host
and target are the same, embedded operating system configurations, which are usually the
same for several different processor architectures, and bare embedded processors, which are
quite different from each other.

18.1 Native

This section describes details specific to particular native configurations.

18.1.1 HP-UX

On HP-UX systems, if you refer to a function or variable name that begins with a dollar
sign, GDB searches for a user or system name first, before it searches for a convenience
variable.

18.1.2 BSD libkvm Interface

BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory interface that
provides a uniform interface for accessing kernel virtual memory images, including live
systems and crash dumps. GDB uses this interface to allow you to debug live kernels and
kernel crash dumps on many native BSD configurations. This is implemented as a special
kvm debugging target. For debugging a live system, load the currently running kernel into
GDB and connect to the kvm target:

(gdb) target kv

For debugging crash dumps, provide the file name of the crash dump as an argument:
(gdb) target kvin /var/crash/bsd.0

Once connected to the kvm target, the following commands are available:
kvm pcb Set current context from the Process Control Block (PCB) address.

kvm proc Set current context from proc address. This command isn’t available on modern
FreeBSD systems.

18.1.3 SVRA4 process information

Many versions of SVR4 and compatible systems provide a facility called ‘/proc’ that can
be used to examine the image of a running process using file-system subroutines. If GDB is
configured for an operating system with this facility, the command info proc is available to
report information about the process running your program, or about any process running
on your system. info proc works only on SVR4 systems that include the procfs code. This
includes, as of this writing, GNU/Linux, OSF/1 (Digital Unix), Solaris, Irix, and Unixware,
but not HP-UX, for example.

info proc

info proc process-id
Summarize available information about any running process. If a process 1D
is specified by process-id, display information about that process; otherwise

176 Debugging with GDB

display information about the program being debugged. The summary includes
the debugged process ID, the command line used to invoke it, its current working
directory, and its executable file’s absolute file name.

On some systems, process-id can be of the form ‘[pid]/tid’ which specifies
a certain thread ID within a process. If the optional pid part is missing, it
means a thread from the process being debugged (the leading ‘/’ still needs to
be present, or else GDB will interpret the number as a process ID rather than a
thread ID).

info proc mappings
Report the memory address space ranges accessible in the program, with in-
formation on whether the process has read, write, or execute access rights to
each range. On GNU/Linux systems, each memory range includes the object
file which is mapped to that range, instead of the memory access rights to that
range.

info proc stat

info proc status
These subcommands are specific to GNU/Linux systems. They show the process-
related information, including the user ID and group ID; how many threads are
there in the process; its virtual memory usage; the signals that are pending,
blocked, and ignored; its TTY; its consumption of system and user time; its
stack size; its ‘nice’ value; etc. For more information, see the ‘proc’ man page
(type man 5 proc from your shell prompt).

info proc all
Show all the information about the process described under all of the above
info proc subcommands.

set procfs-trace
This command enables and disables tracing of procfs API calls.

show procfs-trace
Show the current state of procfs API call tracing.

set procfs-file file
Tell GDB to write procfs API trace to the named file. GDB appends the trace
info to the previous contents of the file. The default is to display the trace on
the standard output.

show procfs-file
Show the file to which procfs API trace is written.

proc-trace-entry

proc-trace-exit

proc-untrace-entry

proc-untrace-exit
These commands enable and disable tracing of entries into and exits from the
syscall interface.

info pidlist
For QNX Neutrino only, this command displays the list of all the processes and
all the threads within each process.

Chapter 18: Configuration-Specific Information 177

info meminfo
For QNX Neutrino only, this command displays the list of all mapinfos.

18.1.4 Features for Debugging DJGPP Programs

DJGPP is a port of the GNU development tools to MS-DOS and MS-Windows. DJGPP
programs are 32-bit protected-mode programs that use the DPMI (DOS Protected-Mode
Interface) API to run on top of real-mode DOS systems and their emulations.

GDB supports native debugging of DJGPP programs, and defines a few commands specific
to the DJGPP port. This subsection describes those commands.

info dos This is a prefix of DJGPP-specific commands which print information about the
target system and important OS structures.

info dos sysinfo
This command displays assorted information about the underlying platform:
the CPU type and features, the OS version and flavor, the DPMI version, and
the available conventional and DPMI memory.

info dos gdt

info dos 1dt

info dos idt
These 3 commands display entries from, respectively, Global, Local, and Inter-
rupt Descriptor Tables (GDT, LDT, and IDT). The descriptor tables are data
structures which store a descriptor for each segment that is currently in use.
The segment’s selector is an index into a descriptor table; the table entry for
that index holds the descriptor’s base address and limit, and its attributes and
access rights.

A typical DJGPP program uses 3 segments: a code segment, a data segment
(used for both data and the stack), and a DOS segment (which allows access to
DOS/BIOS data structures and absolute addresses in conventional memory).
However, the DPMI host will usually define additional segments in order to
support the DPMI environment.

These commands allow to display entries from the descriptor tables. Without
an argument, all entries from the specified table are displayed. An argument,
which should be an integer expression, means display a single entry whose index
is given by the argument. For example, here’s a convenient way to display
information about the debugged program’s data segment:

(gdb) info dos 1ldt $ds

0x13f: base=0x11970000 1imit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)

This comes in handy when you want to see whether a pointer is outside the
data segment’s limit (i.e. garbled).

info dos pde

info dos pte
These two commands display entries from, respectively, the Page Directory and
the Page Tables. Page Directories and Page Tables are data structures which
control how virtual memory addresses are mapped into physical addresses. A
Page Table includes an entry for every page of memory that is mapped into the

178

Debugging with GDB

program’s address space; there may be several Page Tables, each one holding
up to 4096 entries. A Page Directory has up to 4096 entries, one each for every
Page Table that is currently in use.

Without an argument, info dos pde displays the entire Page Directory, and
info dos pte displays all the entries in all of the Page Tables. An argument,
an integer expression, given to the info dos pde command means display only
that entry from the Page Directory table. An argument given to the info dos
pte command means display entries from a single Page Table, the one pointed
to by the specified entry in the Page Directory.

These commands are useful when your program uses DMA (Direct Memory
Access), which needs physical addresses to program the DMA controller.

These commands are supported only with some DPMI servers.

info dos address-pte addr

This command displays the Page Table entry for a specified linear address. The
argument addr is a linear address which should already have the appropriate
segment’s base address added to it, because this command accepts addresses
which may belong to any segment. For example, here’s how to display the Page
Table entry for the page where a variable i is stored:

(gdb) info dos address-pte __djgpp_base_address + (char *)&i

Page Table entry for address 0x11a00d30:

Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30

This says that i is stored at offset 0xd30 from the page whose physical base
address is 0x02698000, and shows all the attributes of that page.

Note that you must cast the addresses of variables to a char *, since otherwise
the value of __djgpp_base_address, the base address of all variables and func-
tions in a DJGPP program, will be added using the rules of C pointer arithmetics:
if i is declared an int, GDB will add 4 times the value of __djgpp_base_address
to the address of i.

Here’s another example, it displays the Page Table entry for the transfer buffer:
(gdb) info dos address-pte *((unsigned *)&_go32_info_block + 3)

Page Table entry for address 0x29110:

Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110

(The + 3 offset is because the transfer buffer’s address is the 3rd member of the
_go32_info_block structure.) The output clearly shows that this DPMI server
maps the addresses in conventional memory 1:1, i.e. the physical (0x00029000
+ 0x110) and linear (0x29110) addresses are identical.

This command is supported only with some DPMI servers.

In addition to native debugging, the DJGPP port supports remote debugging via a serial
data link. The following commands are specific to remote serial debugging in the DJGPP
port of GDB.

set comlbase addr

This command sets the base I/O port address of the ‘COM1’ serial port.

set comlirq irq

This command sets the Interrupt Request (IRQ) line to use for the ‘COM1’ serial
port.

Chapter 18: Configuration-Specific Information 179

There are similar commands ‘set com2base’, ‘set com3irq’, etc. for setting the
port address and the IRQ lines for the other 3 COM ports.

The related commands ‘show comlbase’, ‘show comlirq’ etc. display the cur-
rent settings of the base address and the IRQ lines used by the COM ports.

info serial
This command prints the status of the 4 DOS serial ports. For each port,
it prints whether it’s active or not, its I/O base address and IRQ number,
whether it uses a 16550-style FIFO, its baudrate, and the counts of various
errors encountered so far.

18.1.5 Features for Debugging MS Windows PE executables

GDB supports native debugging of MS Windows programs, including DLLs with and without
symbolic debugging information. There are various additional Cygwin-specific commands,
described in this subsection. The subsubsection see Section 18.1.5.1 [Non-debug DLL sym-
bols], page 180 describes working with DLLs that have no debugging symbols.

info w32 This is a prefix of MS Windows specific commands which print information
about the target system and important OS structures.

info w32 selector
This command displays information returned by the Win32 API
GetThreadSelectorEntry function. It takes an optional argument that is
evaluated to a long value to give the information about this given selector.
Without argument, this command displays information about the the six
segment registers.

info d11 This is a Cygwin specific alias of info shared.

dll-symbols
This command loads symbols from a dIl similarly to add-sym command but
without the need to specify a base address.

set cygwin-exceptions mode
If mode is on, GDB will break on exceptions that happen inside the Cygwin DLL.
If mode is off, GDB will delay recognition of exceptions, and may ignore some
exceptions which seem to be caused by internal Cygwin DLL “bookkeeping”.
This option is meant primarily for debugging the Cygwin DLL itself; the default
value is off to avoid annoying GDB users with false SIGSEGV signals.

show cygwin-exceptions
Displays whether GDB will break on exceptions that happen inside the Cygwin
DLL itself.

set new-console mode
If mode is on the debuggee will be started in a new console on next start. If
mode is offi, the debuggee will be started in the same console as the debugger.

show new-console
Displays whether a new console is used when the debuggee is started.

180 Debugging with GDB

set new-group mode
This boolean value controls whether the debuggee should start a new group or
stay in the same group as the debugger. This affects the way the Windows OS
handles ‘Ctrl-C’.

show new-group
Displays current value of new-group boolean.

set debugevents
This boolean value adds debug output concerning kernel events related to the
debuggee seen by the debugger. This includes events that signal thread and
process creation and exit, DLL loading and unloading, console interrupts, and
debugging messages produced by the Windows OutputDebugString API call.

set debugexec
This boolean value adds debug output concerning execute events (such as re-
sume thread) seen by the debugger.

set debugexceptions
This boolean value adds debug output concerning exceptions in the debuggee
seen by the debugger.

set debugmemory
This boolean value adds debug output concerning debuggee memory reads and
writes by the debugger.

set shell This boolean values specifies whether the debuggee is called via a shell or di-
rectly (default value is on).

show shell
Displays if the debuggee will be started with a shell.

18.1.5.1 Support for DLLs without debugging symbols

Very often on windows, some of the DLLs that your program relies on do not include sym-
bolic debugging information (for example, ‘kernel32.d11’). When GDB doesn’t recognize
any debugging symbols in a DLL, it relies on the minimal amount of symbolic informa-
tion contained in the DLL’s export table. This subsubsection describes working with such
symbols, known internally to GDB as “minimal symbols”.

Note that before the debugged program has started execution, no DLLs will have been
loaded. The easiest way around this problem is simply to start the program — either by
setting a breakpoint or letting the program run once to completion. It is also possible
to force GDB to load a particular DLL before starting the executable — see the shared
library information in see Section 15.1 [Files], page 151 or the dl1l-symbols command in
see Section 18.1.5 [Cygwin Native], page 179. Currently, explicitly loading symbols from a
DLL with no debugging information will cause the symbol names to be duplicated in GDB’s
lookup table, which may adversely affect symbol lookup performance.

18.1.5.2 DLL name prefixes

In keeping with the naming conventions used by the Microsoft debugging tools, DLL
export symbols are made available with a prefix based on the DLL name, for instance

Chapter 18: Configuration-Specific Information 181

KERNEL32!CreateFileA. The plain name is also entered into the symbol table, so
CreateFileA is often sufficient. In some cases there will be name clashes within a program
(particularly if the executable itself includes full debugging symbols) necessitating the use
of the fully qualified name when referring to the contents of the DLL. Use single-quotes
around the name to avoid the exclamation mark (“!”) being interpreted as a language
operator.

Note that the internal name of the DLL may be all upper-case, even though the file
name of the DLL is lower-case, or vice-versa. Since symbols within GDB are case-sensitive
this may cause some confusion. If in doubt, try the info functions and info variables
commands or even maint print msymbols (see see Chapter 13 [Symbols|, page 139). Here’s
an example:

(gdb) info function CreateFileA
A1l functions matching regular expression "CreateFileA":

Non-debugging symbols:
0x77e885f4 CreateFileA
0x77e885f4 KERNEL32!CreateFileA

(gdb) info function !
A1l functions matching regular expression "!":

Non-debugging symbols:
0x6100114c cygwinl!__assert

0x61004034 cygwinl!_dll_crt0@0
0x61004240 cygwinl!dll_crtO(per_process *)
[etc...]

18.1.5.3 Working with minimal symbols

Symbols extracted from a DLL’s export table do not contain very much type information.
All that GDB can do is guess whether a symbol refers to a function or variable depending
on the linker section that contains the symbol. Also note that the actual contents of the
memory contained in a DLL are not available unless the program is running. This means
that you cannot examine the contents of a variable or disassemble a function within a DLL
without a running program.

Variables are generally treated as pointers and dereferenced automatically. For this
reason, it is often necessary to prefix a variable name with the address-of operator (“&”)
and provide explicit type information in the command. Here’s an example of the type of
problem:

(gdb) print ’cygwinl!__argv’
$1 = 268572168
(gdb) x ’cygwinl!__argv’
0x10021610: "\230y\""
And two possible solutions:
(gdb) print ((char **)’cygwinl!__argv’) [0]
$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
(gdb) x/2x &’cygwinl!__argv’

0x610cO0aa8 <cygwinl!__argv>: 0x10021608 0x00000000
(gdb) x/x 0x10021608

0x10021608: 0x0022£d98

(gdb) x/s 0x0022£d98

0x22£d98: "/cygdrive/c/mydirectory/myprogram"

182 Debugging with GDB

Setting a break point within a DLL is possible even before the program starts execu-
tion. However, under these circumstances, GDB can’t examine the initial instructions of the
function in order to skip the function’s frame set-up code. You can work around this by
using “*&” to set the breakpoint at a raw memory address:

(gdb) break *&’python22!Py0S_Readline’
Breakpoint 1 at Oxle04eff0

The author of these extensions is not entirely convinced that setting a break point within

a shared DLL like ‘kernel32.d11’ is completely safe.

18.1.6 Commands specific to GNU Hurd systems
This subsection describes GDB commands specific to the GNU Hurd native debugging.

set signals

set sigs This command toggles the state of inferior signal interception by GDB. Mach
exceptions, such as breakpoint traps, are not affected by this command. sigs
is a shorthand alias for signals.

show signals
show sigs Show the current state of intercepting inferior’s signals.

set signal-thread

set sigthread
This command tells GDB which thread is the 1ibc signal thread. That thread
is run when a signal is delivered to a running process. set sigthread is the
shorthand alias of set signal-thread.

show signal-thread

show sigthread
These two commands show which thread will run when the inferior is delivered
a signal.

set stopped
This commands tells GDB that the inferior process is stopped, as with the
SIGSTOP signal. The stopped process can be continued by delivering a signal
to it.

show stopped
This command shows whether ¢DB thinks the debuggee is stopped.

set exceptions
Use this command to turn off trapping of exceptions in the inferior. When
exception trapping is off, neither breakpoints nor single-stepping will work. To
restore the default, set exception trapping on.

show exceptions
Show the current state of trapping exceptions in the inferior.

set task pause
This command toggles task suspension when GDB has control. Setting it to on
takes effect immediately, and the task is suspended whenever GDB gets control.
Setting it to off will take effect the next time the inferior is continued. If this
option is set to off, you can use set thread default pause on or set thread
pause on (see below) to pause individual threads.

Chapter 18: Configuration-Specific Information 183

show task pause
Show the current state of task suspension.

set task detach-suspend-count
This command sets the suspend count the task will be left with when GDB
detaches from it.

show task detach-suspend-count
Show the suspend count the task will be left with when detaching.

set task exception-port

set task excp
This command sets the task exception port to which GDB will forward excep-
tions. The argument should be the value of the send rights of the task. set
task excp is a shorthand alias.

set noninvasive
This command switches GDB to a mode that is the least invasive as far as
interfering with the inferior is concerned. This is the same as using set task
pause, set exceptions, and set signals to values opposite to the defaults.

info send-rights

info receive-rights

info port-rights

info port-sets

info dead-names

info ports

info psets
These commands display information about, respectively, send rights, receive
rights, port rights, port sets, and dead names of a task. There are also shorthand
aliases: info ports for info port-rights and info psets for info port-
sets.

set thread pause
This command toggles current thread suspension when GDB has control. Setting
it to on takes effect immediately, and the current thread is suspended whenever
GDB gets control. Setting it to off will take effect the next time the inferior is
continued. Normally, this command has no effect, since when GDB has control,
the whole task is suspended. However, if you used set task pause off (see
above), this command comes in handy to suspend only the current thread.

show thread pause
This command shows the state of current thread suspension.

set thread run
This comamnd sets whether the current thread is allowed to run.

show thread run
Show whether the current thread is allowed to run.

set thread detach-suspend-count
This command sets the suspend count GDB will leave on a thread when de-
taching. This number is relative to the suspend count found by GDB when it

184 Debugging with GDB

notices the thread; use set thread takeover-suspend-count to force it to an
absolute value.

show thread detach-suspend-count
Show the suspend count GDB will leave on the thread when detaching.

set thread exception-port

set thread excp
Set the thread exception port to which to forward exceptions. This overrides
the port set by set task exception-port (see above). set thread excp is the
shorthand alias.

set thread takeover-suspend-count
Normally, GDB’s thread suspend counts are relative to the value GDB finds
when it notices each thread. This command changes the suspend counts to be
absolute instead.

set thread default

show thread default
Each of the above set thread commands has a set thread default counter-
part (e.g., set thread default pause, set thread default exception-port,
etc.). The thread default variety of commands sets the default thread prop-
erties for all threads; you can then change the properties of individual threads
with the non-default commands.

18.1.7 QNX Neutrino
GDB provides the following commands specific to the QNX Neutrino target:

set debug nto-debug
When set to on, enables debugging messages specific to the QNX Neutrino
support.

show debug nto-debug
Show the current state of QNX Neutrino messages.

18.2 Embedded Operating Systems

This section describes configurations involving the debugging of embedded operating sys-
tems that are available for several different architectures.

GDB includes the ability to debug programs running on various real-time operating sys-
tems.

18.2.1 Using GDB with VxWorks

target vxworks machinename
A VxWorks system, attached via TCP/IP. The argument machinename is the
target system’s machine name or IP address.

On VxWorks, load links filename dynamically on the current target system as well as
adding its symbols in GDB.

GDB enables developers to spawn and debug tasks running on networked VxWorks targets
from a Unix host. Already-running tasks spawned from the VxWorks shell can also be

Chapter 18: Configuration-Specific Information 185

debugged. GDB uses code that runs on both the Unix host and on the VxWorks target.
The program gdb is installed and executed on the Unix host. (It may be installed with the
name vxgdb, to distinguish it from a GDB for debugging programs on the host itself.)

VxWorks-timeout args
All VxWorks-based targets now support the option vxworks-timeout. This
option is set by the user, and args represents the number of seconds GDB waits
for responses to rpc’s. You might use this if your VxWorks target is a slow
software simulator or is on the far side of a thin network line.

The following information on connecting to VxWorks was current when this manual was
produced; newer releases of VxWorks may use revised procedures.

To use ¢DB with VxWorks, you must rebuild your VxWorks kernel to include the remote
debugging interface routines in the VxWorks library ‘rdb.a’. To do this, define INCLUDE_
RDB in the VxWorks configuration file ‘configAll.h’ and rebuild your VxWorks kernel. The
resulting kernel contains ‘rdb.a’; and spawns the source debugging task tRdbTask when
VxWorks is booted. For more information on configuring and remaking VxWorks, see the
manufacturer’s manual.

Once you have included ‘rdb.a’ in your VxWorks system image and set your Unix
execution search path to find GDB, you are ready to run GDB. From your Unix host, run
gdb (or vxgdb, depending on your installation).

GDB comes up showing the prompt:
(vxgdb)

18.2.1.1 Connecting to VxWorks

The ¢DB command target lets you connect to a VxWorks target on the network. To
connect to a target whose host name is “tt”, type:
(vxgdb) target vxworks tt
GDB displays messages like these:
Attaching remote machine across net...
Connected to tt.

GDB then attempts to read the symbol tables of any object modules loaded into the
VxWorks target since it was last booted. GDB locates these files by searching the directories
listed in the command search path (see Section 4.4 [Your program’s environment|, page 28);
if it fails to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB
command path, and execute the target command again.

18.2.1.2 VxWorks download

If you have connected to the VxWorks target and you want to debug an object that has
not yet been loaded, you can use the GDB load command to download a file from Unix
to VxWorks incrementally. The object file given as an argument to the load command
is actually opened twice: first by the VxWorks target in order to download the code,
then by GDB in order to read the symbol table. This can lead to problems if the current
working directories on the two systems differ. If both systems have NFS mounted the
same filesystems, you can avoid these problems by using absolute paths. Otherwise, it is

186 Debugging with GDB

simplest to set the working directory on both systems to the directory in which the object file
resides, and then to reference the file by its name, without any path. For instance, a program
‘prog.o’ may reside in ‘vxpath/vw/demo/rdb’ in VxWorks and in ‘hostpath/vw/demo/rdb’
on the host. To load this program, type this on VxWorks:

-> cd "vxpath/vw/demo/rdb"
Then, in GDB, type:

(vxgdb) cd hostpath/vw/demo/rdb

(vxgdb) load prog.o

GDB displays a response similar to this:
Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after editing and recom-
piling the corresponding source file. Note that this makes GDB delete all currently-defined
breakpoints, auto-displays, and convenience variables, and to clear the value history. (This
is necessary in order to preserve the integrity of debugger’s data structures that reference
the target system’s symbol table.)

18.2.1.3 Running tasks
You can also attach to an existing task using the attach command as follows:
(vxgdb) attach task

where task is the VxWorks hexadecimal task ID. The task can be running or suspended
when you attach to it. Running tasks are suspended at the time of attachment.

18.3 Embedded Processors

This section goes into details specific to particular embedded configurations.

Whenever a specific embedded processor has a simulator, GDB allows to send an arbitrary
command to the simulator.

sim command
Send an arbitrary command string to the simulator. Consult the documentation
for the specific simulator in use for information about acceptable commands.

18.3.1 ARM

target rdi dev
ARM Angel monitor, via RDI library interface to ADP protocol. You may use
this target to communicate with both boards running the Angel monitor, or
with the EmbeddedICE JTAG debug device.

target rdp dev
ARM Demon monitor.

GDB provides the following ARM-specific commands:

set arm disassembler
This commands selects from a list of disassembly styles. The "std" style is the
standard style.

show arm disassembler
Show the current disassembly style.

Chapter 18: Configuration-Specific Information 187

set arm apcs32
This command toggles ARM operation mode between 32-bit and 26-bit.

show arm apcs32
Display the current usage of the ARM 32-bit mode.

set arm fpu fputype
This command sets the ARM floating-point unit (FPU) type. The argument
fputype can be one of these:

auto Determine the FPU type by querying the OS ABI.

softfpa Software FPU, with mixed-endian doubles on little-endian ARM
processors.

fpa GCC-compiled FPA co-processor.

softvfp Software FPU with pure-endian doubles.
vip VFP co-processor.

show arm fpu
Show the current type of the FPU.

set arm abi
This command forces GDB to use the specified ABI.

show arm abi
Show the currently used ABI.

set debug arm
Toggle whether to display ARM-specific debugging messages from the ARM
target support subsystem.

show debug arm
Show whether ARM-specific debugging messages are enabled.

The following commands are available when an ARM target is debugged using the RDI
interface:

rdilogfile [file]
Set the filename for the ADP (Angel Debugger Protocol) packet log. With an
argument, sets the log file to the specified file. With no argument, show the
current log file name. The default log file is ‘rdi.log’.

rdilogenable |arg]
Control logging of ADP packets. With an argument of 1 or "yes" enables
logging, with an argument 0 or "no" disables it. With no arguments displays
the current setting. When logging is enabled, ADP packets exchanged between
GDB and the RDI target device are logged to a file.

set rdiromatzero
Tell GDB whether the target has ROM at address 0. If on, vector catching is
disabled, so that zero address can be used. If off (the default), vector catching
is enabled. For this command to take effect, it needs to be invoked prior to the
target rdi command.

188 Debugging with GDB

show rdiromatzero
Show the current setting of ROM at zero address.

set rdiheartbeat
Enable or disable RDI heartbeat packets. It is not recommended to turn on this
option, since it confuses ARM and EPI JTAG interface, as well as the Angel
monitor.

show rdiheartbeat
Show the setting of RDI heartbeat packets.

18.3.2 Renesas H8/300

target hms dev
A Renesas SH, H8/300, or H8/500 board, attached via serial line to your host.
Use special commands device and speed to control the serial line and the
communications speed used.

target e7000 dev
E7000 emulator for Renesas H8 and SH.

target sh3 dev
target sh3e dev
Renesas SH-3 and SH-3E target systems.

When you select remote debugging to a Renesas SH, H8/300, or H8/500 board, the load
command downloads your program to the Renesas board and also opens it as the current
executable target for GDB on your host (like the file command).

GDB needs to know these things to talk to your Renesas SH, H8/300, or H8/500:

1. that you want to use ‘target hms’, the remote debugging interface for Renesas mi-
croprocessors, or ‘target e7000’, the in-circuit emulator for the Renesas SH and the
Renesas 300H. (‘target hms’ is the default when GDB is configured specifically for the
Renesas SH, H8/300, or H8/500.)

2. what serial device connects your host to your Renesas board (the first serial device
available on your host is the default).

3. what speed to use over the serial device.

18.3.2.1 Connecting to Renesas boards

Use the special GDB command ‘device port’ if you need to explicitly set the serial device.
The default port is the first available port on your host. This is only necessary on Unix
hosts, where it is typically something like ‘/dev/ttya’.

GDB has another special command to set the communications speed: ‘speed bps’. This
command also is only used from Unix hosts; on DOS hosts, set the line speed as usual from
outside GDB with the DOS mode command (for instance, mode com2:9600,n,8,1,p for a
9600 bps connection).

The ‘device’ and ‘speed’ commands are available only when you use a Unix host to
debug your Renesas microprocessor programs. If you use a DOS host, GDB depends on an
auxiliary terminate-and-stay-resident program called asynctsr to communicate with the

Chapter 18: Configuration-Specific Information 189

development board through a PC serial port. You must also use the DOS mode command
to set up the serial port on the DOS side.

The following sample session illustrates the steps needed to start a program under GDB
control on an H8/300. The example uses a sample H8/300 program called ‘t.x’. The
procedure is the same for the Renesas SH and the H8/500.

First hook up your development board. In this example, we use a board attached to
serial port COM2; if you use a different serial port, substitute its name in the argument of
the mode command. When you call asynctsr, the auxiliary comms program used by the
debugger, you give it just the numeric part of the serial port’s name; for example, ‘asyncstr
2’ below runs asyncstr on COM2.

C:\H8300\TEST> asynctsr 2
C:\H8300\TEST> mode com2:9600,n,8,1,p

Resident portion of MODE loaded

coM2: 9600, n, 8, 1, p

Warning: We have noticed a bug in PC-NFS that conflicts with asynctsr. If
you also run PC-NFS on your DOS host, you may need to disable it, or even
boot without it, to use asynctsr to control your development board.

Now that serial communications are set up, and the development board is connected,
you can start up GDB. Call GDB with the name of your program as the argument. GDB
prompts you, as usual, with the prompt ‘(gdb)’. Use two special commands to begin your
debugging session: ‘target hms’ to specify cross-debugging to the Renesas board, and the
load command to download your program to the board. load displays the names of the
program’s sections, and a ‘*’ for each 2K of data downloaded. (If you want to refresh GDB
data on symbols or on the executable file without downloading, use the GDB commands
file or symbol-file. These commands, and load itself, are described in Section 15.1
[Commands to specify files], page 151.)

(eg-C:\H8300\TEST) gdb t.x

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB 6.6, Copyright 1992 Free Software Foundation, Inc...
(gdb) target hms

Connected to remote H8/300 HMS system.

(gdb) load t.x

.text : 0x8000 .. Oxabde xxskkkkxkskkxk

.data : Oxabde .. 0xad30 *

.stack : 0xf000 .. Oxf014 =*

At this point, you're ready to run or debug your program. From here on, you can use all
the usual GDB commands. The break command sets breakpoints; the run command starts
your program; print or x display data; the continue command resumes execution after
stopping at a breakpoint. You can use the help command at any time to find out more
about GDB commands.

190 Debugging with GDB

Remember, however, that operating system facilities aren’t available on your develop-
ment board; for example, if your program hangs, you can’t send an interrupt—but you can
press the RESET switch!

Use the RESET button on the development board

e to interrupt your program (don’t use Ctrl-c on the DOS host—it has no way to pass
an interrupt signal to the development board); and

e to return to the ¢DB command prompt after your program finishes normally. The
communications protocol provides no other way for GDB to detect program completion.

In either case, GDB sees the effect of a RESET on the development board as a “normal
exit” of your program.

18.3.2.2 Using the E7000 in-circuit emulator

You can use the E7000 in-circuit emulator to develop code for either the Renesas SH or the
H8/300H. Use one of these forms of the ‘target 7000’ command to connect GDB to your
E7000:

target e7000 port speed
Use this form if your E7000 is connected to a serial port. The port argument
identifies what serial port to use (for example, ‘com2’). The third argument is
the line speed in bits per second (for example, ‘9600’).

target 7000 hostname
If your E7000 is installed as a host on a TCP/IP network, you can just specify
its hostname; GDB uses telnet to connect.

The following special commands are available when debugging with the Renesas E7000
ICE:

e7000 command
This sends the specified command to the E7000 monitor.

ftplogin machine username password dir
This command records information for subsequent interface with the E7000
monitor via the FTP protocol: GDB will log into the named machine using
specified username and password, and then chdir to the named directory dir.

ftpload file
This command uses credentials recorded by ftplogin to fetch and load the
named file from the E7000 monitor.

drain This command drains any pending text buffers stored on the E7000.

set usehardbreakpoints

show usehardbreakpoints
These commands set and show the use of hardware breakpoints for all break-
points. See Section 5.1.1 [Set Breaks|, page 38, for more information about
using hardware breakpoints selectively.

Chapter 18: Configuration-Specific Information 191

18.3.2.3 Special GDB commands for Renesas micros

Some GDB commands are available only for the H8/300:

set machine h8300

set machine h8300h
Condition GDB for one of the two variants of the H8/300 architecture with ‘set
machine’. You can use ‘show machine’ to check which variant is currently in
effect.

18.3.3 H8/500

set memory mod

show memory
Specify which H8/500 memory model (mod) you are using with ‘set memory’;
check which memory model is in effect with ‘show memory’. The accepted values
for mod are small, big, medium, and compact.

18.3.4 Renesas M32R/D and M32R/SDI

target m32r dev
Renesas M32R/D ROM monitor.

target m32rsdi dev
Renesas M32R SDI server, connected via parallel port to the board.

The following GDB commands are specific to the M32R, monitor:

set download-path path
Set the default path for finding donwloadable SREC files.

show download-path
Show the default path for downloadable SREC files.

set board-address addr
Set the IP address for the M32R-EVA target board.

show board-address
Show the current IP address of the target board.

set server-address addr
Set the IP address for the download server, which is the GDB’s host machine.

show server-address
Display the IP address of the download server.

upload [file]
Upload the specified SREC file via the monitor’s Ethernet upload capability. If
no file argument is given, the current executable file is uploaded.

tload [file]
Test the upload command.

The following commands are available for M32R/SDI:

sdireset This command resets the SDI connection.

192 Debugging with GDB

sdistatus
This command shows the SDI connection status.

debug_chaos
Instructs the remote that M32R/Chaos debugging is to be used.

use_debug_dma
Instructs the remote to use the DEBUG_DMA method of accessing memory.

use_mon_code
Instructs the remote to use the MON_CODE method of accessing memory.

use_ib_break
Instructs the remote to set breakpoints by 1B break.

use_dbt_break
Instructs the remote to set breakpoints by DBT.

18.3.5 M68k

The Motorola m68k configuration includes ColdFire support, and target command for the
following ROM monitors.

target abug dev
ABug ROM monitor for M68K.

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target dbug dev
dBUG ROM monitor for Motorola ColdFire.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an M68K IDP board.

target rombug dev

ROMBUG ROM monitor for OS/9000.

18.3.6 MIPS Embedded

GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to a
serial line. This is available when you configure GDB with ‘~-target=mips-idt-ecoff’.

Use these GDB commands to specify the connection to your target board:

target mips port
To run a program on the board, start up gdb with the name of your program
as the argument. To connect to the board, use the command ‘target mips
port’, where port is the name of the serial port connected to the board. If the
program has not already been downloaded to the board, you may use the load
command to download it. You can then use all the usual GDB commands.

For example, this sequence connects to the target board through a serial port,
and loads and runs a program called prog through the debugger:

Chapter 18: Configuration-Specific Information 193

host$ gdb prog

GDB is free software and ...

(gdb) target mips /dev/ttyb

(gdb) load prog

(gdb) run

target mips hostname : portnumber

On some GDB host configurations, you can specify a TCP connection (for in-
stance, to a serial line managed by a terminal concentrator) instead of a serial
port, using the syntax ‘hostname : portnumber’.

target pmon port
PMON ROM monitor.

target ddb port
NEC’s DDB variant of PMON for Vr4300.

target 1si port
LSI variant of PMON.

target r3900 dev
Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.

target array dev
Array Tech LSI33K RAID controller board.

GDB also supports these special commands for MIPS targets:

set mipsfpu double

set mipsfpu single

set mipsfpu none

set mipsfpu auto

show mipsfpu
If your target board does not support the MIPS floating point coprocessor, you
should use the command ‘set mipsfpu none’ (if you need this, you may wish to
put the command in your GDB init file). This tells GDB how to find the return
value of functions which return floating point values. It also allows GDB to avoid
saving the floating point registers when calling functions on the board. If you
are using a floating point coprocessor with only single precision floating point
support, as on the R4650 processor, use the command ‘set mipsfpu single’.
The default double precision floating point coprocessor may be selected using
‘set mipsfpu double’.

In previous versions the only choices were double precision or no floating point,
so ‘set mipsfpu on’ will select double precision and ‘set mipsfpu off’ will se-
lect no floating point.

As usual, you can inquire about the mipsfpu variable with ‘show mipsfpu’.

set timeout seconds

set retransmit-timeout seconds

show timeout

show retransmit-timeout
You can control the timeout used while waiting for a packet, in the MIPS remote
protocol, with the set timeout seconds command. The default is 5 seconds.

194 Debugging with GDB

Similarly, you can control the timeout used while waiting for an acknowledge-
ment of a packet with the set retransmit-timeout seconds command. The
default is 3 seconds. You can inspect both values with show timeout and show
retransmit-timeout. (These commands are only available when GDB is con-
figured for ‘--target=mips-idt-ecoff’.)

The timeout set by set timeout does not apply when GDB is waiting for your
program to stop. In that case, GDB waits forever because it has no way of
knowing how long the program is going to run before stopping.

set syn-garbage-1limit num
Limit the maximum number of characters GDB should ignore when it tries to
synchronize with the remote target. The default is 10 characters. Setting the
limit to -1 means there’s no limit.

show syn-garbage-limit
Show the current limit on the number of characters to ignore when trying to
synchronize with the remote system.

set monitor-prompt prompt
Tell GDB to expect the specified prompt string from the remote monitor. The
default depends on the target:

pmon target
‘PMON’

ddb target ‘NEC010’
Isi target ~ ‘PMON>’

show monitor-prompt
Show the current strings GDB expects as the prompt from the remote monitor.

set monitor-warnings
Enable or disable monitor warnings about hardware breakpoints. This has effect
only for the 1si target. When on, GDB will display warning messages whose
codes are returned by the 1si PMON monitor for breakpoint commands.

show monitor-warnings
Show the current setting of printing monitor warnings.

pmon command
This command allows sending an arbitrary command string to the monitor.
The monitor must be in debug mode for this to work.

18.3.7 OpenRISC 1000

See OR1k Architecture document (www.opencores.org) for more information about plat-
form and commands.

target jtag jtag://host :port
Connects to remote JTAG server. JTAG remote server can be either an orlksim
or JTAG server, connected via parallel port to the board.

Example: target jtag jtag://localhost:9999

www.opencores.org

Chapter 18: Configuration-Specific Information 195

orlksim command
If connected to oriksim OpenRISC 1000 Architectural Simulator, proprietary
commands can be executed.

info orlk spr
Displays spr groups.

info orlk spr group
info orlk spr groupno
Displays register names in selected group.

info orlk spr group register
info orlk spr register
info orlk spr groupno registerno
info orlk spr registerno
Shows information about specified spr register.

spr group register value
spr register value
spr groupno registerno value
spr registerno value
Writes value to specified spr register.

Some implementations of OpenRISC 1000 Architecture also have hardware trace. It is
very similar to GDB trace, except it does not interfere with normal program execution and
is thus much faster. Hardware breakpoints/watchpoint triggers can be set using:

$LEA/$LDATA
Load effective address/data

$SEA/$SDATA
Store effective address/data

$AEA/$ADATA
Access effective address ($SEA or $SLEA) or data ($SDATA/$SLDATA)

$FETCH Fetch data

When triggered, it can capture low level data, like: PC, LSEA, LDATA, SDATA, READSPR,
WRITESPR, INSTR.

htrace commands:
hwatch conditional

Set hardware watchpoint on combination of Load/Store Effecive Address(es) or
Data. For example:

hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) &&
($SDATA >= 50)

hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) &&
($SDATA >= 50)

htrace info
Display information about current HW trace configuration.

196 Debugging with GDB

htrace trigger conditional
Set starting criteria for HW trace.

htrace qualifier conditional
Set acquisition qualifier for HW trace.

htrace stop conditional
Set HW trace stopping criteria.

htrace record [data]*
Selects the data to be recorded, when qualifier is met and HW trace was trig-
gered.

htrace enable
htrace disable
Enables/disables the HW trace.

htrace rewind [filename]
Clears currently recorded trace data.
If filename is specified, new trace file is made and any newly collected data will

be written there.

htrace print [start [len]]
Prints trace buffer, using current record configuration.

htrace mode continuous
Set continuous trace mode.

htrace mode suspend
Set suspend trace mode.

18.3.8 PowerPC

target dink32 dev
DINK32 ROM monitor.

target ppcbug dev
target ppcbugl dev
PPCBUG ROM monitor for PowerPC.

target sds dev
SDS monitor, running on a PowerPC board (such as Motorola’s ADS).

The following commands specifi to the SDS protocol are supported byGDB:

set sdstimeout nsec
Set the timeout for SDS protocol reads to be nsec seconds. The default is 2
seconds.

show sdstimeout
Show the current value of the SDS timeout.

sds command
Send the specified command string to the SDS monitor.

Chapter 18: Configuration-Specific Information 197

18.3.9 HP PA Embedded

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

18.3.10 Renesas SH

target hms dev
A Renesas SH board attached via serial line to your host. Use special commands
device and speed to control the serial line and the communications speed used.

target e7000 dev
E7000 emulator for Renesas SH.

target sh3 dev
target sh3e dev
Renesas SH-3 and SH-3E target systems.

18.3.11 Tsqware Sparclet

GDB enables developers to debug tasks running on Sparclet targets from a Unix host. GDB
uses code that runs on both the Unix host and on the Sparclet target. The program gdb is
installed and executed on the Unix host.

remotetimeout args
GDB supports the option remotetimeout. This option is set by the user, and
args represents the number of seconds GDB waits for responses.

3

When compiling for debugging, include the options ‘~-g’ to get debug information and
‘~Ttext’ to relocate the program to where you wish to load it on the target. You may also
want to add the options ‘-n’ or ‘=N’ in order to reduce the size of the sections. Example:

sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
You can use objdump to verify that the addresses are what you intended:
sparclet-aout-objdump --headers --syms prog
Once you have set your Unix execution search path to find GDB, you are ready to run GDB.
From your Unix host, run gdb (or sparclet-aout-gdb, depending on your installation).
GDB comes up showing the prompt:
(gdbslet)

18.3.11.1 Setting file to debug

The GDB command file lets you choose with program to debug.
(gdbslet) file prog

GDB then attempts to read the symbol table of ‘prog’. GDB locates the file by searching
the directories listed in the command search path. If the file was compiled with debug
information (option "-g"), source files will be searched as well. GDB locates the source
files by searching the directories listed in the directory search path (see Section 4.4 [Your
program’s environment|, page 28). If it fails to find a file, it displays a message such as:

198 Debugging with GDB

prog: No such file or directory.

When this happens, add the appropriate directories to the search paths with the GDB
commands path and dir, and execute the target command again.

18.3.11.2 Connecting to Sparclet

The GDB command target lets you connect to a Sparclet target. To connect to a target on
serial port “ttya”, type:
(gdbslet) target sparclet /dev/ttya

Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3

GDB displays messages like these:

Connected to ttya.

18.3.11.3 Sparclet download

Once connected to the Sparclet target, you can use the GDB load command to download the
file from the host to the target. The file name and load offset should be given as arguments
to the load command. Since the file format is aout, the program must be loaded to the
starting address. You can use objdump to find out what this value is. The load offset is an
offset which is added to the VMA (virtual memory address) of each of the file’s sections.
For instance, if the program ‘prog’ was linked to text address 0x1201000, with data at
0x12010160 and bss at 0x12010170, in GDB, type:

(gdbslet) load prog 0x12010000
Loading section .text, size 0xdb0O vma 0x12010000

If the code is loaded at a different address then what the program was linked to, you
may need to use the section and add-symbol-file commands to tell GDB where to map
the symbol table.

18.3.11.4 Running and debugging

You can now begin debugging the task using GDB’s execution control commands, b, step,
run, etc. See the GDB manual for the list of commands.

(gdbslet) b main

Breakpoint 1 at 0x12010000: file prog.c, line 3.
(gdbslet) run

Starting program: prog

Breakpoint 1, main (argc=1, argv=0xeffff2lc) at prog.c:3
3 char *symarg = O;

(gdbslet) step

4 char *execarg = "hello!";

(gdbslet)

18.3.12 Fujitsu Sparclite

target sparclite dev
Fujitsu sparclite boards, used only for the purpose of loading. You must use an
additional command to debug the program. For example: target remote dev
using GDB standard remote protocol.

Chapter 18: Configuration-Specific Information 199

18.3.13 Tandem ST2000

GDB may be used with a Tandem ST2000 phone switch, running Tandem’s STDBUG pro-
tocol.

To connect your ST2000 to the host system, see the manufacturer’s manual. Once the
ST2000 is physically attached, you can run:
target st2000 dev speed

to establish it as your debugging environment. dev is normally the name of a serial device,
such as ‘/dev/ttya’, connected to the ST2000 via a serial line. You can instead specify dev
as a TCP connection (for example, to a serial line attached via a terminal concentrator)
using the syntax hostname : portnumber.

The load and attach commands are not defined for this target; you must load your
program into the ST2000 as you normally would for standalone operation. GDB reads
debugging information (such as symbols) from a separate, debugging version of the program
available on your host computer.

These auxiliary GDB commands are available to help you with the ST2000 environment:

st2000 command
Send a command to the STDBUG monitor. See the manufacturer’s manual for
available commands.

connect Connect the controlling terminal to the STDBUG command monitor. When
you are done interacting with STDBUG, typing either of two character se-
quences gets you back to the GDB command prompt: ~ . (Return, fol-
lowed by tilde and period) or ~ Ctrl-d (Return, followed by tilde and
control-D).

18.3.14 Zilog Z8000
When configured for debugging Zilog Z8000 targets, GDB includes a Z8000 simulator.

For the Z8000 family, ‘target sim’ simulates either the Z8002 (the unsegmented variant
of the Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes
which architecture is appropriate by inspecting the object code.

target sim args
Debug programs on a simulated CPU. If the simulator supports setup options,
specify them via args.

After specifying this target, you can debug programs for the simulated CPU in the same
style as programs for your host computer; use the file command to load a new program
image, the run command to run your program, and so on.

As well as making available all the usual machine registers (see Section 8.10 [Registers|,
page 87), the Z8000 simulator provides three additional items of information as specially
named registers:

cycles Counts clock-ticks in the simulator.
insts Counts instructions run in the simulator.

time Execution time in 60ths of a second.

200 Debugging with GDB

You can refer to these values in GDB expressions with the usual conventions; for example,
‘b fputc if $cycles>5000’ sets a conditional breakpoint that suspends only after at least
5000 simulated clock ticks.

18.3.15 Atmel AVR

When configured for debugging the Atmel AVR, GDB supports the following AVR-specific
commands:

info io_registers
This command displays information about the AVR I/O registers. For each
register, GDB prints its number and value.

18.3.16 CRIS
When configured for debugging CRIS, GDB provides the following CRIS-specific commands:

set cris-version ver
Set the current CRIS version to ver, either ‘10’ or ‘32’. The CRIS version affects
register names and sizes. This command is useful in case autodetection of the
CRIS version fails.

show cris-version
Show the current CRIS version.

set cris—-dwarf2-cfi
Set the usage of DWARF-2 CFI for CRIS debugging. The default is ‘on’.
Change to ‘off’ when using gcc-cris whose version is below R59.

show cris—-dwarf2-cfi
Show the current state of using DWARF-2 CFL.

set cris—mode mode
Set the current CRIS mode to mode. It should only be changed when debugging
in guru mode, in which case it should be set to ‘guru’ (the default is ‘normal’).

show cris—-mode
Show the current CRIS mode.

18.3.17 Renesas Super-H

For the Renesas Super-H processor, GDB provides these commands:

regs Show the values of all Super-H registers.

18.3.18 Windows CE

The following commands are available for Windows CE:

set remotedirectory dir
Tell GDB to upload files from the named directory dir. The default is ‘/gdb’,
i.e. the root directory on the current drive.

show remotedirectory
Show the current value of the upload directory.

Chapter 18: Configuration-Specific Information 201

set remoteupload method
Set the method used to upload files to remote device. Valid values for method
are ‘always’, ‘newer’, and ‘never’. The default is ‘newer’.

show remoteupload
Show the current setting of the upload method.

set remoteaddhost
Tell cDB whether to add this host to the remote stub’s arguments when you
debug over a network.

show remoteaddhost
Show whether to add this host to remote stub’s arguments when debugging
over a network.

18.4 Architectures

This section describes characteristics of architectures that affect all uses of GDB with the
architecture, both native and cross.

18.4.1 x86 Architecture-specific issues.

set struct-convention mode
Set the convention used by the inferior to return structs and unions from
functions to mode. Possible values of mode are "pcc", "reg", and "default"
(the default). "default" or "pcc" means that structs are returned on the
stack, while "reg" means that a struct or a union whose size is 1, 2, 4, or 8
bytes will be returned in a register.

show struct-convention
Show the current setting of the convention to return structs from functions.

18.4.2 A29K

set rstack_high_address address

On AMD 29000 family processors, registers are saved in a separate register
stack. There is no way for GDB to determine the extent of this stack. Normally,
GDB just assumes that the stack is “large enough”. This may result in GDB
referencing memory locations that do not exist. If necessary, you can get around
this problem by specifying the ending address of the register stack with the set
rstack_high_address command. The argument should be an address, which
you probably want to precede with ‘0x’ to specify in hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000 family processors.

18.4.3 Alpha

See the following section.

18.4.4 MIPS

Alpha- and MIPS-based computers use an unusual stack frame, which sometimes requires
GDB to search backward in the object code to find the beginning of a function.

202 Debugging with GDB

To improve response time (especially for embedded applications, where GDB may be
restricted to a slow serial line for this search) you may want to limit the size of this search,
using one of these commands:

set heuristic-fence-post limit
Restrict GDB to examining at most limit bytes in its search for the beginning
of a function. A value of 0 (the default) means there is no limit. However,
except for 0, the larger the limit the more bytes heuristic-fence-post must
search and therefore the longer it takes to run. You should only need to use
this command when debugging a stripped executable.

show heuristic-fence-post
Display the current limit.

These commands are available only when GDB is configured for debugging programs on
Alpha or MIPS processors.

Several MIPS-specific commands are available when debugging MIPS programs:
set mips saved-gpreg-size size

Set the size of MIPS general-purpose registers saved on the stack. The argument
size can be one of the following:

‘32’ 32-bit GP registers
‘64’ 64-bit GP registers
‘auto’ Use the target’s default setting or autodetect the saved size from

the information contained in the executable. This is the default

show mips saved-gpreg-size
Show the current size of MIPS GP registers on the stack.

set mips stack-arg-size size
Set the amount of stack space reserved for arguments to functions. The argu-
ment can be one of "32", "64" or "auto" (the default).

set mips abi arg
Tell GpB which MIPS ABI is used by the inferior. Possible values of arg are:

‘auto’ The default ABI associated with the current binary (this is the
default).

‘032’
‘064’
‘n32’
‘n64’
‘eabi32’
‘eabi6d’
‘auto’

show mips abi
Show the MIPS ABI used by GDB to debug the inferior.

Chapter 18: Configuration-Specific Information 203

set mipsfpu
show mipsfpu
See Section 18.3.6 [MIPS Embedded], page 192.

set mips mask-address arg
This command determines whether the most-significant 32 bits of 64-bit MIPS
addresses are masked off. The argument arg can be ‘on’, ‘off’; or ‘auto’. The
latter is the default setting, which lets GDB determine the correct value.

show mips mask-address
Show whether the upper 32 bits of MIPS addresses are masked off or not.

set remote-mips64-transfers-32bit-regs
This command controls compatibility with 64-bit MIPS targets that transfer
data in 32-bit quantities. If you have an old MIPS 64 target that transfers 32
bits for some registers, like SR and FSR, and 64 bits for other registers, set this
option to ‘on’.

show remote-mips64-transfers-32bit-regs
Show the current setting of compatibility with older MIPS 64 targets.

set debug mips
This command turns on and off debugging messages for the MIPS-specific target
code in GDB.

show debug mips
Show the current setting of MIPS debugging messages.

18.4.5 HPPA
When GDB is debugging te HP PA architecture, it provides the following special commands:

set debug hppa
THis command determines whether HPPA architecture specific debugging mes-
sages are to be displayed.

show debug hppa
Show whether HPPA debugging messages are displayed.

maint print unwind address
This command displays the contents of the unwind table entry at the given
address.

204 Debugging with GDB

Chapter 19: Controlling GDB 205

19 Controlling GDB

You can alter the way GDB interacts with you by using the set command. For commands
controlling how GDB displays data, see Section 8.7 [Print settings|, page 80. Other settings
are described here.

19.1 Prompt

GDB indicates its readiness to read a command by printing a string called the prompt.
This string is normally ‘(gdb)’. You can change the prompt string with the set prompt
command. For instance, when debugging GDB with GDB, it is useful to change the prompt
in one of the GDB sessions so that you can always tell which one you are talking to.

Note: set prompt does not add a space for you after the prompt you set. This allows
you to set a prompt which ends in a space or a prompt that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string henceforth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

19.2 Command editing

GDB reads its input commands via the Readline interface. This GNU library provides consis-
tent behavior for programs which provide a command line interface to the user. Advantages
are CNU Emacs-style or vi-style inline editing of commands, csh-like history substitution,
and a storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing
set editing on
Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

See Chapter 27 [Command Line Editing], page 289, for more details about the Readline
interface. Users unfamiliar with GNU Emacs or vi are encouraged to read that chapter.

19.3 Command history

GDB can keep track of the commands you type during your debugging sessions, so that
you can be certain of precisely what happened. Use these commands to manage the GDB
command history facility.

GDB uses the GNU History library, a part of the Readline package, to provide the history
facility. See Chapter 28 [Using History Interactively|, page 309, for the detailed description
of the History library.

206 Debugging with GDB

To issue a command to GDB without affecting certain aspects of the state which is seen by
users, prefix it with ‘server ’. This means that this command will not affect the command
history, nor will it affect GDB’s notion of which command to repeat if is pressed on a
line by itself.

The server prefix does not affect the recording of values into the value history; to print
a value without recording it into the value history, use the output command instead of the
print command.

Here is the description of GDB commands related to command history.

set history filename fname
Set the name of the GDB command history file to fname. This is the file where
GDB reads an initial command history list, and where it writes the command
history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed below.
This file defaults to the value of the environment variable GDBHISTFILE, or to
‘./.gdb_history’ (‘./_gdb_history’ on MS-DOS) if this variable is not set.

set history save

set history save on
Record command history in a file, whose name may be specified with the set
history filename command. By default, this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history list. This defaults
to the value of the environment variable HISTSIZE, or to 256 if this variable is
not set.

History expansion assigns special meaning to the character !. See Section 28.1.1 [Event
Designators|, page 309, for more details.

Since ! is also the logical not operator in C, history expansion is off by default. If you
decide to enable history expansion with the set history expansion on command, you may
sometimes need to follow ! (when it is used as logical not, in an expression) with a space
or a tab to prevent it from being expanded. The readline history facilities do not attempt
substitution on the strings /= and ! (, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on
set history expansion
Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.

Chapter 19: Controlling GDB 207

show history

show history filename

show history save

show history size

show history expansion
These commands display the state of the GDB history parameters. show
history by itself displays all four states.

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

19.4 Screen size

Certain commands to GDB may produce large amounts of information output to the screen.
To help you read all of it, GDB pauses and asks you for input at the end of each page of
output. Type when you want to continue the output, or q to discard the remaining
output. Also, the screen width setting determines when to wrap lines of output. Depending
on what is being printed, GDB tries to break the line at a readable place, rather than simply
letting it overflow onto the following line.

Normally GDB knows the size of the screen from the terminal driver software. For
example, on Unix GDB uses the termcap data base together with the value of the TERM
environment variable and the stty rows and stty cols settings. If this is not correct, you
can override it with the set height and set width commands:

set height Ipp

show height

set width cpl

show width
These set commands specify a screen height of Ipp lines and a screen width of
cpl characters. The associated show commands display the current settings.

If you specify a height of zero lines, GDB does not pause during output no matter
how long the output is. This is useful if output is to a file or to an editor buffer.

Likewise, you can specify ‘set width 0’ to prevent GDB from wrapping its out-
put.

set pagination on

set pagination off
Turn the output pagination on or off; the default is on. Turning pagination off
is the alternative to set height 0.

show pagination
Show the current pagination mode.

208 Debugging with GDB

19.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with ‘0’, decimal numbers end with ‘.’, and hexadecimal
numbers begin with ‘0x’. Numbers that neither begin with ‘0’ or ‘0x’, nor end with a *.’
are, by default, entered in base 10; likewise, the default display for numbers—when no
particular format is specified—is base 10. You can change the default base for both input
and output with the commands described below.

set input-radix base

Set the default base for numeric input. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current input radix; for example, any of

set input-radix 012

set input-radix 10.

set input-radix Oxa
sets the input base to decimal. On the other hand, ‘set input-radix 10’ leaves
the input radix unchanged, no matter what it was, since ‘10’, being without any
leading or trailing signs of its base, is interpreted in the current radix. Thus,
if the current radix is 16, ‘10’ is interpreted in hex, i.e. as 16 decimal, which
doesn’t change the radix.

set output-radix base
Set the default base for numeric display. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current input radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

set radix [base]

show radix
These commands set and show the default base for both input and output
of numbers. set radix sets the radix of input and output to the same base;
without an argument, it resets the radix back to its default value of 10.

19.6 Configuring the current ABI

GDB can determine the ABI (Application Binary Interface) of your application automati-
cally. However, sometimes you need to override its conclusions. Use these commands to
manage GDB’s view of the current ABI.

One GDB configuration can debug binaries for multiple operating system targets, either
via remote debugging or native emulation. GDB will autodetect the OS ABI (Operating
System ABI) in use, but you can override its conclusion using the set osabi command. One
example where this is useful is in debugging of binaries which use an alternate C library (e.g.
UCLIBC for GNU/Linux) which does not have the same identifying marks that the standard
C library for your platform provides.

Chapter 19: Controlling GDB 209

show osabi
Show the OS ABI currently in use.

set osabi With no argument, show the list of registered available OS ABI’s.

set osabi abi
Set the current OS ABI to abi.

Generally, the way that an argument of type float is passed to a function depends on
whether the function is prototyped. For a prototyped (i.e. ANSI/ISO style) function, float
arguments are passed unchanged, according to the architecture’s convention for float. For
unprototyped (i.e. K&R style) functions, float arguments are first promoted to type double
and then passed.

Unfortunately, some forms of debug information do not reliably indicate whether a func-
tion is prototyped. If GDB calls a function that is not marked as prototyped, it consults
set coerce-float-to-double.

set coerce-float-to-double

set coerce-float-to-double on
Arguments of type float will be promoted to double when passed to an un-
prototyped function. This is the default setting.

set coerce-float-to—-double off
Arguments of type float will be passed directly to unprototyped functions.

show coerce-float-to-double
Show the current setting of promoting float to double.

GDB needs to know the ABI used for your program’s C++ objects. The correct C++ ABI
depends on which C++ compiler was used to build your application. ¢DB only fully supports
programs with a single C++ ABI; if your program contains code using multiple C++ ABI’s
or if GDB can not identify your program’s ABI correctly, you can tell GDB which ABI to use.
Currently supported ABI’s include “gnu-v2”, for g++ versions before 3.0, “gnu-v3”, for g++
versions 3.0 and later, and “hpaCC” for the HP ANSI C++ compiler. Other C++ compilers
may use the “gnu-v2” or “gnu-v3” ABI’s as well. The default setting is “auto”.

show cp-abi
Show the C++ ABI currently in use.

set cp-abi
With no argument, show the list of supported C++ ABI’s.

set cp-abi abi
set cp-abi auto
Set the current C++ ABI to abi, or return to automatic detection.

19.7 Optional warnings and messages

By default, ¢DB is silent about its inner workings. If you are running on a slow machine,
you may want to use the set verbose command. This makes GDB tell you when it does a
lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the
symbol table for a source file is being read; see symbol-file in Section 15.1 [Commands to
specify files|, page 151.

210 Debugging with GDB

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an object file, it is silent; but if
you are debugging a compiler, you may find this information useful (see Section 15.3 [Errors
reading symbol files], page 159).

set complaints limit
Permits GDB to output limit complaints about each type of unusual symbols
before becoming silent about the problem. Set limit to zero to suppress all com-
plaints; set it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid
questions to confirm certain commands. For example, if you try to run a program which is
already running:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you can
disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.

If you need to debug user-defined commands or sourced files you may find it useful to
enable command tracing. In this mode each command will be printed as it is executed, pre-
fixed with one or more ‘+’ symbols, the quantity denoting the call depth of each command.

set trace-commands on
Enable command tracing.

set trace—-commands off
Disable command tracing.

show trace-commands
Display the current state of command tracing.

Chapter 19: Controlling GDB 211

19.8 Optional messages about internal happenings

GDB has commands that enable optional debugging messages from various GDB subsystems;
normally these commands are of interest to GDB maintainers, or when reporting a bug. This
section documents those commands.

set exec-done-display
Turns on or off the notification of asynchronous commands’ completion. When
on, GDB will print a message when an asynchronous command finishes its exe-
cution. The default is off.

show exec-done-display
Displays the current setting of asynchronous command completion notification.

set debug arch
Turns on or off display of gdbarch debugging info. The default is off

show debug arch
Displays the current state of displaying gdbarch debugging info.

set debug aix-thread
Display debugging messages about inner workings of the AIX thread module.

show debug aix-thread
Show the current state of AIX thread debugging info display.

set debug event
Turns on or off display of GDB event debugging info. The default is off.

show debug event
Displays the current state of displaying GDB event debugging info.

set debug expression
Turns on or off display of debugging info about GDB expression parsing. The
default is off.

show debug expression
Displays the current state of displaying debugging info about GDB expression
parsing.

set debug frame
Turns on or off display of GDB frame debugging info. The default is off.

show debug frame
Displays the current state of displaying GDB frame debugging info.

set debug infrun
Turns on or off display of GDB debugging info for running the inferior. The
default is off. ‘infrun.c’ contains GDB’s runtime state machine used for im-
plementing operations such as single-stepping the inferior.

show debug infrun
Displays the current state of GDB inferior debugging.

212 Debugging with GDB

set debug lin-1lwp
Turns on or off debugging messages from the Linux LWP debug support.

show debug 1lin-lwp
Show the current state of Linux LWP debugging messages.

set debug observer
Turns on or off display of GDB observer debugging. This includes info such as
the notification of observable events.

show debug observer
Displays the current state of observer debugging.

set debug overload
Turns on or off display of GDB C++ overload debugging info. This includes info
such as ranking of functions, etc. The default is off.

show debug overload
Displays the current state of displaying GDB C++ overload debugging info.

set debug remote
Turns on or off display of reports on all packets sent back and forth across the
serial line to the remote machine. The info is printed on the GDB standard
output stream. The default is off.

show debug remote
Displays the state of display of remote packets.

set debug serial
Turns on or off display of GDB serial debugging info. The default is off.

show debug serial
Displays the current state of displaying GDB serial debugging info.

set debug solib-frv
Turns on or off debugging messages for FR-V shared-library code.

show debug solib-frv
Display the current state of FR-V shared-library code debugging messages.

set debug target
Turns on or off display of GDB target debugging info. This info includes what
is going on at the target level of GDB, as it happens. The default is 0. Set it
to 1 to track events, and to 2 to also track the value of large memory transfers.
Changes to this flag do not take effect until the next time you connect to a
target or use the run command.

show debug target
Displays the current state of displaying GDB target debugging info.

set debugvarobj
Turns on or off display of GDB variable object debugging info. The default is
off.

show debugvarobj
Displays the current state of displaying GDB variable object debugging info.

Chapter 20: Canned Sequences of Commands 213

20 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 [Breakpoint command lists], page 48),
GDB provides two ways to store sequences of commands for execution as a unit: user-defined
commands and command files.

20.1 User-defined commands

A user-defined command is a sequence of GDB commands to which you assign a new name
as a command. This is done with the define command. User commands may accept up to
10 arguments separated by whitespace. Arguments are accessed within the user command
via $arg0. . .$arg9. A trivial example:

define adder
print $arg0 + $argl + $arg2
end
To execute the command use:

adder 1 2 3

This defines the command adder, which prints the sum of its three arguments. Note the
arguments are text substitutions, so they may reference variables, use complex expressions,
or even perform inferior functions calls.

In addition, $argc may be used to find out how many arguments have been passed. This
expands to a number in the range 0. . .10.

define adder
if $argc ==
print $arg0 + $argl
end
if $argc ==
print $arg0d + $argl + $arg2
end
end

define commandname
Define a command named commandname. If there is already a command by
that name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which
are given following the define command. The end of these commands is marked
by a line containing end.

document commandname
Document the user-defined command commandname, so that it can be ac-
cessed by help. The command commandname must already be defined. This
command reads lines of documentation just as define reads the lines of the
command definition, ending with end. After the document command is fin-
ished, help on command commandname displays the documentation you have
written.
You may use the document command again to change the documentation of a
command. Redefining the command with define does not change the docu-
mentation.

214 Debugging with GDB

dont-repeat
Used inside a user-defined command, this tells GDB that this command should
not be repeated when the user hits (see Section 3.1 [Command Syntax],
page 19).

help user-defined
List all user-defined commands, with the first line of the documentation (if any)
for each.

show user

show user commandname
Display the GDB commands used to define commandname (but not its documen-
tation). If no commandname is given, display the definitions for all user-defined
commands.

show max-user—-call-depth

set max-user-call-depth
The value of max-user-call-depth controls how many recursion levels are
allowed in user-defined commands before GDB suspects an infinite recursion
and aborts the command.

In addition to the above commands, user-defined commands frequently use control flow
commands, described in Section 20.3 [Command Files], page 215.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many GDB commands that normally print mes-
sages to say what they are doing omit the messages when used in a user-defined command.

20.2 User-defined command hooks

You may define hooks, which are a special kind of user-defined command. Whenever you
run the command ‘foo’, if the user-defined command ‘hook-foo’ exists, it is executed (with
no arguments) before that command.

A hook may also be defined which is run after the command you executed. Whenever you
run the command ‘foo’, if the user-defined command ‘hookpost-foo’ exists, it is executed
(with no arguments) after that command. Post-execution hooks may exist simultaneously
with pre-execution hooks, for the same command.

It is valid for a hook to call the command which it hooks. If this occurs, the hook is not
re-executed, thereby avoiding infinite recursion.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’) makes the asso-
ciated commands execute every time execution stops in your program: before breakpoint
commands are run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally
during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

Chapter 20: Canned Sequences of Commands 215

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end
As a further example, to hook at the begining and end of the echo command, and to
add extra text to the beginning and end of the message, you could define:

define hook-echo
echo <<<---
end

define hookpost-echo
echo -—-->>>\n
end

(gdb) echo Hello World
<<<---Hello World--->>>
(gdb)

You can define a hook for any single-word command in GDB, but not for command
aliases; you should define a hook for the basic command name, e.g. backtrace rather than
bt. If an error occurs during the execution of your hook, execution of GDB commands stops
and GDB issues a prompt (before the command that you actually typed had a chance to
run).

If you try to define a hook which does not match any known command, you get a warning
from the define command.

20.3 Command files

A command file for GDB is a text file made of lines that are GDB commands. Comments
(lines starting with #) may also be included. An empty line in a command file does nothing;
it does not mean to repeat the last command, as it would from the terminal.

You can request the execution of a command file with the source command:

source [-v] filename
Execute the command file filename.

The lines in a command file are generally executed sequentially, unless the order of
execution is changed by one of the flow-control commands described below. The commands
are not printed as they are executed. An error in any command terminates execution of
the command file and control is returned to the console.

GDB searches for filename in the current directory and then on the search path (specified
with the ‘directory’ command).

If -v, for verbose mode, is given then GDB displays each command as it is executed. The
option must be given before filename, and is interpreted as part of the filename anywhere
else.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they are doing omit the messages when called from command files.

216 Debugging with GDB

GDB also accepts command input from standard input. In this mode, normal output
goes to standard output and error output goes to standard error. Errors in a command
file supplied on standard input do not terminate execution of the command file—execution
continues with the next command.

gdb < cmds > log 2>&1

(The syntax above will vary depending on the shell used.) This example will execute
commands from the file ‘cmds’. All output and errors would be directed to ‘log’.

Since commands stored on command files tend to be more general than commands typed
interactively, they frequently need to deal with complicated situations, such as different or
unexpected values of variables and symbols, changes in how the program being debugged
is built, etc. GDB provides a set of flow-control commands to deal with these complexities.
Using these commands, you can write complex scripts that loop over data structures, execute
commands conditionally, etc.
if
else This command allows to include in your script conditionally executed com-

mands. The if command takes a single argument, which is an expression to
evaluate. It is followed by a series of commands that are executed only if the
expression is true (its value is nonzero). There can then optionally be an else
line, followed by a series of commands that are only executed if the expression
was false. The end of the list is marked by a line containing end.

while This command allows to write loops. Its syntax is similar to if: the command
takes a single argument, which is an expression to evaluate, and must be fol-
lowed by the commands to execute, one per line, terminated by an end. These
commands are called the body of the loop. The commands in the body of while
are executed repeatedly as long as the expression evaluates to true.

loop_break
This command exits the while loop in whose body it is included. Execution of
the script continues after that whiles end line.

loop_continue
This command skips the execution of the rest of the body of commands in the
while loop in whose body it is included. Execution branches to the beginning
of the while loop, where it evaluates the controlling expression.

end Terminate the block of commands that are the body of if, else, or while
flow-control commands.

20.4 Commands for controlled output

During the execution of a command file or a user-defined command, normal GDB output
is suppressed; the only output that appears is what is explicitly printed by the commands
in the definition. This section describes three commands useful for generating exactly the
output you want.

echo text
Print text. Nonprinting characters can be included in text using C escape se-
quences, such as ‘\n’ to print a newline. No newline is printed unless you specify

Chapter 20: Canned Sequences of Commands 217

one. In addition to the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments. To print ¢ and foo =’, use the command ‘echo \ and foo
=\ .
A backslash at the end of text can be used, as in C, to continue the command
onto subsequent lines. For example,

echo This is some text\n\

which is continued\n\

onto several lines.\n
produces the same output as

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression
Print the value of expression and nothing but that value: no newlines, no
‘$nn =’. The value is not entered in the value history either. See Section 8.1
[Expressions|, page 73, for more information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the same formats as
for print. See Section 8.4 [Output formats|, page 76, for more information.

printf string, expressions...

Print the values of the expressions under the control of string. The expressions
are separated by commas and may be either numbers or pointers. Their values
are printed as specified by string, exactly as if your program were to execute
the C subroutine

printf (string, expressions...);
For example, you can print two values in hex like this:

printf "foo, bar-foo = Ox%x, Ox%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are
the simple ones that consist of backslash followed by a letter.

218 Debugging with GDB

Chapter 21: Command Interpreters 219

21 Command Interpreters

GDB supports multiple command interpreters, and some command infrastructure to allow
users or user interface writers to switch between interpreters or run commands in other
interpreters.

GDB currently supports two command interpreters, the console interpreter (sometimes
called the command-line interpreter or CLI) and the machine interface interpreter (or
GDB/MI). This manual describes both of these interfaces in great detail.

By default, ¢DB will start with the console interpreter. However, the user may choose
to start ¢DB with another interpreter by specifying the ‘-i’ or ‘--interpreter’ startup
options. Defined interpreters include:

console The traditional console or command-line interpreter. This is the most often
used interpreter with GDB. With no interpreter specified at runtime, GDB will
use this interpreter.

mi The newest GDB/MI interface (currently mi2). Used primarily by programs
wishing to use GDB as a backend for a debugger GUI or an IDE. For more
information, see Chapter 24 [The GDB/MmI Interface], page 229.

mi2 The current GDB/MI interface.
mil The GDB/MI interface included in ¢DB 5.1, 5.2, and 5.3.

The interpreter being used by GDB may not be dynamically switched at runtime. Al-
though possible, this could lead to a very precarious situation. Consider an IDE using
GDB/MI. If a user enters the command "interpreter-set console" in a console view, GDB
would switch to using the console interpreter, rendering the IDE inoperable!

Although you may only choose a single interpreter at startup, you may execute com-
mands in any interpreter from the current interpreter using the appropriate command. If
you are running the console interpreter, simply use the interpreter-exec command:

interpreter-exec mi "-data-list-register-names"

GDB/MI has a similar command, although it is only available in versions of GDB which
support GDB/MI version 2 (or greater).

220 Debugging with GDB

Chapter 22: ¢DB Text User Interface 221

22 GDB Text User Interface

The ¢DB Text User Interface, TUI in short, is a terminal interface which uses the curses
library to show the source file, the assembly output, the program registers and GDB com-
mands in separate text windows.

The TUI is enabled by invoking GDB using either ‘gdbtui’ or ‘gdb -tui’.

22.1 TUI overview

The TUI has two display modes that can be switched while GDB runs:
e A curses (or TUI) mode in which it displays several text windows on the terminal.
e A standard mode which corresponds to the GDB configured without the TUI.

In the TUI mode, ¢DB can display several text window on the terminal:

command This window is the GDB command window with the GDB prompt and the GDB
outputs. The GDB input is still managed using readline but through the TUI.
The command window is always visible.

source The source window shows the source file of the program. The current line as
well as active breakpoints are displayed in this window.

assembly The assembly window shows the disassembly output of the program.

register This window shows the processor registers. It detects when a register is changed
and when this is the case, registers that have changed are highlighted.

The source and assembly windows show the current program position by highlighting
the current line and marking them with the ‘>” marker. Breakpoints are also indicated with
two markers. A first one indicates the breakpoint type:

B Breakpoint which was hit at least once.

b Breakpoint which was never hit.

H Hardware breakpoint which was hit at least once.
h Hardware breakpoint which was never hit.

The second marker indicates whether the breakpoint is enabled or not:

+

Breakpoint is enabled.
- Breakpoint is disabled.

The source, assembly and register windows are attached to the thread and the frame
position. They are updated when the current thread changes, when the frame changes
or when the program counter changes. These three windows are arranged by the TUI
according to several layouts. The layout defines which of these three windows are visible.
The following layouts are available:

e source
e assembly

e source and assembly

222 Debugging with GDB

e source and registers

e assembly and registers

On top of the command window a status line gives various information concerning the
current process begin debugged. The status line is updated when the information it shows
changes. The following fields are displayed:

target Indicates the current gdb target (see Chapter 16 [Specifying a Debugging Tar-
get], page 161).

process Gives information about the current process or thread number. When no pro-
cess is being debugged, this field is set to No process.

function Gives the current function name for the selected frame. The name is demangled
if demangling is turned on (see Section 8.7 [Print Settings|, page 80). When
there is no symbol corresponding to the current program counter the string 77
is displayed.

line Indicates the current line number for the selected frame. When the current line

number is not known the string 7?7 is displayed.

pc Indicates the current program counter address.

22.2 TUI Key Bindings

The TUI installs several key bindings in the readline keymaps (see Chapter 27 [Command
Line Editing|, page 289). They allow to leave or enter in the TUI mode or they operate
directly on the TUI layout and windows. The TUTI also provides a SingleKey keymap which
binds several keys directly to GDB commands. The following key bindings are installed for
both TUI mode and the GDB standard mode.

C-x C-a

C-x a

C-x A Enter or leave the TUI mode. When the TUI mode is left, the curses window
management is left and GDB operates using its standard mode writing on the
terminal directly. When the TUI mode is entered, the control is given back to
the curses windows. The screen is then refreshed.

C-x1 Use a TUI layout with only one window. The layout will either be ‘source’ or
‘assembly’. When the TUI mode is not active, it will switch to the TUI mode.
Think of this key binding as the Emacs C-x 1 binding.

C-x 2 Use a TUI layout with at least two windows. When the current layout shows
already two windows, a next layout with two windows is used. When a new
layout is chosen, one window will always be common to the previous layout and
the new one.

Think of it as the Emacs C-x 2 binding.
C-x o Change the active window. The TUI associates several key bindings (like

scrolling and arrow keys) to the active window. This command gives the focus
to the next TUI window.

Think of it as the Emacs C-x o binding.

Chapter 22: ¢DB Text User Interface 223

Q

-X

0

Use the TUI SingleKey keymap that binds single key to gdb commands (see
Section 22.3 [TUI Single Key Mode], page 223).

The following key bindings are handled only by the TUI mode:

Scroll the active window one page up.
Scroll the active window one page down.
Up) Scroll the active window one line up.
Scroll the active window one line down.
Scroll the active window one column left.
Scroll the active window one column right.
C-L Refresh the screen.

In the TUI mode, the arrow keys are used by the active window for scrolling. This means
they are available for readline when the active window is the command window. When the
command window does not have the focus, it is necessary to use other readline key bindings
such as C-p, C-n, C-b and C-f.

22.3 TUI Single Key Mode

The TUI provides a SingleKey mode in which it installs a particular key binding in the
readline keymaps to connect single keys to some gdb commands.

c continue

d down

£ finish

n next

q exit the SingleKey mode.
r run

s step

u up

v info locals

W where

Other keys temporarily switch to the GDB command prompt. The key that was pressed
is inserted in the editing buffer so that it is possible to type most GDB commands without
interaction with the TUI SingleKey mode. Once the command is entered the TUI SingleKey
mode is restored. The only way to permanently leave this mode is by typing q or C-x s.

224 Debugging with GDB

22.4 TUI specific commands

The TUI has specific commands to control the text windows. These commands are always
available, that is they do not depend on the current terminal mode in which GDB runs.
When ¢DB is in the standard mode, using these commands will automatically switch in the
TUI mode.

info win List and give the size of all displayed windows.

layout next
Display the next layout.

layout prev
Display the previous layout.

layout src
Display the source window only.

layout asm
Display the assembly window only.

layout split
Display the source and assembly window.

layout regs
Display the register window together with the source or assembly window.

focus next | prev | src | asm | regs | split
Set the focus to the named window. This command allows to change the active
window so that scrolling keys can be affected to another window.

refresh Refresh the screen. This is similar to typing C-L.

tui reg float
Show the floating point registers in the register window.

tuil reg general
Show the general registers in the register window.

tui reg next
Show the next register group. The list of register groups as well as their order
is target specific. The predefined register groups are the following: general,
float, system, vector, all, save, restore.

tuil reg system
Show the system registers in the register window.

update Update the source window and the current execution point.

winheight name +count

winheight name -count
Change the height of the window name by count lines. Positive counts increase
the height, while negative counts decrease it.

tabset Set the width of tab stops to be nchars characters.

Chapter 22: ¢DB Text User Interface 225

22.5 TUI configuration variables

The TUI has several configuration variables that control the appearance of windows on the
terminal.

set tui border-kind kind
Select the border appearance for the source, assembly and register windows.
The possible values are the following:

space Use a space character to draw the border.
ascii Use ascii characters + - and | to draw the border.
acs Use the Alternate Character Set to draw the border. The border is

drawn using character line graphics if the terminal supports them.

set tui active-border-mode mode
Select the attributes to display the border of the active window. The possible
values are normal, standout, reverse, half, half-standout, bold and bold-
standout.

set tul border-mode mode
Select the attributes to display the border of other windows. The mode can be
one of the following:

normal Use normal attributes to display the border.
standout Use standout mode.

reverse Use reverse video mode.

half Use half bright mode.

half-standout
Use half bright and standout mode.

bold Use extra bright or bold mode.

bold-standout
Use extra bright or bold and standout mode.

226 Debugging with GDB

Chapter 23: Using ¢DB under GNU Emacs 227

23 Using GDB under GNU Emacs

A special interface allows you to use GNU Emacs to view (and edit) the source files for the
program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable file you
want to debug as an argument. This command starts GDB as a subprocess of Emacs, with
input and output through a newly created Emacs buffer.

Using ¢DB under Emacs is just like using GDB normally except for two things:

e All “terminal” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the input and output done
by the program you are debugging.

This is useful because it means that you can copy the text of previous commands and
input them again; you can even use parts of the output in this way.

All the facilities of Emacs’ Shell mode are available for interacting with your program.
In particular, you can send signals the usual way—for example, C-c C-c for an interrupt,
C-c C-z for a stop.

e GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file for
that frame and puts an arrow (‘=>’) at the left margin of the current line. Emacs uses a
separate buffer for source display, and splits the screen to show both your GDB session and
the source.

Explicit GDB list or search commands still produce output as usual, but you probably
have no reason to use them from Emacs.

If you specify an absolute file name when prompted for the M-x gdb argument, then
Emacs sets your current working directory to where your program resides. If you only
specify the file name, then Emacs sets your current working directory to to the directory
associated with the previous buffer. In this case, GDB may find your program by searching
your environment’s PATH variable, but on some operating systems it might not find the
source. So, although the GDB input and output session proceeds normally, the auxiliary
buffer does not display the current source and line of execution.

The initial working directory of GDB is printed on the top line of the GpB I/O buffer
and this serves as a default for the commands that specify files for GDB to operate on. See
Section 15.1 [Commands to specify files], page 151.

By default, M-x gdb calls the program called ‘gdb’. If you need to call GDB by a different
name (for example, if you keep several configurations around, with different names) you can
customize the Emacs variable gud-gdb-command-name to run the one you want.

In the ¢DB I/O buffer, you can use these special Emacs commands in addition to the
standard Shell mode commands:

C-h m Describe the features of Emacs’ GDB Mode.

C-c C-s Execute to another source line, like the GDB step command; also update the
display window to show the current file and location.

228 Debugging with GDB

C-c C-n Execute to next source line in this function, skipping all function calls, like the
GDB next command. Then update the display window to show the current file
and location.

C-c C-i Execute one instruction, like the GDB stepi command; update display window
accordingly.

C-c C-f Execute until exit from the selected stack frame, like the GDB finish command.
C-c C-r Continue execution of your program, like the GDB continue command.

C-c< Go up the number of frames indicated by the numeric argument (see section
“Numeric Arguments” in The GNU Emacs Manual), like the GDB up command.

C-c> Go down the number of frames indicated by the numeric argument, like the
GDB down command.

In any source file, the Emacs command C-x (gud-break) tells GDB to set a break-
point on the source line point is on.

If you type M-x speedbar, then Emacs displays a separate frame which shows a backtrace
when the ¢DB I/O buffer is current. Move point to any frame in the stack and type
to make it become the current frame and display the associated source in the source buffer.
Alternatively, click Mouse-2 to make the selected frame become the current one.

If you accidentally delete the source-display buffer, an easy way to get it back is to type
the command f in the GDB buffer, to request a frame display; when you run under Emacs,
this recreates the source buffer if necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary FEmacs buffers which are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but keep
in mind that GDB communicates with Emacs in terms of line numbers. If you add or delete
lines from the text, the line numbers that GDB knows cease to correspond properly with the
code.

The description given here is for GNU Emacs version 21.3 and a more detailed description
of its interaction with GDB is given in the Emacs manual (see section “Debuggers” in The
GNU Emacs Manual).

Chapter 24: The ¢pB/MI Interface 229

24 The ¢DB/MI Interface

Function and Purpose

GDB/MI is a line based machine oriented text interface to GDB and is activated by specifying
using the ‘--interpreter’ command line option (see Section 2.1.2 [Mode Options|, page 13).
It is specifically intended to support the development of systems which use the debugger as
just one small component of a larger system.

This chapter is a specification of the GDB/MI interface. It is written in the form of a
reference manual.

Note that GDB/MI is still under construction, so some of the features described below
are incomplete and subject to change (see Section 24.5 [GDB/MI Development and Front
Ends|, page 232).

Notation and Terminology

This chapter uses the following notation:
e | separates two alternatives.
e [something] indicates that something is optional: it may or may not be given.
e (group)* means that group inside the parentheses may repeat zero or more times.
e (group)+ means that group inside the parentheses may repeat one or more times.

e '"string" means a literal string.
24.3 ¢pB/MI Command Syntax

24.3.1 ¢DB/MI Input Syntax

command +—
cli-command | mi-command

cli-command —
[token] cli-command nl, where cli-command is any existing GDB CLI com-
mand.

mi-command +—
[token] "-" operation (" " option)* [" -="1]1 (" " parameter)* nl

token — "any sequence of digits"

option —
"-" parameter [" " parameter]

parameter —
non-blank-sequence | c-string

operation —
any of the operations described in this chapter

non-blank-sequence —
anything, provided it doesn’t contain special characters such as "-", nl, """ and
of course " "

230 Debugging with GDB

c-string —
""" seven-bit-iso-c-string-content """

nl — CR | CR-LF
Notes:
e The CLI commands are still handled by the MI interpreter; their output is described
below.

e The token, when present, is passed back when the command finishes.

e Some MI commands accept optional arguments as part of the parameter list. Each
option is identified by a leading ‘=’ (dash) and may be followed by an optional argument
parameter. Options occur first in the parameter list and can be delimited from normal
parameters using ‘==’ (this is useful when some parameters begin with a dash).

Pragmatics:
e We want easy access to the existing CLI syntax (for debugging).

e We want it to be easy to spot a MI operation.

24.3.2 ¢pB/MI Output Syntax

The output from GDB/MI consists of zero or more out-of-band records followed, optionally,
by a single result record. This result record is for the most recent command. The sequence
of output records is terminated by ‘(gdb)’.

If an input command was prefixed with a token then the corresponding output for that
command will also be prefixed by that same token.

output +
(out-of-band-record)* [result-record] "(gdb)" nl

result-record +—
[token] """ result-class ("," result)* nl

out-of-band-record —
async-record | stream-record

async-record —
exec-async-output | status-async-output | notify-async-output

exec—async-output —
[token] "*" async-output

status-async-output —
[token] "+" async-output

notify-async—output —
[token] "=" async-output

async-output —
async-class ("," result)* nl

result-class —
"done" | "running" | "connected" | "error" | "exit"

Chapter 24: The ¢pB/MI Interface 231

async-class +—
"stopped" | others (where others will be added depending on the needs—this
is still in development).

result +—
variable "=" value

variable —
string
value — const | tuple | list
const — c-string
tuple — II{}H | H{Il result (II,H result)* ||}ll
liSt — n [] n | n[n value (||,n value)* n]u I ||[|| result (n,u result)* n]n
stream-record —
console-stream-output | target-stream-output | log-stream-output
console-stream-output +—
"“" c-string
target-stream-output —
"@" c-string
log-stream-output —
"&" c-string
nl — CR | CR-LF
token — any sequence of digits.

Notes:

e All output sequences end in a single line containing a period.

e The token is from the corresponding request. If an execution command is interrupted
by the ‘~exec-interrupt’ command, the token associated with the ‘*stopped’ message
is the one of the original execution command, not the one of the interrupt command.

e status-async-output contains on-going status information about the progress of a slow
operation. It can be discarded. All status output is prefixed by ‘+’.

e exec-async-output contains asynchronous state change on the target (stopped, started,
disappeared). All async output is prefixed by ‘*’.

e notify-async-output contains supplementary information that the client should handle
(e.g., a new breakpoint information). All notify output is prefixed by ‘=".

e console-stream-output is output that should be displayed as is in the console. It is the
textual response to a CLI command. All the console output is prefixed by <™.

e target-stream-output is the output produced by the target program. All the target
output is prefixed by ‘@’.

e Jog-stream-output is output text coming from GDB’s internals, for instance messages
that should be displayed as part of an error log. All the log output is prefixed by ‘&’.

e New GDB/MI commands should only output lists containing values.

See Section 24.6.2 [GDB/MI Stream Records], page 233, for more details about the various
output records.

232 Debugging with GDB

24.4 ¢pB/MI Compatibility with CLI

For the developers convenience CLI commands can be entered directly, but there may be
some unexpected behaviour. For example, commands that query the user will behave as if
the user replied yes, breakpoint command lists are not executed and some CLI commands,
such as if, when and define, prompt for further input with ‘>’, which is not valid MI
output.

This feature may be removed at some stage in the future and it is recommended that
front ends use the -interpreter-exec command (see [-interpreter-exec], page 279).

24.5 aDB/MI Development and Front Ends

The application which takes the MI output and presents the state of the program being
debugged to the user is called a front end.

Although ¢DB/MI is still incomplete, it is currently being used by a variety of front ends
to GDB. This makes it difficult to introduce new functionality without breaking existing
usage. This section tries to minimize the problems by describing how the protocol might
change.

Some changes in MI need not break a carefully designed front end, and for these the MI
version will remain unchanged. The following is a list of changes that may occur within one
level, so front ends should parse MI output in a way that can handle them:

e New MI commands may be added.
e New fields may be added to the output of any MI command.

If the changes are likely to break front ends, the MI version level will be increased by one.
This will allow the front end to parse the output according to the MI version. Apart from
mi0, new versions of GDB will not support old versions of MI and it will be the responsibility
of the front end to work with the new one.

The best way to avoid unexpected changes in MI that might break your front
end is to make your project known to GDB developers and follow development on
gdb@sourceware.org and gdb-patches@sourceware.org. There is also the mailing list
dmi-discuss@lists.freestandards.org, hosted by the Free Standards Group, which
has the aim of creating a a more general MI protocol called Debugger Machine Interface
(DMI) that will become a standard for all debuggers, not just GDB.

24.6 ¢pB/MI Output Records

24.6.1 c¢pB/MI Result Records

In addition to a number of out-of-band notifications, the response to a GDB/MI command
includes one of the following result indications:

"“done" ["," results]
The synchronous operation was successful, results are the return values.

"“running"
The asynchronous operation was successfully started. The target is running.

"“connected"
GDB has connected to a remote target.

mailto:gdb@sourceware.org
mailto:gdb-patches@sourceware.org
mailto:dmi-discuss@lists.freestandards.org

Chapter 24: The ¢pB/MI Interface 233

"“error" "," c-string
The operation failed. The c-string contains the corresponding error message.

"texit" GDB has terminated.

24.6.2 GDB/MI Stream Records

GDB internally maintains a number of output streams: the console, the target, and the log.
The output intended for each of these streams is funneled through the GDB/MI interface
using stream records.

Each stream record begins with a unique prefix character which identifies its stream (see
Section 24.3.2 [GDB/MI Output Syntax], page 230). In addition to the prefix, each stream
record contains a string-output. This is either raw text (with an implicit new line) or a
quoted C string (which does not contain an implicit newline).

"~" string-output
The console output stream contains text that should be displayed in the CLI
console window. It contains the textual responses to CLI commands.

"@" string-output
The target output stream contains any textual output from the running target.
This is only present when GDB’s event loop is truly asynchronous, which is
currently only the case for remote targets.

"&" string-output
The log stream contains debugging messages being produced by GDB’s internals.

24.6.3 ¢pB/MI Out-of-band Records

Out-of-band records are used to notify the GDB/MI client of additional changes that have oc-
curred. Those changes can either be a consequence of GDB/MI (e.g., a breakpoint modified)
or a result of target activity (e.g., target stopped).

The following is a preliminary list of possible out-of-band records. In particular, the
exec-async-output records.
*stopped,reason="reason"
reason can be one of the following:
breakpoint-hit
A breakpoint was reached.

watchpoint-trigger
A watchpoint was triggered.

read-watchpoint-trigger
A read watchpoint was triggered.

access-watchpoint-trigger
An access watchpoint was triggered.

function-finished
An -exec-finish or similar CLI command was accomplished.

location-reached
An -exec-until or similar CLI command was accomplished.

234 Debugging with GDB

watchpoint-scope
A watchpoint has gone out of scope.

end-stepping-range
An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or sim-
ilar CLI command was accomplished.

exited-signalled
The inferior exited because of a signal.

exited The inferior exited.

exited-normally
The inferior exited normally.

signal-received
A signal was received by the inferior.

24.7 Simple Examples of GDB/MI Interaction

This subsection presents several simple examples of interaction using the GDB/MI interface.
In these examples, ‘->" means that the following line is passed to GDB/MI as input, while
‘<-” means the output received from GDB/MI.

Note the the line breaks shown in the examples are here only for readability, they don’t
appear in the real output.

Setting a breakpoint

Setting a breakpoint generates synchronous output which contains detailed information of
the breakpoint.

-> -break-insert main

<- “done,bkpt={number="1",type="breakpoint",disp="keep",
enabled="y",addr="0x08048564" ,func="main",file="myprog.c",
fullname="/home/nickrob/myprog.c",line="68",times="0"}

<- (gdb)

Program Execution

Program execution generates asynchronous records and MI gives the reason that execution
stopped.

-> -exec-run

<- “running

<- (gdb)

<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
frame={addr="0x08048564" , func="main",
args=[{name="argc",value="1"}, {name="argv" ,value="0xbfc4d4d4"}],
file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"}

<- (gdb)

-> -exec-continue

<- “running

<- (gdb)

<- *stopped,reason="exited-normally"

<- (gdb)

Chapter 24: The ¢pB/MI Interface 235

Quitting GDB
Quitting GDB just prints the result class ‘““exit’.

-> (gdb)
<- -gdb-exit
<- Texit

A Bad Command

Here’s what happens if you pass a non-existent command:

-> -rubbish
<- “error,msg="Undefined MI command: rubbish"
<- (gdb)

24.8 ¢pB/MI Command Description Format

The remaining sections describe blocks of commands. Each block of commands is laid out
in a fashion similar to this section.

Motivation

The motivation for this collection of commands.

Introduction

A brief introduction to this collection of commands as a whole.

Commands
For each command in the block, the following is described:

Synopsis

-command args...

Result

GDB Command

The corresponding ¢pB CLI command(s), if any.

Example

Example(s) formatted for readability. Some of the described commands have not been
implemented yet and these are labeled N.A. (not available).

24.9 ¢pB/MI Breakpoint Commands

This section documents GDB/MI commands for manipulating breakpoints.

The -break-after Command

Synopsis
-break-after number count
The breakpoint number number is not in effect until it has been hit count times. To see
how this is reflected in the output of the ‘-break-list’ command, see the description of
the ‘-break-1ist’ command below.

236 Debugging with GDB

GDB Command

The corresponding GDB command is ‘ignore’.

Example
(gdb)
-break-insert main
“done ,bkpt={number="1",addr="0x000100d0" ,file="hello.c",
fullname="/home/foo/hello.c",line="5",times="0"}
(gdb)
-break-after 1 3
“done
(gdb)
-break-list
“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",times="0",ignore="3"}]}
(gdb)

The -break-condition Command

Synopsis

-break-condition number expr

Breakpoint number will stop the program only if the condition in expr is true. The con-
dition becomes part of the ‘~-break-1ist’ output (see the description of the ‘~break-1list’
command below).

GDB Command

The corresponding GDB command is ‘condition’.

Example
(gdb)
-break-condition 1 1
“done
(gdb)
-break-list
“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0" ,func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",cond="1",times="0",ignore="3"}]}
(gdb)

Chapter 24: The ¢pB/MI Interface 237

The -break-delete Command

Synopsis

-break-delete (breakpoint)+

Delete the breakpoint(s) whose number(s) are specified in the argument list. This is
obviously reflected in the breakpoint list.

GDB command

The corresponding GDB command is ‘delete’.

Example
(gdb)
-break-delete 1
“done
(gdb)
-break-list
“done,BreakpointTable={nr_rows="0",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number",colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[1}
(gdb)

The -break-disable Command

Synopsis

-break-disable (breakpoint)+

Disable the named breakpoint(s). The field ‘enabled’ in the break list is now set to ‘n’
for the named breakpoint(s).

GDB Command

The corresponding GDB command is ‘disable’.

Example
(gdb)
-break-disable 2
“done
(gdb)
-break-list
“done,BreakpointTable={nr_rows="1",nr_cols="6",
hdr=[{width="3",alignment="-1",col_name="number", colhdr="Num"},
{width="14",alignment="-1",col_name="type",colhdr="Type"},
{width="4",alignment="-1",col_name="disp",colhdr="Disp"},
{width="3",alignment="-1",col_name="enabled",colhdr="Enb"},
{width="10",alignment="-1",col_name="addr",colhdr="Address"},
{width="40",alignment="2",col_name="what",colhdr="What"}],
body=[bkpt={number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0" ,func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",times="0"}1}
(gdb)

238 Debugging with GDB

The -break-enable Command

Syn