
eCos User Guide

eCos User Guide
Copyright © 2001, 2002 by Red Hat, Inc.
Copyright © 2003 by eCosCentric Ltd.

Documentation licensing terms

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is

presently available at http://www.opencontent.org/openpub/).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright

holder.

Trademarks

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ are trademarks of Red Hat, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.

Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARM® is a registered trademark of Advanced RISC Machines, Ltd.

MIPS™ is a trademark of MIPS Technologies, Inc.

Toshiba® is a registered trademark of the Toshiba Corporation.

NEC® is a registered trademark if the NEC Corporation.

Cirrus Logic® is a registered trademark of Cirrus Logic, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.

Matsushita™ is a trademark of the Matsushita Electric Corporation.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation, Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

Table of Contents
I. Introduction ...xiii

1. Key Features...1
2. eCos Overview...3
3. eCos Licence Overview...5

Questions and answers...5
Previous License...6

4. Notation and Conventions..7
GDB and GCC Command Notation...7
Directory and File System Conventions...7
Version Conventions...7

5. Documentation Roadmap...9

II. Installing eCos...11

6. System Requirements...13
7. Installation on Linux..15
8. Installation on Windows...17
9. Target Setup..19

Connecting Via Serial Line..19
Connecting Via Ethernet...19
Using A Simulator Target...19
Using A Synthetic Target...20

III. Programming With eCos ..21

10. Programming With eCos..23
The Development Process..23

eCos Configuration...23
Integrity check of the eCos configuration...23
Application Development - Target Neutral Part...23
Application Development - Target Specific Part...24

11. Configuring and Building eCos from Source...25
eCos Start-up Configurations...25
Configuration Tool on Windows and Linux Quick Start..26
Ecosconfig on Windows and Linux Quick Start...30

Selecting a Target..31
12. Running an eCos Test Case..33

Using the Configuration Tool...33
Using the command line...34
Testing Filters...36

13. Building and Running Sample Applications..37
eCos Hello World...37

eCos hello world program listing..37
A Sample Program with Two Threads...38

eCos two-threaded program listing...38
14. More Features — Clocks and Alarm Handlers..41

A Sample Program with Alarms...41

iii

IV. The eCos Configuration Tool..45

15. Getting Started...47
Introduction..47
Invoking the eCos Configuration Tool..47

On Linux...47
On Windows..47

The Component Repository..48
eCos Configuration Tool Documents...49

Configuration Save File..49
Save the currently active document...49
Open an existing document...50
Open a document you have used recently...50
Create a new blank document based on the Component Registry....................................51
Save to a different file name..51

Build and Install Trees..51
16. Getting Help...53

Context-sensitive Help for Dialogs..53
Context-sensitive Help for Other Windows..53
Context-sensitive Help for Configuration Items...53
Methods of Displaying HTML Help..53

17. Customization..55
Window Placement...55
Settings...55

Settings: Display tab...55
Labels..55
Integer Items..56
Font..56
Miscellaneous..56

Settings: Viewers tab...56
View header files...56
View documentation..57

18. Screen Layout..59
Configuration Window...59

Disabled items...60
Right-Clicking...60

Conflicts Window..60
Output Window...61
Properties Window..61
Short Description Window..62

19. Updating the Configuration..63
Adding and Removing Packages..63
Platform Selection..63
Using Templates...65

Resolving conflicts..65
Automatic resolution...66

20. Searching..69
21. Building..71

Selecting Build Tools..71

iv

Selecting User Tools...72
22. Execution..73

Properties..73
Download Timeout..73
Run time Timeout...74
Connection..74
Executables Tab..74
Output Tab..75
Summary Tab..76

23. Creating a Shell..77
Keyboard Accelerators...77

V. eCos Programming Concepts and Techniques...79

24. CDL Concepts..81
About this chapter...81

Background...81
Configurations...81

Component Repository...81
Component Definition Language...81
Packages...81
Configuration Items..82

Expressions...82
Properties..82
Inactive Items..83

Conflicts..83
Templates..84

25. The Component Repository and Working Directories...85
Component Repository...85

Purpose..86
How is it modified?...86
When is it edited manually?..86
User Applications..86
Examples of files in this hierarchy:...86

Build Tree...87
Purpose..87
How is it modified?...87
User applications...87
Examples of files in this hierarchy..87

Install Tree..87
Purpose..87
How is it modified?...87
When is it edited manually?..88
User applications...88
Examples of files in this hierarchy..88

Application Build Tree...88
26. Compiler and Linker Options...89

Compiling a C Application...89
Compiling a C++ Application..89

v

27. Debugging Techniques...91
Tracing..91
Kernel Instrumentation...92

VI. Configuration and the Package Repository..97

28. Manual Configuration..99
Directory Tree Structure...99
Creating the Build Tree..99

ecosconfig qualifiers..100
ecosconfig commands...101

Conflicts and constraints...102
Building the System...104
Packages...105
Coarse-grained Configuration..106
Fine-grained Configuration..106
Editing an eCos Savefile...107

Header...107
Toplevel Section..108
Conflicts Section...109
Data Section..109
Tcl Syntax...117

Editing the Sources...122
Modifying the Memory Layout..123

29. Managing the Package Repository...125
Package Installation..125

Using the Administration Tool..125
Using the command line...126

Package Structure...126

VII. Appendixes ...129

A. Target Setup...131
MN10300 stdeval1 Hardware Setup...131
MN10300 Architectural Simulator Setup...131
AM33 STB Hardware Setup..132

Use with GDB Stub ROM..132
Use with the JTAG debugger..132
Building the GDB stub ROM image...133

TX39 Hardware Setup..134
TX39 Architectural Simulator Setup..134
TX49 Hardware Setup..135

Preparing the GDB stubs..135
Building the GDB stub image with the eCos Configuration Tool...................................135
Building the GDB stub image with ecosconfig...135

Installing GDB stubs into FLASH..135
VR4300 Hardware Setup..136
VRC4375 Hardware Setup...137
Atlas/Malta Hardware Setup..137
PowerPC Cogent Hardware Setup..137

Installing the Stubs into ROM..137

vi

Preparing the Binaries...137
Building the ROM images with the eCos Configuration Tool...............................138
Building the ROM images with ecosconfig...138

Installing the Stubs into ROM or FLASH...138
PowerPC MBX860 Hardware Setup..138

Installing the Stubs into FLASH...139
Preparing the Binaries...139

Building the ROM images with the eCos Configuration Tool...............................139
Building the ROM images with ecosconfig...139

Installing the Stubs into ROM...139
Installing the Stubs into FLASH...140

Program FLASH..140
PowerPC Architectural Simulator Setup..140
SPARClite Hardware Setup..141

Ethernet Setup...141
BOOTP/DHCP service on Linux..141
BOOTP/DHCP boot process...142

Serial Setup...142
SPARClite Architectural Simulator Setup..142
ARM PID Hardware Setup...143

Installing the Stubs into FLASH...143
Preparing the Binaries...143
Building the ROM images with the eCos Configuration Tool..143
Building the ROM images with ecosconfig...144
Building the FLASH Tool with the eCos Configuration Tool...144
Building the FLASH Tool with ecosconfig...144
Prepare the Board for FLASH Programming..145
Program the FLASH..145
Programming the FLASH for big-endian mode..147

Installing the Stubs into ROM..148
ARM AEB-1 Hardware Setup..148

Overview...148
Talking to the Board..148
Downloading the Stubs via the Rom Menu..149
Activating the GDB Stubs...149
Building the GDB Stub FLASH ROM Images...150
Building the GDB Stubs with the eCos Configuration Tool...150
Building the GDB Stub ROMs with ecosconfig...150

ARM Cogent CMA230 Hardware Setup...151
Building the GDB Stub FLASH ROM images...151
Building the GDB Stubs with the eCos Configuration Tool...151
Building the GDB Stub ROMs with ecosconfig...151

Cirrus Logic ARM EP7211 Development Board Hardware Setup..152
Building programs for programming into FLASH...152
Building the GDB Stub FLASH ROM images...153
Building the ROM images with the eCos Configuration Tool..153
Building the ROM images with ecosconfig..153
Loading the ROM Image into On-board Flash...153

vii

Building the Flash Downloader on Linux...154
Developing eCos Programs with the ARM Multi-ICE...155

Cirrus Logic ARM EP7212 Development Board Hardware Setup..156
Cirrus Logic ARM EP7312 Development Board Hardware Setup..156

90MHz Operation...156
Cirrus Logic ARM EP7209 Development Board Hardware Setup..157
Cirrus Logic ARM CL-PS7111 Evaluation Board Hardware Setup..157
StrongARM EBSA-285 Hardware Setup...158

Building the GDB Stub FLASH ROM images...158
Building the GDB Stubs with the eCos Configuration Tool...158
Building the GDB Stub ROMs with ecosconfig...158
Loading the ROM Image into On-board Flash...159
Running your eCos Program Using GDB and the StubROM...160

Compaq iPAQ PocketPC Hardware Setup...161
SH3/EDK7708 Hardware Setup...161

Installing the Stubs into FLASH...161
Preparing the Binaries...161

Building the ROM images with the eCos Configuration Tool...............................161
Building the ROM images with ecosconfig...161

Installing the Stubs into ROM or FLASH...162
SH3/CQ7708 Hardware Setup...162

Preparing the board...162
eCos GDB Stubs...162

Preparing the GDB stubs...163
Building the GDB stub image with the eCos Configuration Tool...................................163
Building the GDB stub image with ecosconfig...163

Programming the stubs in EPROM/FLASH...163
SH3/HS7729PCI Hardware Setup..164
SH3/SE77x9 Hardware Setup..164
SH4/CQ7750 Hardware Setup...164

Preparing the board...164
eCos GDB Stubs...165

Preparing the GDB stubs...165
Building the GDB stub image with the eCos Configuration Tool...................................165
Building the GDB stub image with ecosconfig...165

Programming the stubs in EPROM/FLASH...165
SH4/SE7751 Hardware Setup..166
NEC CEB-V850/SA1 Hardware Setup..166

Installing the Stubs into ROM..167
Preparing the Binaries...167

Building the ROM images with the eCos Configuration Tool...............................167
Building the ROM images with ecosconfig...167

Installing the Stubs into ROM or FLASH...168
Debugging with the NEC V850 I.C.E..168

INITIAL SETUP...168
BUILD PROCEDURES..169
V850ICE.EXE EXECUTION...169
V850-ELF-GDB EXECUTION..169

viii

MDI INTERFACE VS. GDB INTERFACE...170
eCos THREAD DEBUGGING...171

NEC CEB-V850/SB1 Hardware Setup..172
i386 PC Hardware Setup..172

RedBoot Support...172
Floppy Disk Support...172
GRUB Bootloader Support...173
Debugging FLOPPY and GRUB Applications...174

i386/Linux Synthetic Target Setup...174
Tools..174

B. Real-time characterization...177
Board: ARM AEB-1 Revision B Evaluation Board...177
Board: Atmel AT91/EB40..179
Board: Intel StrongARM EBSA-285 Evaluation Board...182
Board: Cirrus Logic EDB7111-2 Development Board..184

CPU : Cirrus Logic EP7211 73MHz..184
CPU : Cirrus Logic EP7212 73MHz..186

Board: ARM PID Evaluation Board...189
CPU : ARM 7TDMI 20 MHz...189
CPU : ARM 920T 20 MHz...191

Board: Intel IQ80310 XScale Development Kit...194
Board: Toshiba JMR3904 Evaluation Board..196
Board: Toshiba REF 4955..198
Board: Matsushita STDEVAL1 Board...201
Board: Fujitsu SPARClite Evaluation Board..203
Board: Cogent CMA MPC860 (PowerPC) Evaluation..205
Board: NEC VR4373..207
Board: Intel SA1110 (Assabet)..209
Board: Intel SA1100 (Brutus)..212
Board: Motorola MBX...214
Board: Hitachi EDK7708...217
Board: CQ CqREEK SH3 Evaluation Board (cq7708)..219
Board: Hitachi HS7729PCI HS7729 SH3..221
Board: Hitachi Solution Engine 7751 SH4 (se7751)...224
Board: PC...226
Board: NEC V850 Cosmo Evaluation Board...228
Board: NEC V850 Cosmo Evaluation Board...231

C. GNU General Public License..235

ix

x

List of Tables
11-1. Configuration for various download methods..25
18-1. Cell types..59
23-1. Keyboard accelerators..77
24-1. CDL Expressions..82
24-2. Configuration properties...82

List of Figures
11-1. Configuration Tool..26
11-2. Template selection..26
11-3. Configuring for the target...27
11-4. Selecting the Build Library menu item..27
11-5. Save file dialog...28
11-6. Build tools dialog...28
11-7. User tools dialog...29
11-8. Selecting the Build Tests menu item..29
12-1. Run tests...33
12-2. Properties dialog box..33
13-1. Two threads with simple print statements after random delays...40
15-1. Configuration Tool..48
15-2. Repository relocation dialog box...49
15-3. Save As dialog box...49
15-4. Open dialog box...50
16-1. HTML Help viewer..54
17-1. Settings dialog, Display tab..55
17-2. Settings dialog, Viewers tab...56
19-1. Packages dialog box...63
19-2. Platforms dialog box..64
19-3. Platform Modify dialog box...64
19-4. Templates dialog box..65
19-5. Options...66
19-6. Resolve conflicts window...67
20-1. Find dialog box...69
21-1. Build tools..72
21-2. User tools..72
22-1. Properties dialog box..73
22-2. Run tests...74
22-3. Add files from folder..75
25-1. Component repository..85

List of Examples
11-1. Getting help from ecosconfig...30

xi

11-2. ecosconfig output — list of available packages, targets and templates..31
14-1. A sample program that creates an alarm..41
27-1. Hello world with tracing...91
27-2. Using instrument buffers..94
27-3. Instrument buffer output...95
28-1. eCos linker script fragment..123

xii

I. Introduction

Chapter 1. Key Features

• eCos is distributed under the GPL license with an exception which permits proprietary application code to be
linked with eCos without itself being forced to be released under the GPL. It is also royalty and buyout free.

• As an Open Source project, eCos is under constant improvement, with an active developer community, based
around the eCos web site at http://sources.redhat.com/ecos/.

• Powerful GUI-based configuration system allowing both large and fine grained configuration of eCos. This
allows the functionality of eCos to be customized to the exact requirements of the application.

• Full-featured, flexible, configurable, real time embedded kernel. The kernel provides thread scheduling, syn-
chronization, timer, and communication primitives. It handles hardware resources such as interrupts, exceptions,
memory and caches.

• The Hardware Abstraction Layer (HAL) hides the specific features of each supported CPU and platform, so that
the kernel and other run-time components can be implemented in a portable fashion.

• Support forµITRON and POSIX Application Programmer Interfaces (APIs). It also includes a fully featured,
thread-safe ISO standard C library and math library.

• Support for a wide variety of devices including many serial devices, ethernet controllers and FLASH memories.
There is also support for PCMCIA, USB and PCI interconnects.

• A fully featured TCP/IP stack implementing IP, IPv6, ICMP, UDP and TCP over ethernet. Support for SNMP,
HTTP, TFTP and FTP are also present.

• The RedBoot ROM monitor is an application that uses the eCos HAL for portability. It provides serial and
ethernet based booting and debug services during development.

• Many components include test programs that validate the components behaviour. These can be used both to
check that hardware is functioning correctly, and as examples of eCos usage.

• eCos documentation included this User Guide, the Reference Manual and the Components Writer’s Guide. These
are being continually updated as the system develops.

1

Chapter 1. Key Features

2

Chapter 2. eCos Overview
eCos is an open source, configurable, portable, and royalty-free embedded real-time operating system. The follow-
ing text expands on these core aspects that define eCos.

eCos is provided as an open source runtime system supported by the GNU open source development tools. Devel-
opers have full and unfettered access to all aspects of the runtime system. No parts of it are proprietary or hidden,
and you are at liberty to examine, add to, and modify the code as you deem necessary. These rights are granted
to you and protected by the GNU Public License (GPL). An exception clause has been added to the eCos license
which limits the circumstances in which the license applies to other code when used in conjunction with eCos. This
exception grants you the right to freely develop and distribute applications based on eCos. You are not expected or
required to make your embedded applications or any additional components that you develop freely available so
long as they are not derived from eCos code. We of course welcome all contributions back to eCos such as board
ports, device drivers and other components, as this helps the growth and development of eCos, and is of benefit to
the entire eCos community. SeeChapter 3for more details.

One of the key technological innovations in eCos is the configuration system. The configuration system allows the
application writer to impose their requirements on the run-time components, both in terms of their functionality
and implementation, whereas traditionally the operating system has constrained the application’s own implementa-
tion. Essentially, this enables eCos developers to create their own application-specific operating system and makes
eCos suitable for a wide range of embedded uses. Configuration also ensures that the resource footprint of eCos
is minimized as all unnecessary functionality and features are removed. The configuration system also presents
eCos as a component architecture. This provides a standardized mechanism for component suppliers to extend the
functionality of eCos and allows applications to be built from a wide set of optional configurable run-time com-
ponents. Components can be provided from a variety of sources including: the standard eCos release; commercial
third party developers or open source contributors.

The royalty-free nature of eCos means that you can develop and deploy your application using the standard eCos
release without incurring any royalty charges. In addition, there are no up-front license charges for the eCos runtime
source code and associated tools. We provide, without charge, everything necessary for basic embedded applica-
tions development.

eCos is designed to be portable to a wide range of target architectures and target platforms including 16, 32, and
64 bit architectures, MPUs, MCUs and DSPs. The eCos kernel, libraries and runtime components are layered on
the Hardware Abstraction Layer (HAL), and thus will run on any target once the HAL and relevant device drivers
have been ported to the target’s processor architecture and board. Currently eCos supports a large range of different
target architectures:

• ARM, Intel StrongARM and XScale

• Fujitsu FR-V

• Hitachi SH2/3/4

• Hitachi H8/300H

• Intel x86

• MIPS

• Matsushita AM3x

• Motorola PowerPC

3

Chapter 2. eCos Overview

• Motorola 68k/Coldfire

• NEC V850

• Sun SPARC

including many of the popular variants of these architectures and evaluation boards.

eCos has been designed to support applications with real-time requirements, providing features such as full pre-
emptability, minimal interrupt latencies, and all the necessary synchronization primitives, scheduling policies, and
interrupt handling mechanisms needed for these type of applications. eCos also provides all the functionality re-
quired for general embedded application support including device drivers, memory management, exception han-
dling, C, math libraries, etc. In addition to runtime support, the eCos system includes all the tools necessary to
develop embedded applications, including eCos software configuration and build tools, and GNU based compilers,
assemblers, linkers, debuggers, and simulators.

To get the most out of eCos you should visit the eCos open source developers site: http://sources.redhat.com/ecos/.

The site is dedicated to the eCos developer community and contains a rich set of resources including news, FAQ,
online documentation, installation guide, discussion and announcement mailing lists, and runtime and development
tools downloads. The site also supports anonymous CVS and WEBCVS access to provide direct access to the latest
eCos source base.

eCos is released as open source software because we believe that this is the most effective software development
model, and that it provides the greatest benefit to the embedded developer community as a whole. As part of this
endeavor, we seek the input and participation of eCos developers in its continuing evolution. Participation can take
many forms including:

• providing us with feedback on how eCos might be made more useful to you - by taking part in the ongoing
mailing list discussions and by submitting problem reports covering bugs, documentation issues, and missing
features

• contributing bug fixes and enhancement patches

• contributing new code including device drivers, board ports, libraries, and other runtime components

Our long term aim is to make eCos a rich and ubiquitous standard infrastructure for the development of deeply
embedded applications. This will be achieved with the assistance of the eCos developer community cooperating
to improve eCos for all. We would like to take this opportunity to extend our thanks to the many eCos developers
who have already contributed feedback, ideas, patches, and code that have augmented and improved this release.

The eCos Maintainers

4

Chapter 3. eCos Licence Overview
As of May 2002, eCos is released under a modified version of the well known GNU General Public License
(GPL) (http://www.gnu.org/copyleft/gpl.html), now making it an official GPL-compatible Free Software License
(http://www.gnu.org/philosophy/license-list.html). An exception clause has been added to the eCos license which
limits the circumstances in which the license applies to other code when used in conjunction with eCos. The
exception clause is as follows:

As a special exception, if other files instantiate templates or use macros
or inline functions from this file, or you compile this file and link it
with other works to produce a work based on this file, this file does not
by itself cause the resulting work to be covered by the GNU General Public
License. However the source code for this file must still be made
available in accordance with section (3) of the GNU General Public
License.

This exception does not invalidate any other reasons why a work based on
this file might be covered by the GNU General Public License.

The goal of the license is to serve the eCos user community as a whole. It allows all eCos users to develop products
without paying anybody anything, no matter how many developers are working on the product or how many units
will be shipped. The license also guarantees that the eCos source code will always be freely available. This applies
not only to the core eCos code itself but also to any changes that anybody makes to the core. In particular, it should
prevent any company or individual contributing code to the system and then later claiming that all eCos users are
now guilty of copyright or patent infringements and have to pay royalties. It should also prevent any company from
making some small improvements, calling the result a completely new system, and releasing this under a new and
less generous license.

The license doesnot require users to release the source code of anyapplicationsthat are developed with eCos.
However, if anybody makes any changes to code covered by the eCos license, or writes new files derived in any
way from eCos code, then we believe that the entire user community should have the opportunity to benefit from
this. The license stipulates that these changes must be made available in source code form to all recipients of
binaries based on the modified code, either by including the sources along with the binaries you deliver (or with
any device containing such binaries) or with a written offer to supply the source code to the general public for three
years. It is perhaps most practical for eCos developers to make the source code available online and inform those
who are receiving binaries containing eCos code, and probably also the eCos maintainers, about the location of the
code. See the full text of the GPL (http://www.gnu.org/copyleft/gpl.html) for the most authoritative definition of
the obligations.

Although it is not strictly necessary to contribute the modified code back to the eCos open source project, we are
always pleased to receive code contributions and hope that developers will also be keen to give back in return
for what they received from the eCos project completely free of charge. The eCos maintainers are responsible for
deciding whether such contributions should be applied to the public repository. In addition, a copyright assignment
(http://sources.redhat.com/ecos/assign.html) is required for any significant changes to the core eCos packages.

The result is a royalty-free system with minimal obligations on the part of application developers. This has resulted
in the rapid uptake of eCos. At the same time, eCos is fully open source with all the benefits that implies in terms
of quality and innovation. We believe that this is a winning combination.

5

Chapter 3. eCos Licence Overview

Questions and answers
The following queries provide some clarification as to the implications of the eCos license. They do not consititute
part of the legal meaning of the license.

Q. What is the effect of the eCos license?

A. In the simplest terms, when you distribute anything containing eCos code, you must make the source code to
eCos available under the terms of the GPL.

Q. What if I make changes to eCos, or write new code based on eCos code?

A. Then you must make those changes available as well.

Q. Do I have to distribute the source code to my application? Isn’t the GPL "viral"?

A. You do not have to distribute any code under the terms of the GPL other than eCos code or code derived from
eCos. For example, if you write a HAL port based on copying an existing eCos HAL in any way, you must make
the source code available with the binary. However you would not need to make available any other code, such as
the code of a wholly separate application linked with eCos.

Q. I would rather stick with the RHEPL code, but I updated my anonymous CVS checkout.

A. You can check out the final version of anonymous CVS before the license change using the CVS taglast-

rhepl . See the anonymous CVS access page (http://sources.redhat.com/ecos/anoncvs.html) for details.

Previous License
Prior to May 2002, eCos was released under the Red Hat eCos Public License (RHEPL)
(http://sources.redhat.com/ecos/old-license.html). The RHEPL required any modifications to eCos code to be
made available under preferential terms to Red Hat and was therefore incompatible with code licensed under the
GPL. The use of eCos source code which was licensed under the RHEPL is not affected by the switch to the
modified GPL for later revisions.

6

Chapter 4. Notation and Conventions
Since there are many supported target architectures, notation conventions are used in this manual to avoid repeating
instructions that are very similar.

GDB and GCC Command Notation
Cross-development commands likegcc and gdb will be shown with aTARGET- prefix. You need to replace
TARGET-with the correct prefix before using the command. Just usinggccor gdb will use the tools for the host,
which is not (usually) what you want.

For example usearm-elf-gccandarm-elf-gdb for ARM, Thumb, and StrongARM targets. Usexscale-elf-gccand
xscale-elf-gdbfor Intel Xscale targets. Usei386-elf-gccand i386-elf-gdb for IA32 targets. And so on, the exact
prefix to use is shown in the documentation for each target.

Note that some versions of the GCC cross compiler generate executable files with the.exe suffix on Windows,
but not on Linux. The suffix.exe will be omitted from executable file names, so you will seehello instead of
hello.exe .

Directory and File System Conventions
The default directory for installing eCos on Windows (usuallyC:/Program Files/eCos) is different from that
on Linux (usually/opt/ecos). Since many command line examples in the tutorials use these paths, this default
(base) directory will be cited asBASE_DIR.

Windows and Linux have a similar file system syntax, but the MS-DOS command interpreter on Windows uses
the backslash character (\) as a path separator, while Linux and POSIX shells (including the Cygwin bash shell for
windows) use the forward slash (/).

This document will use the POSIX shell convention of forward slashes throughout.

Version Conventions
This manual does not refer explicitly to any particular version of eCos. However, version numbers form part of
many file path names. In all of these places the version number will be shown like this:<version> .

If you have used anonymous CVS to check eCos out of the CVS repository, the version number will always be
current , since that is the name of the directory in the repository. When a stable release is made this directory
name is changed, in the release, to the number of the release, for examplev2_0 or v2_1 .

7

Chapter 4. Notation and Conventions

8

Chapter 5. Documentation Roadmap
The eCos documentation is divided into a three main parts:

User Guide

This document. It includes the following sections:

Installing eCos

This section describes how to install the eCos software, how to set up your hardware and how to test that
it is all working.

Programming Under eCos

This section describes how to write programs that run under eCos by running through some examples.

The eCos Configuration Tool

This section describes the eCos graphical configuration tool and how to use it to change how eCos
behaves.

eCos Programming Concepts and Techniques

An explanation of the eCos programming cycle, and a description of some debugging facilities that eCos
offers.

Configuration and the Package Repository

Information on how to configure eCos manually, including a reference on theecosconfigcommand,
memory layouts, and information on how to manage a package repository using the eCos Package Ad-
ministration Tool.

Reference Guide

The Reference Guide provides detailed documentation on various aspects of eCos. This document is being
constantly updated, so the following list just mentions the more important sections, take a look at the guide
itself for the full story.

The eCos Kernel

In-depth description of eCos"s native C kernel API Important considerations are given for programming
the eCos kernel. The semantics for each kernel function are described, including how they are affected
by configuration.

POSIX andµITRON APIs

A description of the POSIX andµITRON APIs and how they are supported under eCos.

The eCos Hardware Abstraction Layer (HAL)

A description of the structure and functionality of the eCos HAL. This section also includes a porting
guide to help moving eCos to different platforms.

9

Chapter 5. Documentation Roadmap

Device Drivers

A description of the philosophy behind eCos device drivers, as well as a presentation of the C language
APIs for using the current device drivers.

Device driver support includes serial, ethernet and FLASH devices, and support for PCI, PCMCIA and
USB interconnects.

RedBoot User’s Guide

This describes RedBoot, which provides a complete bootstrap environment for a range of embedded op-
erating systems, such as embedded Linux and eCos, and includes facilities such as network downloading
and debugging. It also provides a simple flash file system for boot images.

TCP/IP Stack Support

This describes the Common Networking for eCos package, which provides support for a complete
TCP/IP networking stack. The design allows for the actual stack to be modular and at the current time
two different implementations, one based on OpenBSD from 2000 and a new version based on FreeBSD,
are available.

Other components related to networking, including support for SNMP, DNS, HTTP and FTP, are also
described.

Component Writer’s Guide

The Component Writer’s Guide is intended for developers who need to add or modify parts of eCos itself. It
describes the following things:

Overview

An explanation of the configuration technology used in eCos, why it is done this way, how it works and
the terminology used.

Package Organization

A description of the eCos package repository, how it is organized and how packages themselves are
organized.

The CDL Language

A description of the CDL language and how it is used to control the configuration of eCos components.
The document also contains a complete specification of the language.

The Build Process

A description of what happens once a configuration has been created and must be built into a set of
executables.

10

II. Installing eCos

Chapter 6. System Requirements

• Standard Intel architecture PC running Linux (tested on recent Red Hat, SuSE and Debian distributions), Mi-
crosoft Windows NT (no earlier than 4.0 + SP6a), Windows 2000 and Windows XP. Linux distributions from
other vendors may also work, but are currently untested.

• Enough disk space for the installed distribution. The eCos installation process will detail the various components
of eCos and the compiler toolkit that can be installed, and their disk space requirements.

• 64MB of RAM and a 350MHz or faster Pentium processor.

If you are downloading the eCos release distribution from sources.redhat.com/ecos
(http://sources.redhat.com/ecos), you will also need space to store that image and to compile the toolchain and
eCos from source.

13

Chapter 6. System Requirements

14

Chapter 7. Installation on Linux
Full instructions for the downloading and installation of eCos (http://sources.redhat.com/ecos/getstart.html) on
Linux hosts are provided on the eCos website.

15

Chapter 7. Installation on Linux

16

Chapter 8. Installation on Windows
Full instructions for the downloading and installation of eCos (http://sources.redhat.com/ecos/getstart.html) on
Windows hosts are provided on the eCos website.

17

Chapter 8. Installation on Windows

18

Chapter 9. Target Setup
While eCos supports a variety of targets, communication with all the targets happens in one of four ways. These
are described in general below. Any details or variations from these descriptions will be found in the eCos docu-
mentation for a specific target, in the appendix.

Connecting Via Serial Line
Most targets will have RedBoot or GDB Stubs installed. These normally waits for GDB to connect at 38400 baud,
using 8 data bit, no parity bit and 1 stop-bit and no hardware flow control. Check the documentation for your target
to ensure it uses this speed. If not, adjust the following instructions accordingly.

The following instructions depend on your having selected the appropriate serial port on the host. That is, the serial
port which connects to the target’s (primary) serial port. On Linux this could be/dev/ttyS0 , while the same port
on Windows would be named COM1. Substitute the proper serial port name in the below.

Connect to the target by issuing the following commands in GDB console mode:

(gdb) set remotebaud 38400
(gdb) target remote /dev/ttyS0

In Insight, connect by opening theFile->Target Settingswindow and enter:

Target: Remote/Serial
Baud Rate: 38400
Port: /dev/ttyS0

Set other options according to preference, close the window and selectRun->Connect to target.

Connecting Via Ethernet
Some targets allow GDB to connect via Ethernet - if so, it will be mentioned in the document describing the
target. Substitute the target’s assigned IP address or hostname for<hostname> in the following. Depending on
how RedBoot has been configured, it will either have this address allocated statically, or will acquire it via BOOTP.
In both cases RedBoot will report the IP address it is listening on in its startup message printed on the serial port.
The<port> is the TCP port which RedBoot is listening on, usually 9000. It is also listed in the target document.

Connect to the target by issuing the following command in GDB console mode:

(gdb) target remote <hostname>: <port>

In Insight, connect by opening theFile->Target Settingswindow and enter:

Target: Remote/TCP
Hostname: <hostname>
Port: <port>

Set other options according to preference, close the window and selectRun->Connect to target.

19

Chapter 9. Target Setup

Using A Simulator Target
GDB connects to all simulator targets using the same basic command, although each simulator may require addi-
tional options. These are listed in the document describing the target, and should be used when connecting.

Connect to the target by issuing the following command in GDB console mode:

(gdb) target sim [target specific options]

In Insight, connect by opening theFile->Target Settingswindow and enter:

Target: Simulator
Options: [target specific options]

Set other options according to preference, close the window and selectRun->Connect to target.

Using A Synthetic Target
Synthetic targets are special in that the built tests and applications actually run as native applications on the host.
This means that there is no target to connect to. The test or application can be run directly from the GDB console
using:

(gdb) run

or from Insight by pressing theRun icon. There is therefore no need to connect to the target or download the
application, so you should ignore GDB “target” and “load” commands in any instructions found in other places in
the documentation.

20

III. Programming With eCos

Chapter 10. Programming With eCos
The following chapters of this manual comprise a simple tutorial for configuring and building eCos, building and
running eCos tests, and finally building three stand-alone example programs which use the eCos API to perform
some simple tasks.

You will need a properly installed eCos system, with the correct versions of the GNU toolchain. On Windows you
will be using the bash command line interpreter that comes with Cygwin, with the environment variables set as
described in the toolchain documentation.

The Development Process
Most development projects using eCos would contain some (or most) of the following:

eCos Configuration

eCos is configured to provide the desired API (the inclusion of libc, uitron, and the disabling of certain undesired
funtions, etc.), and semantics (selecting scheduler, mutex behavior, etc.). SeeChapter 11.

It would normally make sense to enable eCos assertion checking at this time as well, to catch as many programming
errors during the development phase as possible.

Note that it should not be necessary to spend much time on eCos configuration initially. It may be important to
perform fine tuning to reduce the memory footprint and to improve performance later when the product reaches a
testable state.

Integrity check of the eCos configuration

While we strive to thoroughly test eCos, the vast number of configuration permutations mean that the particular
configuration parameters used for your project may not have been tested. Therefore, we advise running the eCos
tests after the project’s eCos configuration has been determined. SeeChapter 12.

Obviously, this should be repeated if the configuration changes later on in the development process.

Application Development - Target Neutral Part

While your project is probably targeting a specific architecture and platform, possibly custom hardware, it may be
possible to perform part of the application development using simulated or synthetic targets.

There are three good reasons for doing this:

• It may be possible by this means to perform application development in parallel with the design/implementation
of the target hardware, thus providing more time for developing and testing functionality, and reducing time-to-
market.

• The build-run-debug-cycle may be faster when the application does not have to be downloaded to a target via a
serial interface. Debugging is also likely to be more responsive when you do not have to to communicate with
the remote GDB stubs in RedBoot via serial. It also removes the need for manually or automatically resetting
the target hardware.

23

Chapter 10. Programming With eCos

• New hardware can often be buggy. Comparing the behaviour of the program on the hardware and in the simulator
or synthetic target may allow you to identify where the problems lie.

This approach is possible because all targets (including simulators and synthetic ones) provide the same basic API:
that is, kernel, libc, libm, uitron, infra, and to some extent, HAL and IO.

Synthetic targets are especially suitable as they allow you to construct simulations of elaborate devices by interac-
tion with the host system, where an IO device API can hide the details from the application. When switching to
hardware later in the development cycle, the IO driver is properly implemented.

Simulators can also do this, but it all depends on the design and capabilities of the simulator you use. Some, like
SID (http://sources.redhat.com/sid) or Bochs (http://bochs.sourceforge.net/) provide complete hardware emulation,
while others just support enough of the instruction set to run compiled code.

Therefore, select a simulator or synthetic target and use it for as long as possible for application development. That
is, configure for the selected target, build eCos, build the application and link with eCos, run and debug. Repeat the
latter two steps until you are happy with it.

Obviously, at some time you will have to switch to the intended target hardware, for example when adding target
specific feature support, for memory footprint/performance characterization, and for final tuning of eCos and the
application.

Application Development - Target Specific Part

Repeat the build-run-debug-cycle while performing final tuning and debugging of application. Remember to disable
eCos assertion checking if you are testing any performance-related aspects, it can make a big difference.

It may be useful to switch between this and the previous step repeatedly through the development process; use
the simulator/synthetic target for actual development, and use the target hardware to continually check memory
footprint and performance. There should be little cost in switching between the two targets when using two separate
build trees.

24

Chapter 11. Configuring and Building eCos from
Source

This chapter documents the configuration of eCos. The process is the same for any of the supported targets: you
may select a hardware target (if you have a board available), any one of the simulators, or a synthetic target (if your
host platform has synthetic target support).

eCos Start-up Configurations
There are various ways to download an executable image to a target board, and these involve different ways of
preparing the executable image. In the eCos Hardware Abstraction Layer (HAL package) there are configuration
options to support the different download methods.Table 11-1summarizes the ways in which an eCos image can
be prepared for different types of download. This is not an exhaustive list, some targets define additional start-up
types of their own. Where a ROM Monitor is mentioned, this will usually be RedBoot, although on some older,
or low resource, targets you may need to use CygMon or the GDB stubs ROM, see the target documentation for
details.

Table 11-1. Configuration for various download methods

Download method HAL configuration

Burn hardware ROM ROM or ROMRAM start-up

Download to ROM emulator ROM or ROMRAM start-up

Download to board with ROM Monitor RAM start-up

Download to simulator without ROM Monitor ROM start-up

Download to simulator with ROM Monitor RAM start-up

Download to simulator ignoring devices SIM configuration

Run synthetic target RAM start-up

Caution
You cannot run an application configured for RAM start-up on the simulator directly: it will fail
during start-up. You can only download it to the simulator if you are already running RedBoot
in the simulator, as described in the toolchain documentation or you load through the SID
GDB debugging component. This is not the same as the simulated stub, since it does not
require a target program to be running to get GDB to talk to it. It can be done before letting
the simulator run or you use the ELF loader component to get a program into memory.

Note: Configuring eCos’ HAL package for simulation should rarely be needed for real development; binaries
built with such a kernel will not run on target boards at all, and the MN10300 and TX39 simulators can run
binaries built for stdeval1 and jmr3904 target boards. The main use for a “simulation” configuration is if you are
trying to work around problems with the device drivers or with the simulator. Also note that when using a TX39
system configured for simulator start-up you should then invoke the simulator with the --board=jmr3904pal

option instead of --board=jmr3904

25

Chapter 11. Configuring and Building eCos from Source

Note: If your chosen architecture does not have simulator support, then the combinations above that refer
to the simulator do not apply. Similarly, if your chosen platform does not have RedBoot ROM support, the
combinations listed above that use RedBoot do not apply.

The debugging environment for most developers will be either a hardware board or the simulator, in which case
they will be able to select a single HAL configuration.

Configuration Tool on Windows and Linux Quick Start
Note that the use of the Configuration Tool is described in detail inPart IV ineCos User Guide.

The Configuration Tool (seeFigure 11-1) has five main elements: theconfiguration window, theconflicts window,
theproperties window, theshort description window, and theoutput window.

Figure 11-1. Configuration Tool

Start by opening the templates window viaBuild->Templates. Select the desired target (seeFigure 11-2).

26

Chapter 11. Configuring and Building eCos from Source

Figure 11-2. Template selection

Make sure that the configuration is correct for the target in terms of endianness, CPU model, Startup type, etc. (see
Figure 11-3).

Figure 11-3. Configuring for the target

Next, select theBuild->Library menu item to start building eCos (seeFigure 11-4). The application will configure
the sources, prepare a build tree, and build thelibtarget.a library, which contains the eCos kernel and other
packages.

27

Chapter 11. Configuring and Building eCos from Source

Figure 11-4. Selecting the Build Library menu item

TheSave Asdialog box will appear, asking you to specify a directory in which to place your save file. You can use
the default, but it is a good idea to make a subdirectory, calledecos-work for example.

Figure 11-5. Save file dialog

The first time you build an eCos library for a specific architecture, the Configuration Tool may prompt you for
the location of the appropriate build tools (includingmake andTARGET-gcc) using aBuild Toolsdialog box (as
shown inFigure 11-6). You can select a location from the drop down list, browse to the directory using theBrowse
button, or type in the location of the build tools manually.

28

Chapter 11. Configuring and Building eCos from Source

Figure 11-6. Build tools dialog

The Configuration Tool may also prompt you for the location of the user tools (such ascat and ls) using aUser
Toolsdialog box (as shown inFigure 11-7). As with theBuild Toolsdialog, you can select a location from the drop
down list, browse to the directory using theBrowsebutton, or type in the location of the user tools manually. Note
that on Linux, this will often be unnecessary as the tools will already be on your PATH.

Figure 11-7. User tools dialog

When the tool locations have been entered, the Configuration Tool will configure the sources, prepare a build tree,
and build thelibtarget.a library, which contains the eCos kernel and other packages.

The output from the configuration process and the building oflibtarget.a will be shown in the output window.

Once the build process has finished you will have a kernel with other packages inlibtarget.a . You should now
build the eCos tests for your particular configuration.

You can do this by selectingBuild -> Tests. Notice that you could have selectedTestsinstead ofLibrary in the earlier
step and it would have builtboth the library and the tests, but this would increase the build time substantially, and
if you do not need to build the tests it is unnecessary.

29

Chapter 11. Configuring and Building eCos from Source

Figure 11-8. Selecting the Build Tests menu item

Chapter 12will guide you through running one of the test cases you just built on the selected target, using GDB.

Ecosconfig on Windows and Linux Quick Start
As an alternative to using the graphical Configuration Tool, it is still possible to configure and build a kernel by
editing a configuration file manually and using theecosconfigcommand.

Manual configuration and theecosconfigcommand are described in detail inChapter 28.

To use theecosconfigcommand you need to start a shell. In Windows you need to start a CygWinbashshell, not
a DOS command line.

The following instructions assume that thePATHandECOS_REPOSITORYenvironment variables have been setup
correctly as described inChapter 7. They also assume Linux usage but equally well apply to Windows running
Cygwin.

Before invokingecosconfigyou need to choose a directory in which to work. For the purposes of this tutorial, the
default path will beBASE_DIR/ecos-work . Create this directory and change to it by typing:

$ mkdir BASE_DIR/ecos-work
$ cd BASE_DIR/ecos-work

To see what options can be used withecosconfig, type:

$ ecosconfig --help

The available packages, targets and templates may be listed as follows:

$ ecosconfig list

Here is sample output fromecosconfigshowing the usage message.

Example 11-1. Getting help from ecosconfig

$ ecosconfig --help
Usage: ecosconfig [qualifier ...] [command]

commands are:

30

Chapter 11. Configuring and Building eCos from Source

list : list repository contents
new TARGET [TEMPLATE [VERSION]] : create a configuration
target TARGET : change the target hardware
template TEMPLATE [VERSION] : change the template
add PACKAGE [PACKAGE ...] : add package(s)
remove PACKAGE [PACKAGE ...] : remove package(s)
version VERSION PACKAGE [PACKAGE ...] : change version of package(s)
export FILE : export minimal config info
import FILE : import additional config info
check : check the configuration
resolve : resolve conflicts
tree : create a build tree

qualifiers are:
--config=FILE : the configuration file
--prefix=DIRECTORY : the install prefix
--srcdir=DIRECTORY : the source repository
--no-resolve : disable conflict

resolution
--version : show version and copyright

$

Example 11-2. ecosconfig output — list of available packages, targets and templates

$ ecosconfig list
Package CYGPKG_CYGMON (CygMon support via eCos):
aliases: cygmon
versions: <version>
Package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1742 (Wallclock driver for Dallas 1742):
aliases: devices_wallclock_ds1742 device_wallclock_ds1742
versions: <version>
Package CYGPKG_DEVICES_WALLCLOCK_SH3 (Wallclock driver for SH3 RTC module):
aliases: devices_wallclock_sh3 device_wallclock_sh3
versions: <version>
Package CYGPKG_DEVICES_WATCHDOG_ARM_AEB (Watchdog driver for ARM/AEB board):
aliases: devices_watchdog_aeb device_watchdog_aeb
versions: <version>
Package CYGPKG_DEVICES_WATCHDOG_ARM_EBSA285 (Watchdog driver for ARM/EBSA285 board):
aliases: devices_watchdog_ebsa285 device_watchdog_ebsa285
versions: <version>
...

Selecting a Target

To configure for a listed target, type:

$ ecosconfig new <target>

For example, to configure for the ARM PID development board, type:

$ ecosconfig new pid

31

Chapter 11. Configuring and Building eCos from Source

You can then edit the generated file,ecos.ecc , setting the options as required for the target (endianess, CPU
model, Startup type, etc.). For detailed information about how to edit theecos.ecc file, see theCDL Writer’s
Guideandthe Section calledEditing an eCos Savefilein Chapter 28.

Create a build tree for the configured target by typing:

$ ecosconfig tree

If there are any problem with the configuration,ecosconfigwill tell you. The most likely cause of this is mistakes
when editing theecos.ecc file. You can check whether the configuration you have made is correct, without
building the tree with the following command:

$ ecosconfig check

If this reports any conflicts you can getecosconfigto try and resolve them itself by typing:

$ ecosconfig resolve

Seethe Section calledConflicts and constraintsin Chapter 28for more details.

You can now run the commandmake or make tests, after which you will be at the same point you would be after
running the Configuration Tool — you can start developing your own applications, following the steps inChapter
13.

The procedure shown above allows you to do very coarse-grained configuration of the eCos kernel: you can select
which packages to include in your kernel, and give target and start-up options. But you cannot select components
within a package, or set the very fine-grained options.

To select fine-grained configuration options you will need to edit the configuration fileecos.ecc in the current
directory and regenerate the build tree.

Caution
You should follow the manual configuration process described above very carefully, and you
should read the comments in each file to see when one option depends on other options or
packages being enabled or disabled. If you do not, you might end up with an inconsistently
configured kernel which could fail to build or might execute incorrectly.

32

Chapter 12. Running an eCos Test Case
In the Section calledConfiguration Tool on Windows and Linux Quick Startin Chapter 11or the Section called
Ecosconfig on Windows and Linux Quick Startin Chapter 11you created the eCos test cases as part of the build
process. Now it is time to try and run one.

Using the Configuration Tool
Test executables that have been linked using theBuild->Testsoperation against the current configuration can be
executed by selectingTools->Run Tests.

When a test run is invoked, a property sheet is displayed, seeFigure 12-1. Press theUncheck Allbutton and then
find and check just one test,bin_sem0 for example.

Figure 12-1. Run tests

Now press thePropertiesbutton to set up communications with the target. This will bring up a properties dialog
shown inFigure 12-2. If you have connected the target board via a serial cable, check theSerialradio button, and
select the serial port and baud rate for the board. If the target is connected via the network select theTCP/IPbutton
and enter the IP address that the board has been given, and the port number (usually 9000).

33

Chapter 12. Running an eCos Test Case

Figure 12-2. Properties dialog box

Click OK on this dialog and go back to theRun Testsdialog. Press theRunbutton and the selected test will be
downloaded and run. TheOutput tab will show you how this is progressing. If it seems to stop for a long time,
check that the target board is correctly connected, and that eCos has been correctly configured -- especially the
start-up type.

When the program runs you should see a couple of line similar to this appear:

PASS:<Binary Semaphore 0 OK >

EXIT: <done >

This indicates that the test has run successfully.

SeeChapter 22for further details.

Using the command line
Start a command shell (such as a Cygwin shell window in Windows) with the environment variables set as described
in the toolchain documentation. Change to the directory in which you set up your build tree, and invoke GDB on
the test program.

To run the bin_sem0 test (which will test the kernel for the correct creation and destruction of binary semaphores)
type:

$ TARGET-gdb -nw install/tests/kernel/ <version> /tests/bin_sem0

You should see output similar to the following in the command window:

GNU gdb THIS-GDB-VERSION
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are

34

Chapter 12. Running an eCos Test Case

welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=THIS-HOST --target=THIS-TARGET".
(gdb)

If you are trying to run a synthetic target test on Linux, skip the following connection and download steps. Other-
wise, connect to the target by typing:

(gdb) set remotebaud 38400
(gdb) target remote /dev/ttyS0

on Linux or

(gdb) set remotebaud 38400
(gdb) target remote com1

on Windows or

(gdb) target sim

to use a simulator in either host O/S.

Check the documentation for the target board for the actual baud rate to use when connecting to real targets.

You will see output similar to the following:

Remote debugging using /dev/ttyS1
0x0000d50c in ?? ()

at BASE_DIR/kernel/ <version> /src/common/kapi.cxx:345

Current language: auto; currently c++
(gdb)

Or if you are using the simulator:

Connected to the simulator.
(gdb)

Now download the program to the target with

(gdb) load

You should see output similar to the following on your screen:

Loading section .text, size 0x4b04 lma 0x108000
Loading section .rodata, size 0x738 lma 0x10cb08
Loading section .data, size 0x1c0 lma 0x10d240
Start address 0x108000, load size 21500
Transfer rate: 24571 bits/sec, 311 bytes/write.
(gdb)

You are now ready to run your program. If you type:

(gdb) continue

35

Chapter 12. Running an eCos Test Case

you will see output similar to the following:

Continuing.
PASS:<Binary Semaphore 0 OK >

EXIT: <done >

Note: If you are using a simulator or the synthetic target rather than real hardware, you must use the GDB
command “run” rather than “continue” to start your program.

You can terminate your GDB session withControl+C, otherwise it will sit in the “idle” thread and use up CPU
time. This is not a problem with real targets, but may have undesirable effects in simulated or synthetic targets.
Typequit and you are done.

Testing Filters
While most test cases today run solely in the target environment, some packages may require external testing
infrastructure and/or feedback from the external environment to do complete testing.

The serial package is an example of this. The network package also contains some tests that require programs to
be run on a host. See the networkTests and Demonstrationssection in the network documentation in theeCos
Reference Guide. Here we will concentrate on the serial tests since these are applicable to more targets.

Since the serial line is also used for communication with GDB, a filter is inserted in the communication pathway be-
tween GDB and the serial device which is connected to the hardware target. The filter forwards all communication
between the two, but also listens for special commands embedded in the data stream from the target.

When such a command is seen, the filter stops forwarding data to GDB from the target and enters a special mode.
In this mode the test case running on the target is able to control the filter, commanding it to run various tests.
While these tests run, GDB is isolated from the target.

As the test completes (or if the filter detects a target crash) the communication path between GDB and the hardware
target is re-established, allowing GDB to resume control.

In theory, it is possible to extend the filter to provide a generic framework for other target-external testing compo-
nents, thus decoupling the testing infrastructure from the (possibly limited) communication means provided by the
target (serial, JTAG, Ethernet, etc).

Another advantage is that the host tools do not need to know about the various testing environments required by
the eCos packages, since all contact with the target continues to happen via GDB.

36

Chapter 13. Building and Running Sample
Applications

The example programs in this tutorial are included, along with aMakefile , in theexamples directory of the eCos
distribution. The first program you will run is ahello world-style application, then you will run a more complex
application that demonstrates the creation of threads and the use of cyg_thread_delay(), and finally you will run
one that uses clocks and alarm handlers.

TheMakefile depends on an externally defined variable to find the eCos library and header files. This variable is
INSTALL_DIR and must be set to the pathname of the install directory created inthe Section calledConfiguration
Tool on Windows and Linux Quick Startin Chapter 11.

INSTALL_DIR may be either be set in the shell environment or may be supplied on the command line. To set it in
the shell do the following in abashshell:

$ export INSTALL_DIR=BASE_DIR/ecos-work/arm_install

You can then runmakewithout any extra parameters to build the examples.

Alternatively, if you can do the following:

$ make INSTALL_DIR=BASE_DIR/ecos-work/arm_install

eCos Hello World
The following code is found in the filehello.c in theexamples directory:

eCos hello world program listing

/* this is a simple hello world program */
#include <stdio.h>
int main(void)
{

printf("Hello, eCos world!\n");
return 0;

}

To compile this or any other program that is not part of the eCos distribution, you can follow the procedures
described below. Type this explicit compilation command (assuming your current working directory is also where
you built the eCos kernel):

$ TARGET-gcc -g -I BASE_DIR/ecos-work/install/include hello.c -L BASE_DIR/ecos-work/install/lib -
Ttarget.ld -nostdlib

The compilation command above contains some standard GCC options (for example,-g enables debugging),
as well as some mention of paths (-I BASE_DIR/ecos-work/install/include allows files like
cyg/kernel/kapi.h to be found, and-L BASE_DIR/ecos-work/install/lib allows the linker to find
-Ttarget.ld).

The executable program will be calleda.out .

37

Chapter 13. Building and Running Sample Applications

Note: Some target systems require special options to be passed to gcc to compile correctly for that system.
Please examine the Makefile in the examples directory to see if this applies to your target.

You can now run the resulting program using GDB in exactly the same the way you ran the test case before. The
procedure will be the same, but this time runTARGET-gdb specifying-nw a.out on the command line:

$ TARGET-gdb -nw a.out

For targets other than the synthetic linux target, you should now run the usual GDB commands described earlier.
Once this is done, typing the command "continue" at the (gdb) prompt ("run" for simulators) will allow the program
to execute and print the string "Hello, eCos world!" on your screen.

On the synthetic linux target, you may use the "run" command immediately - you do not need to connect to the
target, nor use the "load" command.

A Sample Program with Two Threads
Below is a program that uses some of eCos’ system calls. It creates two threads, each of which goes into an infinite
loop in which it sleeps for a while (using cyg_thread_delay()). This code is found in the filetwothreads.c in the
examples directory.

eCos two-threaded program listing

#include <cyg/kernel/kapi.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

/* now declare (and allocate space for) some kernel objects,
like the two threads we will use */

cyg_thread thread_s[2]; /* space for two thread objects */

char stack[2][4096]; /* space for two 4K stacks */

/* now the handles for the threads */
cyg_handle_t simple_threadA, simple_threadB;

/* and now variables for the procedure which is the thread */
cyg_thread_entry_t simple_program;

/* and now a mutex to protect calls to the C library */
cyg_mutex_t cliblock;

/* we install our own startup routine which sets up threads */
void cyg_user_start(void)
{

printf("Entering twothreads’ cyg_user_start() function\n");

cyg_mutex_init(&cliblock);

38

Chapter 13. Building and Running Sample Applications

cyg_thread_create(4, simple_program, (cyg_addrword_t) 0,
"Thread A", (void *) stack[0], 4096,
&simple_threadA, &thread_s[0]);
cyg_thread_create(4, simple_program, (cyg_addrword_t) 1,
"Thread B", (void *) stack[1], 4096,
&simple_threadB, &thread_s[1]);

cyg_thread_resume(simple_threadA);
cyg_thread_resume(simple_threadB);

}

/* this is a simple program which runs in a thread */
void simple_program(cyg_addrword_t data)
{

int message = (int) data;
int delay;

printf("Beginning execution; thread data is %d\n", message);

cyg_thread_delay(200);

for (;;) {
delay = 200 + (rand() % 50);

/* note: printf() must be protected by a
call to cyg_mutex_lock() */
cyg_mutex_lock(&cliblock); {
printf("Thread %d: and now a delay of %d clock ticks\n",
message, delay);
}
cyg_mutex_unlock(&cliblock);
cyg_thread_delay(delay);
}

}

When you run the program (by typingcontinueat the (gdb) prompt) the output should look like this:

Starting program: BASE_DIR/examples/twothreads.exe
Entering twothreads’ cyg_user_start()
function
Beginning execution; thread data is 0
Beginning execution; thread data is 1
Thread 0: and now a delay of 240 clock ticks
Thread 1: and now a delay of 225 clock ticks
Thread 1: and now a delay of 234 clock ticks
Thread 0: and now a delay of 231 clock ticks
Thread 1: and now a delay of 224 clock ticks
Thread 0: and now a delay of 249 clock ticks
Thread 1: and now a delay of 202 clock ticks
Thread 0: and now a delay of 235 clock ticks

Note: When running in a simulator the delays might be quite long. On a hardware board (where the clock speed
is 100 ticks/second) the delays should average to about 2.25 seconds. In simulation, the delay will depend on

39

Chapter 13. Building and Running Sample Applications

the speed of the host processor and will almost always be much slower than the actual board. You might want
to reduce the delay parameter when running in simulation.

Figure 13-1shows how this multitasking program executes. Note that apart from the thread creation system calls,
this program also creates and uses amutexfor synchronization between theprintf() calls in the two threads.
This is because the C library standard I/O (by default) is configured not to be thread-safe, which means that if more
than one thread is using standard I/O they might corrupt each other. This is fixed by a mutual exclusion (ormutex)
lockout mechanism: the threads do not callprintf() until cyg_mutex_lock() has returned, which only happens
when the other thread callscyg_mutex_unlock() .

You could avoid using the mutex by configuring the C library to be thread-safe (by selecting the component
CYGSEM_LIBC_STDIO_THREAD_SAFE_STREAMS).

Figure 13-1. Two threads with simple print statements after random delays

40

Chapter 14. More Features — Clocks and Alarm
Handlers

If a program wanted to execute a task at a given time, or periodically, it could do it in an inefficient way by sitting
in a loop and checking the real-time clock to see if the proper amount of time has elapsed. But operating systems
usually provide system calls which allow the program to be informed at the desired time.

eCos provides a rich timekeeping formalism, involvingcounters, clocks, alarms, andtimers. The precise definition,
relationship, and motivation of these features is beyond the scope of this tutorial, but these examples illustrate how
to set up basic periodic tasks.

Alarms are events that happen at a given time, either once or periodically. A thread associates an alarm handling
function with the alarm, so that the function will be invoked every time the alarm “goes off”.

A Sample Program with Alarms
simple-alarm.c (in the examples directory) is a short program that creates a thread that creates an alarm. The
alarm is handled by the functiontest_alarm_func() , which sets a global variable. When the main thread of
execution sees that the variable has changed, it prints a message.

Example 14-1. A sample program that creates an alarm

/* this is a very simple program meant to demonstrate
a basic use of time, alarms and alarm-handling functions in eCos */

#include <cyg/kernel/kapi.h>

#include <stdio.h>

#define NTHREADS 1
#define STACKSIZE 4096

static cyg_handle_t thread[NTHREADS];

static cyg_thread thread_obj[NTHREADS];
static char stack[NTHREADS][STACKSIZE];

static void alarm_prog(cyg_addrword_t data);

/* we install our own startup routine which sets up
threads and starts the scheduler */

void cyg_user_start(void)
{

cyg_thread_create(4, alarm_prog, (cyg_addrword_t) 0,
"alarm_thread", (void *) stack[0],
STACKSIZE, &thread[0], &thread_obj[0]);
cyg_thread_resume(thread[0]);

}

/* we need to declare the alarm handling function (which is

41

Chapter 14. More Features — Clocks and Alarm Handlers

defined below), so that we can pass it to cyg_alarm_initialize() */
cyg_alarm_t test_alarm_func;

/* alarm_prog() is a thread which sets up an alarm which is then
handled by test_alarm_func() */

static void alarm_prog(cyg_addrword_t data)
{

cyg_handle_t test_counterH, system_clockH, test_alarmH;
cyg_tick_count_t ticks;
cyg_alarm test_alarm;
unsigned how_many_alarms = 0, prev_alarms = 0, tmp_how_many;

system_clockH = cyg_real_time_clock();
cyg_clock_to_counter(system_clockH, &test_counterH);
cyg_alarm_create(test_counterH, test_alarm_func,
(cyg_addrword_t) &how_many_alarms,
&test_alarmH, &test_alarm);
cyg_alarm_initialize(test_alarmH, cyg_current_time()+200, 200);

/* get in a loop in which we read the current time and
print it out, just to have something scrolling by */

for (;;) {
ticks = cyg_current_time();
printf("Time is %llu\n", ticks);
/* note that we must lock access to how_many_alarms, since the
alarm handler might change it. this involves using the
annoying temporary variable tmp_how_many so that I can keep the
critical region short */
cyg_scheduler_lock();
tmp_how_many = how_many_alarms;
cyg_scheduler_unlock();
if (prev_alarms != tmp_how_many) {

printf(" --- alarm calls so far: %u\n", tmp_how_many);
prev_alarms = tmp_how_many;

}
cyg_thread_delay(30);

}
}

/* test_alarm_func() is invoked as an alarm handler, so
it should be quick and simple. in this case it increments
the data that is passed to it. */

void test_alarm_func(cyg_handle_t alarmH, cyg_addrword_t data)
{

++*((unsigned *) data);
}

When you run this program (by typingcontinueat the (gdb) prompt) the output should look like this:

Starting program: BASE_DIR/examples/simple-alarm.exe
Time is 0
Time is 30
Time is 60
Time is 90
Time is 120

42

Chapter 14. More Features — Clocks and Alarm Handlers

Time is 150
Time is 180
Time is 210

--- alarm calls so far: 1
Time is 240
Time is 270
Time is 300
Time is 330
Time is 360
Time is 390
Time is 420

--- alarm calls so far: 2
Time is 450
Time is 480

Note: When running in a simulator the delays might be quite long. On a hardware board (where the clock
speed is 100 ticks/second) the delays should average to about 0.3 seconds (and 2 seconds between alarms).
In simulation, the delay will depend on the speed of the host processor and will almost always be much slower
than the actual board. You might want to reduce the delay parameter when running in simulation.

Here are a few things you might notice about this program:

• It used thecyg_real_time_clock() function; this always returns a handle to the default system real-time
clock.

• Clocks are based on counters, so the functioncyg_alarm_create() uses a counter handle. The program used
the functioncyg_clock_to_counter() to strip the clock handle to the underlying counter handle.

• Once the alarm is created it is initialized withcyg_alarm_initialize() , which sets the time at which the
alarm should go off, as well as the period for repeating alarms. It is set to go off at the current time and then to
repeat every 200 ticks.

• The alarm handler functiontest_alarm_func() conforms to the guidelines for writing alarm handlers and
other delayed service routines: it does not invoke any functions which might lock the scheduler. This is discussed
in detail in theeCos Reference Manual, in the chapterThe eCos Kernel.

• There is acritical region in this program: the variablehow_many_alarms is accessed in the main thread of
control and is also modified in the alarm handler. To prevent a possible (though unlikely) race condition on this
variable, access tohow_many_alarms in the principal thread is protected by calls tocyg_scheduler_lock()

andcyg_scheduler_unlock() . When the scheduler is locked, the alarm handler will not be invoked, so the
problem is averted.

43

Chapter 14. More Features — Clocks and Alarm Handlers

44

IV. The eCos Configuration Tool

Chapter 15. Getting Started

Introduction
The eCos Configuration Tool is used to tailor eCos at source level, prior to compilation or assembly, and provides
a configuration file and a set of files used to build user applications. The sources and other files used for build-
ing a configuration are provided in acomponent repository, which is loaded when the eCos Configuration Tool is
invoked. The component repository includes a set of files defining the structure of relationships between the Con-
figuration Tool and other components, and is written in aComponent Definition Language(CDL). For a description
of the concepts underlying component configuration, seeChapter 24.

Invoking the eCos Configuration Tool

On Linux

Add the eCos Configuration Tool install directory to your PATH, for example:

export PATH=/opt/ecos/ecos <version> /bin:$PATH

You may run configtool with zero, one or two arguments. You can specify the eCos repository location, and/or an
eCos save file (extension .ecc) on the command line. The ordering of these two arguments is not significant. For
example:

configtool /opt/ecos/ecos <version> /packages myfile.ecc

The Configuration Tool will be displayed (seeFigure 15-1).

On Windows

There are two ways in which to invoke the eCos Configuration Tool:

• from the desktop explorer or program set up at installation time (by defaultStart -> Programs-> eCos->
Configuration Tool).

• type (at a command prompt or in theStart menu’s Run item): <foldername>\ConfigTool.exe where
<foldername> is the full path of the directory in which you installed the eCos Configuration Tool.

• The Configuration Tool will be displayed (seeFigure 15-1).

You may run configtool with zero, one or two arguments. You can specify the eCos repository location, and/or an
eCos save file (extension .ecc) on the command line. The ordering of these two arguments is not significant. For
example:

configtool "c:\Program Files\eCos\packages" myfile.ecc

If you invoke the configuration tool from the command line with--help, you will see this output:

Usage: eCos Configuration Tool [-h] [-e] [-v] [-c] [input file 1] [input file 2]

47

Chapter 15. Getting Started

-h --help displays help on the command line parameters
-e --edit-only edit save file only
-v --version print version
-c --compile-help compile online help only

This summarizes valid parameters and switches. Switches are shown with both short form and long form.

--helpshows valid options and parameters, as above.

--edit-onlyruns the Configuration Tool in a mode that suppresses creation of a build tree, in case you only want to
create and edit save files.

--versionshows version and build date information, and exits.

--compile-helpcompiles help contents files from the HTML documentation files that the tool finds in the eCos
repository, and exits.

Figure 15-1. Configuration Tool

The Component Repository
When you invoke the eCos Configuration Tool, it accesses the Component Repository, a read-only location of
configuration information. For an explanation of “Component Repository” seeChapter 24.

The eCos Configuration Tool will look for a component repository using (in descending order of preference):

• A location specified on the command line

48

Chapter 15. Getting Started

• The component repository most recently used by the current user

• An eCos distribution under/opt/ecos (under Linux) or a default location set by the installation procedure
(under Windows)

• User input

The final case above will normally only occur if the previous repository has been moved or (under Windows)
installation information stored in the Windows registry has been modified; it will result in a dialog box being
displayed that allows you to specify the repository location:

Figure 15-2. Repository relocation dialog box

Note that in order to use the eCos Configuration Tool you are obliged to provide a valid repository location.

In the rare event that you subsequently wish to change the component location, selectBuild->Repositoryand the
above dialog box will then be displayed.

You can check the location of the current repository, the current save file path, and the current hardware template
and default package, by selectingHelp->Repository Information.... A summary will be displayed.

eCos Configuration Tool Documents

Configuration Save File

eCos configuration settings and other information (such as disabled conflicts) that are set using the eCos Config-
uration Tool are saved to a file between sessions. By default, when the eCos Configuration Tool is first invoked,
it reads and displays information from the Component Registry and displays the information in an untitled blank
document. You can perform the following operations on a document:

Save the currently active document

Use the “File->Save” menu item or click theSave Documenticon on the toolbar; if the current document is
unnamed, you will be prompted to supply a name for the configuration save file.

49

Chapter 15. Getting Started

Figure 15-3. Save As dialog box

Open an existing document

SelectFile->Open, or click theOpen Documenticon on the toolbar. You will be prompted to supply a name for
the configuration save file.

Figure 15-4. Open dialog box

Open a document you have used recently

Click its name at the bottom of theFile menu.

50

Chapter 15. Getting Started

Documents may also be opened by:

• double-clicking a Configuration Save File in the desktop explorer (Windows only);

• invoking the eCos Configuration Tool with the name of a Configuration File as command-line argument, or by
creating a shortcut to the eCos Configuration Tool with such an argument (under Windows or a suitable Linux
desktop environment).

Create a new blank document based on the Component Registry

SelectFile->New, or click theNew Documenticon on the toolbar.

Save to a different file name

SelectFile->Save As. You will be prompted to supply a new name for the configuration save file.

Build and Install Trees

The location of the build and install trees are derived from the eCos save file name as illustrated in the following
example:

Save file name = “c:\My eCos\config1.ecc”

Install tree folder = “c:\My eCos\config1_install”

Build tree folder = “c:\My eCos\config1_build”

These names are automatically generated from the name of the save file.

See alsoChapter 24.

51

Chapter 15. Getting Started

52

Chapter 16. Getting Help
The eCos Configuration Tool contains several methods for accessing online help.

Context-sensitive Help for Dialogs
Most dialogs displayed by the eCos Configuration Tool are supplied with context-sensitive help. You can then get
help relating to any control within the current dialog box by

• Right-clicking the control (or pressingF1)

A “What’s This?” popup menu will be displayed. Click the menu to display a brief description of the function
of the selected control.

• Clicking the question mark icon in the dialog caption bar (Windows) or the question mark button on the dialog
(Linux).

A question mark cursor will be displayed. Click on any control to display a brief description of its function.

Some dialogs may have aHelp button. You can press this to display a more general description of the function of
the dialog box as a whole. This help will be in HTML form; for more information, see below.

Context-sensitive Help for Other Windows
In theHelp menu, clickHelp On...and then click on a window (or click on the arrow/question mark button on the
toolbar, then click on a window). A small popup window page describing the window will be displayed. The same
thing can be achieved by right-clicking on a window and clicking onWhat’s This?.

Context-sensitive Help for Configuration Items
In the configuration window, right-click on a configuration item (or useShift+F10). A context menu will be dis-
played; selectVisit Documentationto display the page in the eCos documentation that most closely corresponds to
the selected item.

Methods of Displaying HTML Help

1. Using the internal help system. This will show an internal viewer similar to Microsoft HTML Help, with a
contents hierarchy on the left and HTML pages on the right; seeFigure 16-1. The index is regenerated for each
repository. If the documentation in the repository has changed but the contents does not reflect this, please use
the Tools Regenerate Help Index menu item.

2. Using the default HTML browser. On Unix, you will need a .mailcap entry similar to this:

53

Chapter 16. Getting Help

text/html; netscape -no-about-splash %s

3. Using the specified browser.

Figure 16-1. HTML Help viewer

If you wish, you may choose to haveHTML Helpdisplayed in a browser of your choice. To do this, selectView-
>Settingsand use the controls in the View Documentation group to select the replacement browser. Note that the
Navigation facilities of the built-inHTML Helpsystem will be unavailable if you choose this method of displaying
help.

54

Chapter 17. Customization
The following visual aspects of the eCos Configuration Tool can be changed to suit individual preferences. These
aspects are saved on a per-user basis, so that when the eCos Configuration Tool is next invoked by the same user,
the appearance will be as set in the previous session.

Window Placement
The relative sizes of all windows in the eCos Configuration Tool may be adjusted by dragging the splitter bars that
separate the windows. The chosen sizes will be used the next time the eCos Configuration Tool is invoked by the
current user.

All windows except theConfiguration Windowmay be shown or hidden by using the commands under theView
menu (for example,View->Output) or the corresponding keyboard accelerators (Alt+1 to Alt+4).

Your chosen set of windows (and their relative sizes) will be preserved between invocations of the eCos Configu-
ration Tool.

Settings
To change other visual aspects, selectView->Settingsand then select theDisplayandView tabs depending on the
settings you wish to alter.. The options are as follows:

Settings: Display tab

Figure 17-1. Settings dialog, Display tab

55

Chapter 17. Customization

Labels

In the configuration window, you can choose to have eitherdescriptive names(the default) ormacro namesdis-
played as tree item labels. Descriptive names are generally more comprehensible, but macro names are used in
some contexts such as conflict resolution and may be directly related to the source code of the configuration. Note
that it is possible to search for an item in the configuration view by selectingFind->Edit (seeChapter 20). Both
descriptive names and macro names can be searched.

Integer Items

You can choose to have integer items in the Configuration Window displayed in decimal or hexadecimal format.

Font

Change the font for a particular window by selecting the window name using the drop-down list, then clicking
on Change Fontto select a font for that window. The changes will be applied when the pressOK to dismiss the
Settings dialog. If you never make font changes, then the windows will take the default setting determined by your
current Windows or Unix environment.

Miscellaneous

If the Splash Screencheckbox is checked, asplashwindow will appear as the application is loading. Uncheck this
to eliminate the splash screen.

Settings: Viewers tab

Figure 17-2. Settings dialog, Viewers tab

56

Chapter 17. Customization

View header files

You can change the viewer used to display header files.

View documentation

You can change the viewer used to display HTML files. Seethe Section calledMethods of Displaying HTML Help
in Chapter 16.

57

Chapter 17. Customization

58

Chapter 18. Screen Layout
The following windows are available within the eCos Configuration Tool:

• Configuration Window

• Properties Window

• Short Description

• Conflicts

• Output

The layout of the windows may be adjusted to suit your preferences: seethe Section calledSettingsin Chapter 17.

Configuration Window
This is the principal window used to configure eCos. It takes the form of a tree-based representation of the config-
uration items within the currently loaded eCos packages.

In the case of items whose values may be changed, controls are available to set the item values. These either take
the form of check boxes or radio buttons within the tree itself or cells to the right of the thin vertical splitter bar.
Controls in the tree may be used in the usual way; cells, however, must first be activated.

To activate a cell, simply click on it: it will assume a sunken appearance and data can then be edited in the cell.
To terminate in-cell editing, click elsewhere in the configuration window or pressENTER. To discard the partial
results of in-cell editing and revert to the previous value, pressESCAPE.

Cells come in three varieties, according to the type of data they accept:

59

Chapter 18. Screen Layout

Table 18-1. Cell types

Cell Type Data Accepted

Integer Decimal or hexadecimal values

Floating Point Floating point values

String Any

In the case of string cells, you can double-click the cell to display a dialog box containing a larger region in which
to edit the string value. This is useful in the case of long strings, or those spanning multiple lines.

Disabled items

Some items will appear disabled. In this case the item label and any associated controls and cells will be grayed. It
is not be possible to change the values of disabled items.

Right-Clicking

You can right-click on an item in the configuration window item to display a pop-up menu which (depending on
the type of the item selected) allows you to:

• Properties– information relating to the currently selected item is displayed. The information is equivalent to
that displayed in the Properties Window.

• Restore Defaults- the default value of the currently selected item is restored.

• Visit Documentation- causes the HTML page most closely relating to the currently selected item to be displayed.
This has the same effect as double-clicking the URL property in the Properties Window.

• View Header File– this causes the file containing the items to be displayed. This is equivalent to double-clicking
on the File property in the Properties Window. The viewer used for this purpose may be changed using theView-
>Settingsmenu item (seethe Section calledSettingsin Chapter 17). Note that this operation is only possible
when the current configuration is saved, in order to avoid the possibility of changing the source repository.

• Unload Package- this is equivalent to using theBuild->Packagesmenu item to select and unload the package
in question.

Conflicts Window

This window exists to display any configuration item conflicts. Conflicts are the result of failures to meet the
requirements between configuration items expressed in the CDL. Seethe Section calledConflictsin Chapter 24.

60

Chapter 18. Screen Layout

The window comprises three columns:

• Item

This is the macro name of the first item involved in the conflict.

• Conflict

This is a description of the conflict type. The currently supported types are “unresolved”, “illegal value”, “eval-
uation exception”, “goal unsatisfied” and “bad data”.

• Property

This contains a description of the configuration item’s property that caused the conflict.

Within the conflicts window you can right-click on any item to display a context menu which allows you to
choose from one of the following options:

To locate the item involved in the conflict, double-click in the first or third column, or right-click over the item and
chooseLocatefrom the popup menu.

You can use theTools->Resolve Conflictsmenu item, or right-click over the item and selectResolvefrom the
popup menu, to resolve conflicts —the Section calledResolving conflictsin Chapter 19.

Output Window

This window displays any output generated by execution of external tools and any error messages that are not
suitable for display in other forms (for example, as message boxes).

Within the output window you can right-click to display a context menu which allows you to:

• Save the contents of the window to a file

• Clear the contents of the window

Properties Window

This window displays the CDL properties of the item currently selected in the configuration window. The same
information may be displayed by right-clicking the item and selecting “properties”.

61

Chapter 18. Screen Layout

Two properties may be double-clicked as follows:

• URL– double-clicking on a URL property causes the referenced HTML page to be displayed. This has the same
effect as right-clicking on the item and choosing “Visit Documentation”.

• File – double-clicking on a File property in a saved configuration causes the File to be displayed. The viewer used
for this purpose may be changed using theView->Settingsmenu item. Note that this operation is only possible
when the current configuration is saved, in order to avoid the possibility of changing the source repository.

Short Description Window

This window displays a short description of the item currently selected in the configuration window. More extensive
documentation may be available by right-clicking on the item and choosing “Visit Documentation”.

62

Chapter 19. Updating the Configuration

Adding and Removing Packages
To add or remove packages from the configuration, selectBuild->Packages. The following dialog box will be
displayed:

Figure 19-1. Packages dialog box

The left-hand list shows those packages that are available to be loaded. The right-hand list shows those that are
currently loaded. In order to transfer packages from one list to another (that is, to load or unload packages) double-
click the selection or click theAddor Removebuttons.

The version drop-down list displays the versions of the selected packages. When loading packages, this control
may be used to load versions other than the most recent (current). Note that if more than one package is selected,
the version drop-down list will display only the versions common to all the selected packages.

The window under the version displays a brief description of the selected package. If more than one package is
selected, this window will be blank.

Under the description window there is aKeywordscontrol into which you can type a string to be matched against
package names, macro names and descriptions. The lists are updated a second or so after typing has stopped. If
you type several separate words, all of these words must be associated with a given package for that package to be
displayed. If you select theMatch exactlycheckbox, then the string is taken to be a complete fragment and matched
against the beginning of a name, macro name or descriptions. All matches are done case-insensitively.

If you checkOmit hardware packages, only non-hardware packages will be shown.

63

Chapter 19. Updating the Configuration

Platform Selection
To add, modify or remove entries in the list of platforms used for running tests, selectTools->Platforms. The
following dialog will be displayed:

Figure 19-2. Platforms dialog box

You may add, modify or remove platform entries as you wish, but in order to run tests, a platform must be defined
to correspond to the currently loaded hardware template. The information associated with each platform name is
used to run tests.

To modify a platform, click theModify button with the appropriate platform selected, or double-click on an entry
in the list. A dialog will be displayed that allows you to change the command prefix, platform type and arguments
for GDB.

Figure 19-3. Platform Modify dialog box

64

Chapter 19. Updating the Configuration

To add a new platform, click theAdd button. A similar dialog will be displayed that allows you to define a new
platform. To remove a platform, click theDeletebutton or press theDEL key with the appropriate platform selected.

The command prefix is used when running tests in order to determine the names of the executables (such as gdb)
to be used. For example, if the gdb executable name is “arm-elf-gdb.exe” the prefix should be set to “arm-elf”.

The platform type indicates the capabilities of the platform - whether it is hardware or a simulator, and whether
breakpoints are supported.

The arguments for theGDBfield allow additional arguments to be passed to gdb when it is used to run a test. This
is typically used in the case of simulators linked to gdb in order to define memory layout.

Using Templates
To load a configuration based on a template, selectBuild->Templates.

The following dialog box will be displayed:

Figure 19-4. Templates dialog box

Change the hardware template, the packages template, or both. To select a hardware template, choose from the first
drop-list. To choose a packages template, choose from the second. Brief descriptions of each kind of template are
provided in the corresponding edit boxes.

Resolving conflicts

During the process of configuring eCos it is possible that conflicts will be created. For more details of the meaning
of conflicts, seeChapter 24.

65

Chapter 19. Updating the Configuration

The Conflicts Window displays all conflicts in the current configuration. Additionally, a window in the status bar
displays a count of the conflicts. Because the resolution of conflicts can be time-consuming, a mechanism exists
whereby conflicts can be resolved automatically.

You can choose to have a conflicts resolution dialog box displayed by means of theView->Settings...menu item,
on theConflict Resolutiontab of the dialog.

Figure 19-5. Options

You can choose to have conflicts checked under the following circumstances:

• After any item is changed (in other words, as soon as the conflict is created)

• Before saving the configuration (including building)

• Never

The method you chose depends on how much you need your configuration to be free of conflicts. You may want to
avoid having to clean up all the conflicts at once, or you may want to keep the configuration consistent at all times.
If you have major changes to implement, which may resolve the conflicts, then you might want to wait until after
you have completed these changes before you check for conflicts.

Note: If you choose to check conflicts after any item is changed, only newly arising conflicts are displayed. If
you choose to check for conflicts before saving the configuration, the complete set is displayed.

Automatic resolution

If you check the “Automatically suggest fixes” check box, a conflicts resolution dialog box will be displayed
whenever new conflicts are created. The same dialog box may be displayed at any stage by means of theTools-

66

Chapter 19. Updating the Configuration

>Resolve Conflictsmenu item.

The conflicts resolution dialog box contains two major windows.

Figure 19-6. Resolve conflicts window

The upper contains the set of conflicts to be addressed; the format of the data being as that of the Conflicts Window.
The lower window contains a set of proposed resolutions – each entry is a suggested configuration item value
change that as a whole may be expected to lead to the currently selected conflict being resolved.

Note that there is no guarantee:

• that automatic resolutions will be determinable for every conflict.

• that the resolutions for separate conflicts will be independent. In other words, the resolution of one conflict may
serve to prevent the resolution of another.

• that the resolution conflicts will not create further conflicts.

The above warnings are, however, conservative. In practice (so long as the number and extent of conflicts are
limited) automatic conflict resolution may be used to good effect to correct problems without undue amounts of
programmer intervention.

In order to select the conflicts to be applied, select or clear the check boxes against the resolutions for each proposed
resolution. By default all resolutions are selected; you can return to the default state (in other words, cause all check
boxes for each conflict to again become checked) by pressing the “Reset” button. Note that multiple selection may
be used in the resolutions control to allow ranges of check boxes to be toggled in one gesture.

When you are happy to apply the selected resolutions for each conflict displayed, clickApply; this will apply the
resolutions. Alternatively you may cancel from the dialog box without any resolutions being applied.

67

Chapter 19. Updating the Configuration

68

Chapter 20. Searching
SelectEdit --> Find. You will be presented with a Find dialog box:

Figure 20-1. Find dialog box

Using this dialog box you can search for an exact text string in any one of three ways, as specified by your selection
in the “Search in” drop-list:

• Macro names - the search is for a text match within configuration item macro names

• Item names - the search is for a text match within configuration item descriptive names

• Short descriptions - the search is for a text match within configuration item short descriptions

Note that to invokeFind you can also click theFind icon on the toolbar.

69

Chapter 20. Searching

70

Chapter 21. Building
When you have configured eCos, you may build the configuration.

On theBuild menu, click:

• Library (or click the Build Library icon on the toolbar) – this causes the eCos configuration to be built. The
result of a successful build will be (among other things) a library against which user code can be linked

• Tests– this causes the eCos configuration to be built, and additionally builds the relevant test cases linked against
the eCos library

• Clean– this removes all intermediate files, thus causing a subsequent build/library or build/tests operation to
cause recompilation of all relevant files.

• Stop– this causes a currently executing build (any of the above steps) to be interrupted

Build options may be displayed by using theBuild->Optionsmenu item. This displays a dialog box containing
a drop-list control and two windows. The drop-list control allows you to select the type of build option to be
displayed (for example “LDFLAGS” are the options applied at link-time. The left-hand window is a tree view of
the packages loaded in the current configuration. The right-hand window is a list of the build options that will be
used for the currently selected package.

Note that this dialog box currently affords only read-only access to the build options. In order to change build
options you must edit the relevant string configuration item.

A single level of inheritance is supported: each package’s build options are combined with the global options (these
are to be found in the “Global build options” folder in the configuration view).

Selecting Build Tools
Normally the installation process will supply the information required for the eCosConfiguration Tool to locate the
build tools (compiler, linker, etc.) necessary to perform a build. However if this information is not registered, or

71

Chapter 21. Building

it is necessary to specify the location manually (for example, when a new toolchain installation has been made),
selectTools->Paths->Build Tools. The following dialog box will be displayed:

Figure 21-1. Build tools

This dialog box allows you to locate the folder containing the build tools.

Selecting User Tools
Normally the installation process will supply the information required for the eCosConfiguration Tool to locate
the user tools (cat, ls, etc.) necessary to perform a build. However if this information is not registered, or it is
necessary to specify the location manually (for example, when a new toolchain installation has been made), select
Tools->Paths->User Tools. The following dialog box will be displayed:

Figure 21-2. User tools

72

Chapter 22. Execution
Test executables that have been linked using the Build/Tests operation against the current configuration can be
executed by selectingTools->Run Tests.

When tests are run, the Configuration Tool looks for a platform name corresponding to the currently loaded hard-
ware template. If no such platform is found, a dialog will be displayed for you to define one; this dialog is similar
to that displayed by theAdd function in theTools->Platformsdialog, but in this case the platform name cannot be
changed.

When a test run is invoked, a property sheet is displayed, comprising three tabs:Executables, OutputandSummary.

Note that the property sheet is resizable.

Three buttons appear on the property sheet itself:Run/Stop, CloseandProperties.

The Runbutton is used to initiate a test run. Those tests selected on theExecutablestab are run, and the output
recorded on theOutput andSummarytabs. During the course of a run, theRunbutton changes to “Stop”. The
button may be used to interrupt a test run at any point.

Properties
ThePropertiesbutton is used to change the connectivity properties for the test run.

Figure 22-1. Properties dialog box

Download Timeout

This group of controls serves to set the maximum time that is allowed for downloading a test to the target board. If
the time is exceeded, the test will be deemed to have failed for reason of “Download Timeout” and the execution

73

Chapter 22. Execution

of that particular test will be abandoned. This option only applies to tests run on hardware, not to those executed in
a simulator. Times are in units of elapsed seconds.

Three options are available using the drop-down list:

• Calculated from file size - an estimate of the maximum time required for download is made using the (stripped)
executable size and the currently used baud rate

• Specified - a user-specified value may be entered in the adjacent edit box

• None - no maximum download time is to be applied.

Run time Timeout

This group of controls serves to set the maximum time that is allowed for executing a test on the target board or in a
simulator. If the time is exceeded, the test will be deemed to have failed for reason of “Timeout” and the execution
of that particular test will be abandoned. In the case of hardware, the time is measured in elapsed seconds: in the
case of a simulator it is in CPU seconds.

Three options are available using the drop-down list:

• None - no maximum download time is to be applied.

• Specified - a user-specified value may be entered in the adjacent edit box

• Default - a default value of 30 seconds is used

Connection

TheConnectioncontrols may be used to specify how the target board is to be accessed.

If the target board is connected using a serial cable, theSerialradio button should be checked. In this case you can
select a port (COM1, COM2, . . .) and an appropriate baud rate using drop-list boxes.

If the target board is accessed remotely using GDB remote protocol, the “TCP/IP” radio button should be checked.
In this case you can select a host name and TCP/IP port number using edit boxes.

Executables Tab

This is used to adjust the set of tests available for execution. A check box against each executable name indicates
whether that executable will be included when theRunbutton is pressed. TheCheck AllandUncheck Allbuttons
may be used to check or uncheck all items.

When the property sheet is first displayed, it will be pre-populated with those test executables that have been linked
using the Build/Tests operation against the current configuration.

74

Chapter 22. Execution

Figure 22-2. Run tests

You can right-click in the window to display a context menu containingAddandRemoveitems. ClickingRemove
will remove those executables selected. ClickingAddwill display a dialog box that allows you to add to the set of
items. Equivalently theAddbutton may be used to add executables, and theDEL key may be used to remove them.

You can use theAdd from Folderbutton to add a number of executables in a specified folder (optionally including
subfolders, if you click onYeswhen asked).

Figure 22-3. Add files from folder

75

Chapter 22. Execution

Output Tab

This tab is used to display the output from running tests. The output can be saved to a file or cleared by means of
the popup menu displayed when you right-click in the window.

Summary Tab

This tab is used to display a record, in summary form, of those tests executed. For each execution, the following
information is displayed:

• Time- the date and time of execution

• Host - the host name of the machine from which the test was downloaded

• Platform- the platform on which the test was executed

• Executable- the executable (file name) of the test executed

• Status- the result of executing the test. This will be one of the following:

• Not started

• No result

• Inapplicable

• Pass

• DTimeout

• Timeout

• Cancelled

• Fail

• Assert fail

• Size- the size [stripped/unstripped] of the test executed

• Download- the download time [mm:ss/mm:ss] used. The first of the two times displayed represents the actual
time used: the second the limit time.

• Elapsed- the elapsed time [mm:ss] used.

• Execution- the execution time [mm:ss/mm:ss] used. The first of the two times displayed represents the actual
time used: the second the limit time.

The output can be saved to a file or cleared by means of the popup menu displayed when you right-click in the
window.

76

Chapter 23. Creating a Shell
To call up a shell window, selectTools->Shell. Under Windows, you will get a Cygwin shell similar to the one
below. On Linux, you will get a standard Linux shell window.

Keyboard Accelerators
The following table presents the list of keyboard accelerators that can be used with the Configuration Tool.

Table 23-1. Keyboard accelerators

Accelerator Action Remarks

Alt+1 hide/show properties window

Alt+2 hide/show output window

Alt+3 hide/show short description window

Alt+4 hide/show conflicts window

Ctrl+A select all output window and in-cell editing

Ctrl+C copy output window and in-cell editing

Ctrl+F Edit->Find

Ctrl+N File->New

Ctrl+O File->Open

Ctrl+S File->Save

Ctrl+V Paste in-cell editing only

Ctrl+X Cut in-cell-editing only

Ctrl+Z Undo in-cell editing only

F1 Context-sensitive help

F3 Find next

F7 Build->Library

77

Chapter 23. Creating a Shell

Accelerator Action Remarks

Shift+F7 Build->Tests

Alt+F6 View->Next window

Shift+Alt+0 View->Previous window

Shift+Ins Paste in-cell editing only

Shift+F10 Display context menu Configuration window

Alt+Enter Display properties dialog box Configuration window

> Increment item value Configuration window

< Decrement item value Configuration window

Space Toggle item value Configuration window

78

V. eCos Programming Concepts and
Techniques

Programming with eCos is somewhat different from programming in more traditional environments. eCos is a
configurable open source system, and you are able to configure and build a system specifically to meet the needs
of your application.

Various different directory hierarchies are involved in configuring and building the system: thecomponent reposi-
tory, thebuild tree, and theinstall tree. These directories exist in addition to the ones used to develop applications.

Chapter 24. CDL Concepts

About this chapter
This chapter serves as a brief introduction to the concepts involved in eCos (Embedded Configurable Operating
System). It describes the configuration architecture and the underlying technology to a level required for the em-
bedded systems developer to configure eCos. It does not describe in detail aspects such as how to write reusable
components for eCos: this information is given in theComponent Writer’s Guide.

Background

Software solutions for the embedded space place particularly stringent demands on the developer, typically repre-
sented as requirements for small memory footprint, high performance and robustness. These demands are addressed
in eCos by providing the ability to perform compile-time specialization: the developer can tailor the operating sys-
tem to suit the needs of the application. In order to make this process manageable, eCos is built in the context of a
Configuration Infrastructure: a set of tools including a Configuration Tool and a formal description of the process
of configuration by means of aComponent Definition Language.

Configurations

eCos is tailored at source level (that is, before compilation or assembly) in order to create an eCosconfiguration.
In concrete terms, an eCos configuration takes the form of a configuration save file (with extension .ecc) and set of
files used to build user applications (including, when built, a library file against which the application is linked).

Component Repository
eCos is shipped in source in the form of acomponent repository- a directory hierarchy that contains the sources
and other files which are used to build a configuration. The component repository can be added to by, for example,
downloading from the net.

Component Definition Language
Part of the component repository is a set of files containing a definition of its structure. The form used for this
purpose is theComponent Definition Language(CDL). CDL defines the relationships between components and
other information used by tools such as the eCosConfiguration Tool. CDL is generally formulated by the writers
of components: it is not necessary to write or understand CDL in order for the embedded systems developer to
construct an eCos configuration.

Packages
The building blocks of an eCos configuration are calledpackages. Packages are the units of software distribution.
A set of core packages (such as kernel, C library and math library) is provided by Red Hat: additional third-party

81

Chapter 24. CDL Concepts

packages will be available in future.

A package may exist in one of a number ofversions. The default version is thecurrentversion. Only one version
of a given package may be present in the component repository at any given time.

Packages are organized in a tree hierarchy. Each package is either at the top-level or is the child of another package.

The eCos Package Administration Tool can be used to add or remove packages from the component repository.
The eCos Configuration Tool can be used to include or exclude packages from the configuration being built.

Configuration Items
Configuration itemsare the individual entities that form a configuration. Each item corresponds to the setting of a
C pre-processor macro (for example,CYGHWR_HAL_ARM_PID_GDB_BAUD). The code of eCos itself is written to test
such pre-processor macros so as to tailor the code. User code can do likewise.

Configuration items come in the following flavors:

• None: such entities serve only as place holders in the hierarchy, allowing other entities to be grouped more easily.

• Booleanentities are the most common flavor; they correspond to units of functionality that can be either enabled
or disabled. If the entity is enabled then there will be a #define; code will check the setting using, for example,
#ifdef

• Dataentities encapsulate some arbitrary data. Other properties such as a set or range of legal values can be used
to constrain the actual values, for example to an integer or floating point value within a certain range.

• Booldataentities combine the attributes ofBooleanandData: they can be enabled or disabled and, if enabled,
will hold a data value.

Like packages, configuration items exist in a tree-based hierarchy: each configuration item has a parent which may
be another configuration item or a package. Under some conditions (such as when packages are added or removed
from a configuration), items may be “re-parented” such that their position in the tree changes.

Expressions

Expressions are relationships between CDL items. There are three types of expression in CDL:

Table 24-1. CDL Expressions

Expression Type Result Common Use (see Table 24-2)

Ordinary A single value legal_values property

List A range of values (for example “1 to
10”)

legal_values property

Goal True or False requires and active_if properties

Properties

Each configuration item has a set of properties. The following table describes the most commonly used:

82

Chapter 24. CDL Concepts

Table 24-2. Configuration properties

Property Use

Flavor The “type” of the item, as described above

Enabled Whether the item is enabled

Current_value The current value of the item

Default_value An ordinary expression defining the default value of the
item

Legal_values A list expression defining the values the item may hold
(for example, 1 to10)

Active_if A goal expression denoting the requirement for this
item to be active (see below:Inactive Items)

Requires A goal expression denoting requirements this item
places on others (see below:Conflicts)

Calculated Whether the item as non-modifiable

Macro The corresponding C pre-processor macro

File The C header file in which the macro is defined

URL The URL of a documentation page describing the item

Hardware Indicates that a particular package is related to specific
hardware

A complete description of properties is contained in theComponent Writer’s Guide.

Inactive Items

Descendants of an item that is disabled are inactive: their values may not be changed. Items may also become
inactiveif an active_if expression is used to make the item dependent on an expression involving other items.

Conflicts
Not all settings of configuration items will lead to a coherent configuration; for example, the use of a timeout facility
might require the existence of timer support, so if the one is required the other cannot be removed. Coherence is
policed by means of consistency rules (in particular, the goal expressions that appear as CDL itemsrequiresand
active_ifattributes [see above]). A violation of consistency rules creates aconflict, which must be resolved in order
to ensure a consistent configuration. Conflict resolution can be performed manually or with the assistance of the
eCos tools. Conflicts come in the following flavors:

• An unresolvedconflict means that there is a reference to an entity that is not yet in the current configuration

• An illegal valueconflict is caused when a configuration item is set to a value that is not permitted (that is, a
legal_valuesgoal expression is failing)

• An evaluation exceptionconflict is caused when the evaluation of an expression would fail (for example, because
of a division by zero)

83

Chapter 24. CDL Concepts

• An unsatisfied goalconflict is caused by a failingrequiresgoal expression

• A bad dataconflict arises only rarely, and corresponds to badly constructed CDL. Such a conflict can only be
resolved by reference to the CDL writer.

Templates
A templateis a saved configuration - that is, a set of packages and configuration item settings. Templates are pro-
vided with eCos to allow you to get started quickly by instantiating (copying) a saved configuration corresponding
to one of a number of common scenarios; for example, a basic eCos configuration template is supplied that contains
the infrastructure, kernel, C and math libraries, plus their support packages.

84

Chapter 25. The Component Repository and
Working Directories

Each of the file trees involved in eCos development has a different role.

Component Repository
The eCoscomponent repositorycontains directories for all the packages that are shipped with eCos or provided by
third parties.

The component repository should not be modified as part of application development.

Figure 25-1. Component repository

85

Chapter 25. The Component Repository and Working Directories

Purpose

The component repository is the master copy of source code for all system and third party components. It also
contains some files needed to administer and build the system, such asecosadmin.tcl.

How is it modified?

You modify it by importing new versions of packages from a distribution or removing existing packages. These
activities are undertaken using the eCos Package Administration Tool.

When is it edited manually?

Files in the component repository should only be edited manually as determined by the component maintainer.

User Applications

User application source code shouldnot go into the component repository.

Examples of files in this hierarchy:

BASE_DIR/doc/ref/ecos-ref.html

The top level HTML file for theeCos Reference Manual.

BASE_DIR/prebuilt/pid/tests/kernel/ <version> /tests/thread_gdb.exe

BASE_DIR/prebuilt/linux/tests/kernel/ <version> /tests/thread_gdb.exe

Pre-built tests for the supported platforms, and the synthetic Linux target.

BASE_DIR/examples/twothreads.c

One of the example programs.

BASE_DIR/ecosadmin.tcl

The Tcl program which is used to import new versions of packages from a distribution or remove existing
packages.

BASE_DIR/packages/language/c/libm/ <version> /src/double/portable-api/s_tanh.c

Implementation of the hyperbolic tangent function in the standard math library.

86

Chapter 25. The Component Repository and Working Directories

BASE_DIR/pkgconf/rules.mak

A file with make rules, used by themakefile .

Build Tree
The build tree is the directory hierarchy in which allgeneratedfiles are placed. Generated files consist of the
makefile , the compiled object files, and a dependency file (with a.d extension) for each source file.

Purpose

The build tree is where all intermediate object files are placed.

How is it modified?

Recompiling can modify the object files.

User applications

User application source or binary code shouldnot go in the build tree.

Examples of files in this hierarchy

ecos-work/language/c/libc/ <version> /src

The directory in which object files for the C library are built.

Install Tree
The install tree is the location for all files needed for application development. Thelibtarget.a library, which
contains the custom-built eCos kernel and other components, is placed in the install tree, along with all packages’
public header files. If you build the tests, the test executable programs will also be placed in the install tree.

By default, the install tree is created byecosconfigin a subdirectory of the build tree calledinstall . This can be
modified with the--prefix option (seeChapter 28).

Purpose

The install tree is where the custom-builtlibtarget.a library, which contains the eCos kernel and other compo-
nents, is located. The install tree is also the location for all the header files that are part of a published interface for
their component.

87

Chapter 25. The Component Repository and Working Directories

How is it modified?

Recompiling can replacelibtarget.a and the test executables.

When is it edited manually?

Where a memory layout requires modification without use of the eCos Configuration Tool, the memory layout files
must be edited directly in the install tree. These files are located atinstall/include/pkgconf/mlt_*.* . Note
that subsequent modification of the install tree using the Configuration Tool will result in such manual edits being
lost.

User applications

User application source or binary code shouldnot go in the install tree.

Examples of files in this hierarchy

install/lib/libtarget.a

The library containing the kernel and other components.

install/include/cyg/kernel/kapi.h

The header file for the kernel C language API.

install/include/pkgconf/mlt_arm_pid_ram.ldi

The linker script fragment describing the memory layout for linking applications intended for execution on an
ARM PID development board using RAM startup.

install/include/stdio.h

The C library header file for standard I/O.

Application Build Tree
This tree is not part of eCos itself: it is the directory in which eCos end users write their own applications.

Example applications and theirMakefile are located in the component repository, in the directory
BASE_DIR/examples .

There is no imposed format on this directory, but there are certain compiler and linker flags that must be used to
compile an eCos application. The basic set of flags is shown in the exampleMakefile , and additional details can
be found inChapter 26.

88

Chapter 26. Compiler and Linker Options
eCos is built using the GNU C and C++ compilers. eCos relies on certain features of these tools such as constructor
priority ordering and selective linking which are not part of other toolchains.

Some GCC options are required for eCos, and others can be useful. This chapter gives a brief description of the
required options as well as some recommended eCos-specific options. All other GCC options (described in the
GCC manuals) are available.

Compiling a C Application
The following command lines demonstrate theminimumset of options required to compile and link an eCos
program written in C.

Note: Remember that when this manual shows TARGET-gcc you should use the full name of the cross com-
piler, e.g. i386-elf-gcc , arm-elf-gcc , or sh-elf-gcc . When compiling for the synthetic Linux target, use the
native gcc which must have the features required by eCos.

$ TARGET-gcc -c -I INSTALL_DIR /include file.c
$ TARGET-gcc -o program file.o -L INSTALL_DIR /lib -Ttarget.ld -nostdlib

Note: Certain targets may require extra options, for example the SPARClite architectures require the option
-mcpu=sparclite . Examine the BASE_DIR/examples/Makefile or the “Global compiler flags” option (CYG-
BLD_GLOBAL_CFLAGS) in your generated eCos configuration) to see if any extra options are required, and if
so, what they are.

The following command lines use some other options which are recommended because they use the selective
linking feature:

$ TARGET-gcc -c -I INSTALL_DIR /include -I. -ffunction-sections -fdata-sections -g -O2 file.c
$ TARGET-gcc -o program file.o -ffunction-sections -fdata-sections -Wl,--gc-sections -g -O2 \

-L INSTALL_DIR /lib -Ttarget.ld -nostdlib

Compiling a C++ Application
The following command lines demonstrate theminimumset of options required to compile and link an eCos
program written in C++.

Note: Remember that when this manual shows TARGET-g++ you should use the full name of the cross com-
piler, e.g. i386-elf-g++ , arm-elf-g++ , or sh-elf-g++ . When compiling for the synthetic Linux target, use the
native g++ which must have the features required by eCos.

$ TARGET-g++ -c -I INSTALL_DIR /include -fno-rtti -fno-exceptions file.cxx
$ TARGET-g++ -o program file.o -L INSTALL_DIR /lib -Ttarget.ld -nostdlib

89

Chapter 26. Compiler and Linker Options

Note: Certain targets may require extra options, for example the SPARClite architectures require the op-
tion -mcpu=sparclite . Examine the BASE_DIR/packages/targets file or BASE_DIR/examples/Makefile or the
“Global compiler flags” option (CYGBLD_GLOBAL_CFLAGS) in your generated eCos configuration) to see if
any extra options are required, and if so, what they are.

The following command lines use some other options which are recommended because they use the selective
linking feature:

$ TARGET-g++ -c -I INSTALL_DIR /include -I. -ffunction-sections -fdata-sections -fno-rtti \
-fno-exceptions -finit-priority -g -O2 file.cxx

$ TARGET-g++ -o program file.o -W1,--gc-sections -g -O2 -L INSTALL_DIR /lib -Ttarget.ld -nostdlib

90

Chapter 27. Debugging Techniques
eCos applications and components can be debugged in traditional ways, with printing statements and debugger
single-stepping, but there are situations in which these techniques cannot be used. One example of this is when a
program is getting data at a high rate from a real-time source, and cannot be slowed down or interrupted.

eCos’s infrastructure module provides atracing formalism, allowing the kernel’s tracing macros to be configured
in many useful ways. eCos’s kernel providesinstrumentation bufferswhich also collect specific (configurable) data
about the system’s history and performance.

Tracing
To use eCos’s tracing facilities you must first configure your system to usetracing. You should enable
the Asserts and Tracing component (CYGPKG_INFRA_DEBUG) and the Use tracing component within it
(CYGDBG_USE_TRACING). These options can be enabled with the Configuration Tool or by editing the file
BUILD_DIR /pkgconf/infra.h manually.

You should then examine all the tracing-related options in thePackage: Infrastructurechapter of theeCos Ref-
erence Manual. One useful set of configuration options are:CYGDBG_INFRA_DEBUG_FUNCTION_REPORTSand
CYGDBG_INFRA_DEBUG_TRACE_MESSAGE, which are both enabled by default when tracing is enabled.

The following “Hello world with tracing” shows the output from running the hello world program (fromthe Section
calledeCos Hello Worldin Chapter 13) that was built with tracing enabled:

Example 27-1. Hello world with tracing

$ mips-tx39-elf-run --board=jmr3904 hello
Hello, eCos world!
ASSERT FAIL: <2>cyg_trac.h [623] Cyg_TraceFunction_Report_::set_exitvoid() ex-
itvoid used in typed function
TRACE: <1>mlqueue.cxx [395] Cyg_ThreadQueue_Implementation::enqueue() {{enter
TRACE: <1>mlqueue.cxx [395] Cyg_ThreadQueue_Implementation::enqueue() }}RE-
TURNING UNSET!
TRACE: <1>mlqueue.cxx [126] Cyg_Scheduler_Implementation::add_thread() }}RE-
TURNING UNSET!
TRACE: <1>thread.cxx [654] Cyg_Thread::resume() }}re-
turn void
TRACE: <1>cstartup.cxx [160] cyg_iso_c_start() }}re-
turn void
TRACE: <1>startup.cxx [142] cyg_package_start() }}re-
turn void
TRACE: <1>startup.cxx [150] cyg_user_start() {{enter
TRACE: <1>startup.cxx [150] cyg_user_start() (((void)))
TRACE: <1>startup.cxx [153] cyg_user_start() ’This is the sys-
tem default cyg_user_start()’
TRACE: <1>startup.cxx [157] cyg_user_start() }}re-
turn void
TRACE: <1>sched.cxx [212] Cyg_Scheduler::start() {{enter
TRACE: <1>mlqueue.cxx [102] Cyg_Scheduler_Implementation::schedule() {{enter
TRACE: <1>mlqueue.cxx [437] Cyg_ThreadQueue_Implementation::highpri() {{enter
TRACE: <1>mlqueue.cxx [437] Cyg_ThreadQueue_Implementation::highpri() }}RE-
TURNING UNSET!

91

Chapter 27. Debugging Techniques

TRACE: <1>mlqueue.cxx [102] Cyg_Scheduler_Implementation::schedule() }}RE-
TURNING UNSET!
TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts() {{enter
TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts() }}RE-
TURNING UNSET!
TRACE: <2>thread.cxx [69] Cyg_HardwareThread::thread_entry() {{enter
TRACE: <2>cstartup.cxx [127] invoke_main() {{enter
TRACE: <2>cstartup.cxx [127] invoke_main() ((ar-
gument is ignored))
TRACE: <2>dummyxxmain.cxx [60] __main() {{enter
TRACE: <2>dummyxxmain.cxx [60] __main() (((void)))
TRACE: <2>dummyxxmain.cxx [63] __main() ’This is the sys-
tem default __main()’
TRACE: <2>dummyxxmain.cxx [67] __main() }}re-
turn void
TRACE: <2>memcpy.c [112] _memcpy() {{enter
TRACE: <2>memcpy.c [112] _memcpy() ((dst=80002804, src=BFC14E58, n=19))
TRACE: <2>memcpy.c [164] _memcpy() }}re-
turning 80002804
TRACE: <2>cstartup.cxx [137] invoke_main() ’main() has re-
turned with code 0. Calling exit()’
TRACE: <2>exit.cxx [71] __libc_exit() {{enter
TRACE: <2>exit.cxx [71] __libc_exit() ((sta-
tus=0))
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers() {{enter
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers() (((void)))

Scheduler:

Lock: 0
Current Thread: <null >

Threads:

Idle Thread pri = 31 state = R id = 1
stack base = 800021F0 ptr = 80002510 size = 00000400
sleep reason NONE wake reason NONE
queue = 80000C54 wait info = 00000000

<null > pri = 0 state = R id = 2
stack base = 80002A48 ptr = 8000A968 size = 00008000
sleep reason NONE wake reason NONE
queue = 80000BD8 wait info = 00000000

Kernel Instrumentation
Instrument bufferscan be used to find out how many events of a given type happened in the kernel during execution
of a program.

You can monitor a class of several types of events, or you can just look at individual events.

Examples ofeventsthat can be monitored are:

92

Chapter 27. Debugging Techniques

• scheduler events

• thread operations

• interrupts

• mutex operations

• binary semaphore operations

• counting semaphore operations

• clock ticks and interrupts

Examples of fine-grained scheduler event types are:

• scheduler lock

• scheduler unlock

• rescheduling

• time slicing

Information about the events is stored in anevent record. The structure that defines this record has type struct
Instrument_Record:

The list of records is stored in an array called instrument_buffer which you can let the kernel provide or you can
provide yourself by setting the configuration optionCYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

To write a program that examines the instrumentation buffers:

1. Enable instrumentation buffers in the eCos kernel configuration. The component macro is
CYGPKG_KERNEL_INSTRUMENT.

2. To allocate the buffers yourself, enable the configuration optionCYG-

VAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

3. Include the header filecyg/kernel/instrmnt.h .

#include <cyg/kernel/instrmnt.h >

4. The Instrumentation_Record structure is not published in the kernel header file. In the future there will be a
cleaner mechanism to access it, but for now you should paste into your code in the following lines:

struct Instrument_Record
{

CYG_WORD16 type; // record type
CYG_WORD16 thread; // current thread id
CYG_WORD timestamp; // 32 bit timestamp
CYG_WORD arg1; // first arg
CYG_WORD arg2; // second arg

};

5. Enable the events you want to record usingcyg_instrument_enable() , and disable them later. Look at
cyg/kernel/instrmnt.h and the examples below to see what events can be enabled.

6. Place the code you want to debug between the matching functionscyg_instrument_enable() and
cyg_instrument_disable() .

93

Chapter 27. Debugging Techniques

7. Examine the buffer. For now you need to look at the data in there (the example program below shows how to
do that), and future versions of eCos will include a host-side tool to help you understand the data.

Example 27-2. Using instrument buffers

This program is also provided in theexamples directory.

/* this is a program which uses eCos instrumentation buffers; it needs
to be linked with a kernel which was compiled with support for
instrumentation */

#include <stdio.h >

#include <pkgconf/kernel.h >

#include <cyg/kernel/instrmnt.h >

#include <cyg/kernel/kapi.h >

#ifndef CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER
error You must configure eCos with CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER
#endif

struct Instrument_Record
{

CYG_WORD16 type; // record type
CYG_WORD16 thread; // current thread id
CYG_WORD timestamp; // 32 bit timestamp
CYG_WORD arg1; // first arg
CYG_WORD arg2; // second arg

};

struct Instrument_Record instrument_buffer[20];
cyg_uint32 instrument_buffer_size = 20;

int main(void)
{

int i;

cyg_instrument_enable(CYG_INSTRUMENT_CLASS_CLOCK, 0);
cyg_instrument_enable(CYG_INSTRUMENT_CLASS_THREAD, 0);
cyg_instrument_enable(CYG_INSTRUMENT_CLASS_ALARM, 0);

printf("Program to play with instrumentation buffer\n");

cyg_thread_delay(2);

cyg_instrument_disable(CYG_INSTRUMENT_CLASS_CLOCK, 0);
cyg_instrument_disable(CYG_INSTRUMENT_CLASS_THREAD, 0);
cyg_instrument_disable(CYG_INSTRUMENT_CLASS_ALARM, 0);

for (i = 0; i < instrument_buffer_size; ++i) {
printf("Record %02d: type 0x%04x, thread %d, ",
i, instrument_buffer[i].type, instrument_buffer[i].thread);
printf("time %5d, arg1 0x%08x, arg2 0x%08x\n",
instrument_buffer[i].timestamp, instrument_buffer[i].arg1,
instrument_buffer[i].arg2);
}

94

Chapter 27. Debugging Techniques

return 0;
}

Here is how you could compile and run this program in theexamples directory, using (for example) the MN10300
simulator target:

$ make XCC=mn10300-elf-gcc INSTALL_DIR=/tmp/ecos-work-mn10300/install instrument-test
mn10300-elf-gcc -c -o instrument-test.o -g -Wall -I/tmp/ecos-work-mn10300/install/include \

-ffunction-sections -fdata-sections instrument-test.c
mn10300-elf-gcc -nostartfiles -L/tmp/ecos-work-mn10300/install/lib -W1,--gc-sections -o \

instrument-test instrument-test.o -Ttarget.ld -nostdlib
$ mn10300-elf-run --board=stdeval1 instrument-test

Example 27-3. Instrument buffer output

Here is the output of theinstrument-test program. Notice that in little over 2 seconds, and with very little activity,
and with few event types enabled, it gathered 17 records. In larger programs it will be necessary to select very few
event types for debugging.

Program to play with instrumentation buffer
Record 00: type 0x0207, thread 2, time 6057, arg1 0x48001cd8, arg2 0x00000002
Record 01: type 0x0202, thread 2, time 6153, arg1 0x48001cd8, arg2 0x00000000
Record 02: type 0x0904, thread 2, time 6358, arg1 0x48001d24, arg2 0x00000000
Record 03: type 0x0905, thread 2, time 6424, arg1 0x00000002, arg2 0x00000000
Record 04: type 0x0906, thread 2, time 6490, arg1 0x00000000, arg2 0x00000000
Record 05: type 0x0901, thread 2, time 6608, arg1 0x48009d74, arg2 0x48001d24
Record 06: type 0x0201, thread 2, time 6804, arg1 0x48001cd8, arg2 0x480013e0
Record 07: type 0x0803, thread 1, time 94, arg1 0x00000000, arg2 0x00000000
Record 08: type 0x0801, thread 1, time 361, arg1 0x00000000, arg2 0x00000000
Record 09: type 0x0802, thread 1, time 548, arg1 0x00000001, arg2 0x00000000
Record 10: type 0x0803, thread 1, time 94, arg1 0x00000000, arg2 0x00000000
Record 11: type 0x0801, thread 1, time 361, arg1 0x00000001, arg2 0x00000000
Record 12: type 0x0903, thread 1, time 513, arg1 0x48009d74, arg2 0x48001d24
Record 13: type 0x0208, thread 1, time 588, arg1 0x00000000, arg2 0x00000000
Record 14: type 0x0203, thread 1, time 697, arg1 0x48001cd8, arg2 0x480013e0
Record 15: type 0x0802, thread 1, time 946, arg1 0x00000002, arg2 0x00000000
Record 16: type 0x0201, thread 1, time 1083, arg1 0x480013e0, arg2 0x48001cd8
Record 17: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000
Record 18: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000
Record 19: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000

95

Chapter 27. Debugging Techniques

96

VI. Configuration and the Package
Repository

The following chapters contain information on runningecosconfig(the command line tool that manipulates con-
figurations and constructs build trees) and on managing a source repository across multiple versions of eCos.

Chapter 28. Manual Configuration
eCos developers will generally use the graphical Configuration Tool for configuring an eCos system and building
the target library. However, some user prefer to use command line tools. These command line tools can also be
used for batch operations on all platforms, for example as part of a nightly rebuild and testing procedure.

In the current release of the system the command line tools do not provide exactly the same functionality as the
graphical tool. Most importantly, there is no facility to resolve configuration conflicts interactively.

The eCos configuration system, both graphical and command line tools, are under constant development and en-
hancement. Developers should note that the procedures described may change considerably in future releases.

Directory Tree Structure
When building eCos there are three main directory trees to consider: the source tree, the build tree, and the install
tree.

The source tree, also known as the component repository, is read-only. It is possible to use a single component
repository for any number of different configurations, and it is also possible to share a component repository
between multiple users by putting it on a network drive.

The build tree contains everything that is specific to a particular configuration, including header and other files that
contain configuration data, and the object files that result from compiling the system sources for this configuration.

The install tree is usually located in theinstall subdirectory of the build tree. Once an eCos system has been
built, the install tree contains all the files needed for application development including the header files and the
target library. By making copies of the install tree after a build it is possible to separate application development
and system configuration, which may be desirable for some organizations.

Creating the Build Tree
Generating a build tree is a non-trivial operation and should not be attempted manually. Instead, eCos is shipped
with a tool calledecosconfigthat should be used to create a build tree.

Usuallyecosconfigwill be run inside the build tree itself. If you are creating a new build tree then typically you
will create a new empty directory using themkdir command,cd into that directory, and then invokeecosconfig
to create a configuration. By default, the configuration is stored in a fileecos.ecc in the current directory. The
configuration may be modified by editing this file directly.ecosconfigitself deals with a number of coarse-grained
configuration options such as the target platform and the packages that should be used.

Theecosconfigtool is also used subsequently to generate a build tree for a configuration. Once a build tree exists,
it is possible to runecosconfigagain inside the same build tree. This will be necessary if your wish to change some
of the configuration options.

ecosconfigdoes not generate the top-level directory of the build tree; you must do this yourself.

$ mkdir ecos-work
$ cd ecos-work

The next step is to runecosconfig:

99

Chapter 28. Manual Configuration

$ ecosconfig <qualifiers > <command>

ecosconfig qualifiers

The available command line qualifiers forecosconfigare as follows. Multiple qualifiers may be used on the com-
mand line:

--help

Provides basic usage guidelines for the available commands and qualifiers.

--config= <file >

Specifies an eCos configuration save file for use by the tool. By default, the fileecos.ecc in the current
directory is used. Developers may prefer to use a common location for all their eCos configurations rather
than keep the configuration information in the base of the build tree.

--prefix= <dir >

Specifies an alternative location for the install tree. By default, the install tree resides inside theinstall

directory in the build tree. Developers may prefer to locate the build tree in a temporary file hierarchy but
keep the install tree in a more permanent location.

--srcdir= <dir >

Specifies the location of the component repository. By default, the tool uses the location specified in the
ECOS_REPOSITORYenvironment variable. Developers may prefer to use of this qualifier if they are working
with more than one repository.

--no-resolve

Disables the implicit resolution of conflicts while manipulating the configuration data. developers may prefer
to resolve conflicts by editing the eCos configuration save file manually.

--ignore-errors

-i

By default, ecosconfig will exit with an error code if the current configuration contains any conflicts, and
it is not possible to generate or update a build tree for such configurations. This qualifier causes ecosconfig
to ignore such problems, and hence it is possible to generate a build tree even if there are still conflicts. Of
course, there are no guarantees that the resulting system will actually do anything.

--verbose

-v

Display more information.

--quiet

-q

Display less information.

The--config , --prefix and--srcdir qualifiers can also be written with two arguments, for example:

ecosconfig --srcdir <dir > ...

100

Chapter 28. Manual Configuration

This simplifies filename completion with some shells.

ecosconfig commands

The available commands forecosconfigare as follows:

list

Lists the available packages, targets and templates as installed in the eCos repository. Aliases and package
versions are also reported.

new<target> [<template> [<version>]]

Creates a new eCos configuration for the specified target hardware and saves it. A software template may also
be specified. By default, the template named ‘default’ is used. If the template version is not specified, the latest
version is used.

target <target>

Changes the target hardware selection for the eCos configuration. This has the effect of unloading packages
supporting the target selected previously and loading the packages which support the new hardware. This
command will be used typically when switching between a simulator and real hardware.

template<template> [<version>]

Changes the template selection for the eCos configuration. This has the effect of unloading packages specified
by the template selected previously and loading the packages specified by the new template. By default, the
latest version of the specified template is used.

remove<packages>

Removes the specified packages from the eCos configuration. This command will be used typically when the
template on which a configuration is based contains packages which are not required.

add <packages>

Adds the specified packages to the eCos configuration. This command will be used typically when the template
on which a configuration is based does not contain all the packages which are required.For example, add-on
packages provided by third parties will not be known to the standard templates, so they will have to be added
explicitly.

version<version> <packages>

Selects the specified version of a number of packages in the eCos configuration. By default, the most recent
version of each package is used. This command will be used typically when an older version of a package is
required.

check

Presents the following information concerning the current configuration:

1. the selected target hardware

2. the selected template

101

Chapter 28. Manual Configuration

3. additional packages

4. removed packages

5. the selected version of packages where this is not the most recent version

6. conflicts in the current configuration

resolve

Resolves conflicts identified in the current eCos configuration by invoking an inference capability. Resolved
conflicts are reported, but not all conflicts may be resolvable. This command will be used typically following
manual editing of the configuration.

export <file>

Exports a minimal eCos configuration save file with the specified name. This file contains only those op-
tions which do not have their default value. Such files are used typically to transfer option values from one
configuration to another.

import <file>

Imports a minimal eCos configuration save file with the specified name. The values of those options specified
in the file are applied to the current configuration.

tree

Generates a build tree based on the current eCos configuration. This command will be used typically just
before building eCos.Normally a build tree can only be generated if if the configuration has no unresolved
conflicts, but--ignore-errors can be used to override this.

Conflicts and constraints
Configuration options are not completely independent. For example the C library’sstrtod() andatof() func-
tions rely on the math library package to provide certain functionality. If the math library package is removed then
the C library can no longer provide these functions. Each package describes constraints like these in CDL"re-
quires"properties. If a constraint is not satisfied, then the configuration contains a conflict. For any given conflict
there can be several resolution options. For example, it would be possible to add the math library package back to
the configuration, or to disable thestrtod() andatof() functions.

The eCos configuration tools will report any conflicts in the current configuration. If there are any such conflicts
then the configuration is usually unsafe and it makes no sense to build and run eCos in such circumstances. In fact,
any attempt at building eCos is likely to fail. In exceptional cases it is possible to override this by using e.g. the
--ignore-errors qualifier with ecosconfig.

Many constraints are fairly simple in nature, and the configuration tools contain an inference engine which can re-
solve the associated conflicts automatically. For example, if the math library package is removed then the inference
engine can resolve the resulting conflict by disabling the configuration option forstrtod() andatof() . All such
changes will be reported. Sometimes the inference engine cannot resolve a conflict, for example it is not allowed
to override a change that has been made explicitly by the user. Sometimes it will find a solution which does not
match the application’s requirements.

102

Chapter 28. Manual Configuration

A typical session involving conflicts would look something like this:

$ ecosconfig new pid

This creates a new configuration with the default template. For most targets this will not result in any conflicts,
because the default settings for the various options meet the requirements of the default template.

For some targets there may be conflicts and the inference engine would come into play.

$ ecosconfig remove libm
U CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
U CYGFUN_LIBC_strtod, new inferred value 0
U CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

ecosconfig reports that this change caused three conflicts, all in the C library. The inference engine was able to
resolve all the conflicts and update the relevant configuration options accordingly.

To suppress the inference engine--no-resolve can be used:

$ ecosconfig new pid
$ ecosconfig --no-resolve remove libm
C CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, "requires" constraint not satisfied: CYG-
PKG_LIBM
C CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, "requires" constraint not satisfied: CYG-
PKG_LIBM
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM

Three unresolved conflicts are reported.

The check command can be used to get the current state of the configuration, and the--verbose qualifier will
provide additional information:

$ ecosconfig --srcdir /home/bartv/ecc/ecc --verbose check
Target: pid
Template: default
Removed:

CYGPKG_LIBM
3 conflict(s):
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM

Possible solution:
CYGFUN_LIBC_strtod -> 0
CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0

C CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, "requires" constraint not satisfied: CYG-
PKG_LIBM

Possible solution:
CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT -> 0

C CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, "requires" constraint not satisfied: CYG-
PKG_LIBM

Possible solution:
CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0

If the proposed solutions are acceptable, the resolve command can be used to apply them:

$ ecosconfig resolve
U CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
U CYGFUN_LIBC_strtod, new inferred value 0

103

Chapter 28. Manual Configuration

U CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

The current configuration is again conflict-free and it is possible to generate a build tree. The--quiet qualifier
can be used to suppress the change messages, if desired.

When changing individual configuration options by editing the ecos.ecc file (as described below), the resulting sys-
tem should be checked and any problems should be resolved. For example, if CYGFUN_LIBC_strtod is explicitly
enabled in the savefile:

$ edit ecos.ecc
$ ecosconfig check
Target: pid
Template: default
Removed:

CYGPKG_LIBM
1 conflict(s):
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
$ ecosconfig resolve
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM

In this case the inference engine cannot resolve the conflict automatically because that would involve changing a
user setting. Any attempt to generate a build tree will fail:

$ ecosconfig --srcdir /home/bartv/ecc/ecc tree
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
Unable to generate build tree, this configuration still contains conflicts.
Either resolve the conflicts or use --ignore-errors

It is still possible to generate a build tree:

$ ecosconfig --srcdir /home/bartv/ecc/ecc --ignore-errors tree
C CYGFUN_LIBC_strtod, "requires" constraint not satisfied: CYGPKG_LIBM
$ make

In this case eCos will fail to build. In other cases of unresolved conflicts eCos may build, but may not run. In general
all conflicts should be resolved by editing theecos.ecc file, by letting the inference engine make appropriate
changes, or by other means, before any attempt is made to build or run eCos.

Building the System
Once a build tree has been generated withecosconfig, building eCos is straightforward:

$ make

The build tree contains the subdirectories, makefiles, and everything else that is needed to generate the default
configuration for the selected architecture and platform. The only requirement is that the tools needed for that
architecture, for examplepowerpc-eabi-g++, are available using the standard search path. If this is not the case
then themakewill fail with an error message. If you have a multiprocessor system then it may be more efficient to
use:

104

Chapter 28. Manual Configuration

$ make -j n

wheren is equal to the number of processors on your system.

Once themake process has completed, the install tree will contain the header files and the target library that are
needed for application development.

It is also possible to build the system’s test cases for the current configuration:

$ make tests

The resulting test executables will end up in atests subdirectory of the install tree.

If disk space is scarce then it is possible to make the copy of the install tree for application development purposes,
and then use:

$ make clean

The build tree will now use up a minimum of disk space — the bulk of what is left consists of configuration header
files that you may have edited and hence should not be deleted automatically. However, it is possible to rebuild the
system at any time without re-invokingecosconfig, just by runningmakeagain.

Under exceptional circumstances it may be necessary to runmake cleanfor other reasons, such as when a new
release of the toolchain is installed. The toolchain includes a number of header files which are closely tied to
the compiler, for examplelimits.h , and these header files are not and should not be duplicated by eCos. The
makefiles perform header file dependency analysis, so that when a header file is changed all affected sources will
be rebuilt during the nextmake. This is very useful when the configuration header files are changed, but it also
means that a build tree containing information about the locations of header files must be rebuilt. If a new version
of the toolchain is installed and the old version is removed then this location information is no longer accurate, and
make will complain that certain dependencies cannot be satisfied. Under such circumstances it is necessary to do
amake cleanfirst.

Packages
eCos is a component architecture. The system comes as a number of packages which can be enabled or disabled as
required, and new packages can be added as they become available. Unfortunately, the packages are not completely
independent: for example theµITRON compatibility package relies almost entirely on functionality provided by
the kernel package, and it would not make sense to try to buildµITRON if the kernel was disabled. The C library
has fewer dependencies: some parts of the C library rely on kernel functionality, but it is possible to disable these
parts and thus build a system that has the C library but no kernel. Theecosconfigtool has the capability of checking
that all the dependencies are satisfied, but it may still be possible to produce configurations that will not build or
(conceivably) that will build but not run. Developers should be aware of this and take appropriate care.

By default,ecosconfigwill include all packages that are appropriate for the specified hardware in the configuration.
The common HAL package and the eCos infrastructure must be present in every configuration. In addition, it is
always necessary to have one architectural HAL package and one platform HAL package. Other packages are
optional, and can be added or removed from a configuration as required.

The application may not require all of the packages; for example, it might not need theµITRON compatibility
package, or the floating point support provided by the math library. There is a slight overhead when eCos is built
because the packages will get compiled, and there is also a small disk space penalty. However, any unused facilities
will get stripped out at link-time, so having redundant packages will not affect the final executable.

105

Chapter 28. Manual Configuration

Coarse-grained Configuration
Coarse-grained configuration of an eCos system means making configuration changes using theecosconfigtool.
These changes include:

1. switching to different target hardware

2. switching to a different template

3. adding or removing a package

4. changing the version of a package

Wheneverecosconfiggenerates or updates an eCos configuration, it generates a configuration save file.

Suppose that the configuration was first created using the following command line:

$ ecosconfig new stdeval1

To change the target hardware to the Cogent CMA28x PowerPC board, the following command would be needed:

$ ecosconfig target cma28x

To switch to the PowerPC simulator instead:

$ ecosconfig target psim

As the hardware changes, hardware-related packages such as the HAL packages and device drivers will be added
to and removed from the configuration as appropriate.

To remove any package from the current configuration, use theremovecommand:

$ ecosconfig remove uitron

You can disable multiple packages using multiple arguments, for example:

$ ecosconfig remove uitron libm

If this turns out to have been a mistake then you can re-enable one or more packages with theadd command:

$ ecosconfig add libm

Changing the desired version for a package is also straightforward:

$ ecosconfig version v2_1 kernel

It is necessary to regenerate the build tree and header files following any changes to the configuration before
rebuilding eCos:

$ ecosconfig tree

Fine-grained Configuration
ecosconfigonly provides coarse-grained control over the configuration: the hardware, the template and the pack-
ages that should be built. Unlike the Configuration Tool,ecosconfigdoes not provide any facilities for manipulating

106

Chapter 28. Manual Configuration

finer-grained configuration options such as how many priority levels the scheduler should support. There are hun-
dreds of these options, and manipulating them by means of command line arguments would not be sensible.

In the current system fine-grained configuration options may be manipulated by manual editing of the configuration
file. When a file has been edited in this way, theecosconfigtool should be used to check the configuration for any
conflicts which may have been introduced:

$ ecosconfig check

The check command will list all conflicts and will also rewrite the configuration file, propagating any changes
which affect other options. The user may choose to resolve the conflicts either by re-editing the configuration file
manually or by invoking the inference engine using theresolvecommand:

$ ecosconfig resolve

Theresolvecommand will list all conflicts which can be resolved and save the resulting changes to the configura-
tion.

It is necessary to regenerate the build tree and header files following any changes to the configuration before
rebuilding eCos:

$ ecosconfig tree

All the configuration options and their descriptions are listed in theeCos Reference Manual.

Editing an eCos Savefile
The eCos configuration information is held in a single savefile, typicallyecos.ecc , which can be generated by
either the GUI configuration tool or by the command lineecosconfigtool. The file normally exists at the top level
of the build tree. It is a text file, allowing the various configurations options to be edited inside a suitable text editor
or by other programs or scripts, as well as in the GUI config tool.

An eCos savefile is actually a script in theTcl programming language, so any modifications to the file need to
preserve Tcl syntax. For most configuration options, any modifications will be trivial and there is no need to
worry about Tcl syntax. For example, changing a 1 to a 0 to disable an option. For more complicated options, for
example CYGDAT_UITRON_TASK_EXTERNS, which involves some lines of C code, more care has to be taken. If an
edited savefile is no longer a valid Tcl script then the configuration tools will be unable to read back the data for
further processing, for example to generate a build tree. An outline of Tcl syntax is given below. One point worth
noting here is that a line that begins with a “#” is usually a comment, and the bulk of an eCos savefile actually
consists of such comments, to make it easier to edit.

Header

An eCos savefile begins with a header, which typically looks something like this:

eCos saved configuration
---- commands --
This section contains information about the savefile format.
It should not be edited. Any modifications made to this section
may make it impossible for the configuration tools to read
the savefile.

107

Chapter 28. Manual Configuration

cdl_savefile_version 1;
cdl_savefile_command cdl_savefile_version {};
cdl_savefile_command cdl_savefile_command {};
cdl_savefile_command
cdl_configuration { description hardware template package };
cdl_savefile_command cdl_package { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_component { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_option { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_interface { value_source user_value wizard_value inferred_value };

This section of the savefile is intended for use by the configuration system, and should not be edited. If this section
is edited then the various configuration tools may no longer be able to read in the modified savefile.

Toplevel Section

The header is followed by a section that defines the configuration as a whole. A typical example would be:

---- toplevel --
This section defines the toplevel configuration object. The only
values that can be changed are the name of the configuration and
the description field. It is not possible to modify the target,
the template or the set of packages simply by editing the lines
below because these changes have wide-ranging effects. Instead
the appropriate tools should be used to make such modifications.

cdl_configuration eCos {
description ““ ;

These fields should not be modified.
hardware pid ;
template uitron ;
package -hardware CYGPKG_HAL_ARM current ;
package -hardware CYGPKG_HAL_ARM_PID current ;
package -hardware CYGPKG_IO_SERIAL current ;
package -template CYGPKG_HAL current ;
package -template CYGPKG_IO current ;
package -template CYGPKG_INFRA current ;
package -template CYGPKG_KERNEL current ;
package -template CYGPKG_UITRON current ;
package -template CYGPKG_LIBC current ;
package -template CYGPKG_LIBM current ;
package -template CYGPKG_DEVICES_WALLCLOCK current ;
package -template CYGPKG_ERROR current ;
};

This section allows the configuration tools to reload the various packages that make up the configuration. Most of
the information should not be edited. If it is necessary to add a new package or to remove an existing one then the
appropriate tools should be used for this, for example:

$ ecosconfig remove CYGPKG_LIBM

108

Chapter 28. Manual Configuration

There are two fields which can be edited. Configurations have a name; in this case eCos. They can also have a
description, which is some arbitrary text. The configuration tools do not make use of these fields, they exist so that
users can store additional information about a configuration.

Conflicts Section

The toplevel section is followed by details of all the conflicts (if any) in the configuration, for example:

---- conflicts ---
There are 2 conflicts.
#
option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET
Property LegalValues
Illegal current value 100000
Legal values are: -90000 to 90000
#
option CYGSEM_LIBC_TIME_CLOCK_WORKING
Property Requires
Requires constraint not satisfied: CYGFUN_KERNEL_THREADS_TIMER

When editing a configuration you may end up with something that is invalid. Any problems in the
configuration will be reported in the conflicts section. In this case there are two conflicts. The option
CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSEThas been given an illegal value: typically this would be fixed
by searching for the definition of that option later on in the savefile and modifying the value. The second
conflict is more interesting, an unsatisfiedrequires constraint. Configuration options are not independent:
disabling some functionality in, say, the kernel, can have an impact elsewhere; in this case the C library. The
various dependencies between the options are specified by the component developers and checked by the
configuration system. In this case there are two obvious ways in which the conflict could be resolved: re-enabling
CYGFUN_KERNEL_THREADS_TIMER, or disablingCYGSEM_LIBC_TIME_CLOCK_WORKING. Both of these options
will be listed later on in the file.

Some care has to be taken when modifying configuration options, to avoid introducing new conflict.
For instance it is possible that there might be other options in the system which have a dependency on
CYGSEM_LIBC_TIME_CLOCK_WORKING, so disabling that option may not be the best way to resolve the conflict.
Details of all such dependencies are provided in the appropriate places in the savefile.

It is not absolutely required that a configuration be conflict-free before generating a build tree and building eCos. It
is up to the developers of each component to decide what would happen if an attempt is made to build eCos while
there are still conflicts. In serious cases there is likely to be a compile-time failure, or possibly a link-time failure. In
less serious cases the system may build happily and the application can be linked with the resulting library, but the
component may not quite function as intended - although it may still be good enough for the specific needs of the
application. It is also possible that everything builds and links, but once in a while the system will unaccountably
crash. Using a configuration that still has conflicts is done entirely at the user’s risk.

Data Section

The bulk of the savefile lists the various packages, components, and options, including their values and the various
dependencies. A number of global options come first, especially those related to the build process such as compiler
flags. These are followed by the various packages, and the components and options within those packages, in order.

109

Chapter 28. Manual Configuration

Packages, components and options are organized in a hierarchy. If a particular component is disabled then all
options and sub-components below it will be inactive: any changes made to these will have no effect. The savefile
contains information about the hierarchy in the form of comments, for example:

cdl_package CYGPKG_KERNEL ...
>

cdl_component CYGPKG_KERNEL_EXCEPTIONS ...
>

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE ...
cdl_option CYGSEM_KERNEL_EXCEPTIONS_GLOBAL ...
<

cdl_component CYGPKG_KERNEL_SCHED ...
>

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE ...
cdl_option CYGSEM_KERNEL_SCHED_BITMAP ...
<

<

This corresponds to the following hierarchy:

CYGPKG_KERNEL
CYGPKG_KERNEL_EXCEPTIONS

CYGSEM_KERNEL_EXCEPTIONS_DECODE
CYGSEM_KERNEL_EXCEPTIONS_GLOBAL

CYGPKG_KERNEL_SCHED
CYGSEM_KERNEL_SCHED_MLQUEUE
CYGSEM_KERNEL_SCHED_BITMAP

Providing the hierarchy information in this way allows programs or scripts to analyze the savefile and readily
determine the hierarchy. It could also be used by a sufficiently powerful editor to support structured editing of eCos
savefiles. The information is not used by the configuration tools themselves since they obtain the hierarchy from
the original CDL scripts.

Each configurable entity is preceded by a comment, of the following form:

Kernel schedulers
doc: ref/ecos-ref/ecos-kernel-overview.html#THE-SCHEDULER
The eCos kernel provides a choice of schedulers. In addition
there are a number of configuration options to control the
detailed behaviour of these schedulers.
cdl_component CYGPKG_KERNEL_SCHED {
...
};

This provides a short textual aliasKernel schedulers for the component. If online documentation is available
for the configurable entity then this will come next. Finally there is a short description of the entity as a whole. All
this information is provided by the component developers.

Each configurable entity takes the form:

<type > <name> {
<data >

110

Chapter 28. Manual Configuration

};

Configurable entities may not be active. This can be either because the parent is disabled or inactive, or because
there are one or moreactive_if properties. Modifying the value of an inactive entity has no effect on the configura-
tion, so this information is provided first:

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {
This option is not active
The parent CYGPKG_KERNEL_EXCEPTIONS is disabled
...
};

...

cdl_option CYGIMP_IDLE_THREAD_YIELD {
This option is not active
ActiveIf constraint: (CYGNUM_KERNEL_SCHED_PRIORITIES == 1)
CYGNUM_KERNEL_SCHED_PRIORITIES == 32
-- > 0
...
};

For CYGIMP_IDLE_THREAD_YIELDthe savefile lists the expression that must be satisfied if the option is to be
active, followed by the current value of all entities that are referenced in the expression, and finally the result of
evaluating that expression.

Not all options are directly modifiable in the savefile. First, the value of packages (which is the version of that
package loaded into the configuration) cannot be modified here.

cdl_package CYGPKG_KERNEL {
Packages cannot be added or removed, nor can their version be changed,
simply by editing their value. Instead the appropriate configuration
should be used to perform these actions.
...
};

The version of a package can be changed using e.g.:

$ ecosconfig version 1.3 CYGPKG_KERNEL

Even though a package’s value cannot be modified here, it is still important for the savefile to contain the details.
In particular packages may impose constraints on other configurable entities and may be referenced by other
configurable entities. Also it would be difficult to understand or extract the configuration’s hierarchy if the packages
were not listed in the appropriate places in the savefile.

Some components (or, conceivably, options) do not have any associated data. Typically they serve only to introduce
another level in the hierarchy, which can be useful in the context of the GUI configuration tool.

cdl_component CYGPKG_HAL_COMMON_INTERRUPTS {
There is no associated value.
};

Other components or options have a calculated value. These are not user-modifiable, but typically the value will
depend on other options which can be modified. Such calculated options can be useful when controlling what gets

111

Chapter 28. Manual Configuration

built or what ends up in the generated configuration header files. A calculated value may also effect other parts of
the configuration, for instance, via arequiresconstraint.

cdl_option BUFSIZ {
Calculated value: CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO ? CYGNUM_LIBC_STDIO_BUFSIZE : 0
CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO == 1
CYGNUM_LIBC_STDIO_BUFSIZE == 256
Current_value: 256
};

A special type of calculated value is theinterface. The value of an interface is the number of active and enabled
options whichimplementthat interface. Again the value of an interface cannot be modified directly; only by mod-
ifying the options which implement the interface. However, an interface can be referenced by other parts of the
configuration.

cdl_interface CYGINT_KERNEL_SCHEDULER {
Implemented by CYGSEM_KERNEL_SCHED_MLQUEUE, active, enabled
Implemented by CYGSEM_KERNEL_SCHED_BITMAP, active, disabled
This value cannot be modified here.
Current_value: 1
Requires: 1 == CYGINT_KERNEL_SCHEDULER
CYGINT_KERNEL_SCHEDULER == 1
-- > 1

The following properties are affected by this value
interface CYGINT_KERNEL_SCHEDULER
Requires: 1 == CYGINT_KERNEL_SCHEDULER
};

If the configurable entity is modifiable then there will be lines like the following:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
...
Flavor: bool
No user value, uncomment the following line to provide one.
user_value 1
value_source default
Default value: 1
...
};

Configurable entities can have one of four different flavors: none, bool, data and booldata. Flavor none indicates
that there is no data associated with the entity, typically it just acts as a placeholder in the overall hierarchy. Flavor
bool is the most common, it is a simple yes-or-no choice. Flavor data is for more complicated configuration choices,
for instance the size of an array or the name of a device. Flavor booldata is a combination of bool and data: the
option can be enabled or disabled, and there is some additional data associated with the option as well.

In the above example the user has not modified this particular option, as indicated by the comment and by the
commented-outuser_value line. To disable this option the file should be edited to:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
...
Flavor: bool

112

Chapter 28. Manual Configuration

No user value, uncomment the following line to provide one.
user_value 0
value_source default
Default value: 1
...
}

The comment preceding theuser_value 0 line can be removed if desired, otherwise it will be removed automat-
ically the next time the file is read and updated by the configuration tools.

Much the same process should be used for options with the data flavor, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {
Flavor: data
No user value, uncomment the following line to provide one.
user_value 3600
value_source default
Default value: 3600
Legal values: -90000 to 90000
};

can be changed to:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {
Flavor: data
user_value 7200
value_source default
Default value: 3600
Legal values: -90000 to 90000 };

Note that the original text provides the default value in theuser_value comment, on the assumption that the
desired new value is likely to be similar to the default value. Thevalue_source comment does not need to be
updated, it will be fixed up if the savefile is fed back into the configuration system and regenerated.

For options with the booldata flavor, theuser_value line needs take two arguments. The first argument is for the
boolean part, the second for the data part. For example:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
No user value, uncomment the following line to provide one.
user_value 1 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

could be changed to:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
user_value 1 IEEE

113

Chapter 28. Manual Configuration

value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

or alternatively, if the whole component should be disabled, to:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
user_value 0 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

Some options take values that span multiple lines. An example would be:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data
No user value, uncomment the following line to provide one.
user_value \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
value_source default
Default value: \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
};

Setting a user value for this option involves uncommenting and modifying all relevant lines, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data
user_value \
“CYG_UIT_MEMPOOLVAR(vpool1, 4000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 4000),”
value_source default
Default value: \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
};

In such cases appropriate care has to be taken to preserve Tcl syntax, as discussed below.

The configuration system has the ability to keep track of several different values for any given option. All options
start off with a default value, in other words their value source is set todefault . If a configuration involves conflicts
and the configuration system’s inference engine is allowed to resolve these automatically then it may provide an
inferred value instead, for example:

114

Chapter 28. Manual Configuration

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
No user value, uncomment the following line to provide one.
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

Inferred values are calculated by the configuration system and should not be edited by the user. If the inferred value
is not correct then a user value should be substituted instead:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

The inference engine will not override a user value with an inferred one. Making a change like this may well re-
introduce a conflict, since the inferred value was only calculated to resolve a conflict. Another run of the inference
engine may find a different and more acceptable way of resolving the conflict, but this is not guaranteed and it may
be up to the user to examine the various dependencies and work out an acceptable solution.

Inferred values are listed in the savefile because the exact inferred value may depend on the order in which changes
were made and conflicts were resolved. If the inferred values were absent then it is possible that reloading a savefile
would not exactly restore the configuration. Default values on the other hand are entirely deterministic so there is
no actual need for the values to be listed in the savefile. However, the default value can be very useful information
so it is provided in a comment.

Occasionally the user will want to do some experimentation, and temporarily switch an option from a user value
back to a default or inferred one to see what the effect would be. This could be achieved by simply commenting
out the user value. For instance, if the current savefile contains:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source user
Default value: 1
...
};

then the inferred value could be restored by commenting out or removing theuser_value line:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {

115

Chapter 28. Manual Configuration

Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source user
Default value: 1
...
};

This is fine for simple values. However if the value is complicated then there is a problem: commenting out the
user_value line or lines means that the user value becomes invisible to the configuration system, so if the savefile
is loaded and then regenerated the information will be lost. An alternative approach is to keep theuser_value but
explicitly set thevalue_source line, for example:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

In this case the configuration system will use the inferred value for the purposes of dependency analysis etc., even
though a user value is present. To restore the user value thevalue_source line can be commented out again. If
there is no explicitvalue_source then the configuration system will just use the highest priority one: the user
value if it exists; otherwise the inferred value if it exists; otherwise the default value which always exists.

The default value for an option can be a simple constant, or it can be an expression involving other options. In the
latter case the expression will be listed, together with the values for all options referenced in the expression and
the current result of evaluating that expression. This is for informational purposes only, the default value is always
recalculated deterministically when loading in a savefile.

cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
Flavor: data
No user value, uncomment the following line to provide one.
user_value arm-elf
value_source default
Default value: CYGHWR_THUMB ? “thumb-elf” : “arm-elf”
CYGHWR_THUMB == 0
-- > arm-elf
};

For options with the data or booldata flavor, there are likely to be constraints on the possible values. If the value
is supposed to be a number in a given range and a user value of “hello world ” is provided instead then there
are likely to be compile-time failures. Component developers can specify constraints on the legal values, and these
will be listed in the savefile.

cdl_option X_TLOSS {
Flavor: data
No user value, uncomment the following line to provide one.
user_value 1.41484755040569E+16

116

Chapter 28. Manual Configuration

value_source default
Default value: 1.41484755040569E+16
Legal values: 1 to 1e308
};

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
No user value, uncomment the following line to provide one.
user_value 1 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

In some cases the legal values list may be an expression involving other options. If so then the current values of the
referenced options will be listed, together with the result of evaluating the list expression, just as for default value
expressions.

If an illegal value is provided then this will result in a conflict, listed in the conflicts section of the savefile. For
more complicated options a simple legal values list is not sufficient to allow the current value to be validated,
and the configuration system will be unable to flag conflicts. This issue will be addressed in future releases of the
configuration system.

Following the value-related fields for a given option, anyrequiresconstraints belonging to this option will be
listed. These constraints are only effective if the option is active and, for bool and booldata flavors, enabled. If
some aspect of eCos functionality is inactive or disabled then it cannot impose any constraints on the rest of the
system. As usual, the full expression will be listed followed by the current values of all options that are referenced
and the result of evaluating the expression:

cdl_option CYGSEM_LIBC_TIME_TIME_WORKING {
...
Requires: CYGPKG_DEVICES_WALLCLOCK
CYGPKG_DEVICES_WALLCLOCK == current
-- > 1
};

When modifying the value of an option it is useful to know not only what constraints the option imposes on the
rest of the system but also what other options in the system depend in some way on this one. The savefile provides
this information:

cdl_option CYGFUN_KERNEL_THREADS_TIMER {
...
The following properties are affected by this value
option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT
Requires: CYGFUN_KERNEL_THREADS_TIMER
option CYGIMP_UITRON_STRICT_CONFORMANCE
Requires: CYGFUN_KERNEL_THREADS_TIMER
option CYGSEM_LIBC_TIME_CLOCK_WORKING
Requires: CYGFUN_KERNEL_THREADS_TIMER
};

117

Chapter 28. Manual Configuration

Tcl Syntax

eCos savefiles are implemented as Tcl scripts, and are read in by running the data through a standard Tcl
interpreter that has been extended with a small number of additional commands such ascdl_option and
cdl_configuration . In many cases this is an implementation detail that can be safely ignored while editing a
savefile: simply replacing a1 with a 0 to disable some functionality is not going to affect whether or not the
savefile is still a valid Tcl script and can be processed by a Tcl interpreter. However, there are more complicated
cases where an understanding of Tcl syntax is at least desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_EXTERNS {
Flavor: data
user_value \

“static char vpool1\[2000 \], \\
vpool2\[2000 \], \\

vpool3\[2000 \];”
value_source default
Default value: \

“static char vpool1\[2000 \], \\
vpool2\[2000 \], \\

vpool3\[2000 \];”
};

The backslash at the end of theuser_value line is processed by the Tcl interpreter as a line continuation character.
The quote marks around the user data are also interpreted by the Tcl interpreter and serve to turn the entire data
field into a single argument. The backslashes preceding the opening and closing square brackets prevent the Tcl
interpreter from treating these characters specially, otherwise there would be an attempt atcommand substitution
as described below. The double backslashes at the end of each line of the data will be turned into a single backslash
by the Tcl interpreter, rather than escaping the newline character, so that the actual data seen by the configuration
system is:

static char vpool1[2000], \
vpool2[2000], \
vpool3[2000];

This is of course the data that should end up in theµITRON configuration header file. The opening and closing
braces surrounding the entire body of the option data are also significant and cause this body to be passed as a
single argument to thecdl_option command. The closing semicolon is optional in this example, but provides a
small amount of additional robustness if the savefile is edited such that it is no longer a valid Tcl script. If the data
contained any$ characters then these would have to be treated specially as well, via a backslash escape.

In spite of what all the above might seem to suggest, Tcl is actually a very simple yet powerful scripting language:
the syntax is defined by just eleven rules. On occasion this simplicity means that Tcl’s behaviour is subtly different
from other languages, which can confuse newcomers.

When the Tcl interpreter is passed some data such asputs Hello , it splits this data into a command and its
arguments. The command will be terminated by a newline or by a semicolon, unless one of the quoting mechanisms
is used. The command and each of its arguments are separated by white space. So in the following example:

puts Hello
set x 42

118

Chapter 28. Manual Configuration

will result in two separate commands being executed. The first command isputs and is passed a single argument,
Hello . The second command isset and is passed two arguments,x and42. The intervening newline character
serves to terminate the first command, and a semi-colon separator could be used instead:

puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to separate arguments.

Now consider the following:

set x Hello world

This is not valid Tcl. It is an attempt to invoke theset command with three arguments:x , Hello , andworld . The
set only takes two arguments, a variable name and a value, so it is necessary to combine the data into a single
argument by quoting:

set x “Hello world”

When the Tcl interpreter encounters the first quote character it treats all subsequent data up to but not including
the closing quote as part of the current argument. The quote marks are removed by the interpreter, so the second
argument passed to theset command is justHello world without the quote characters. This can be significant in
the context of eCos savefiles. For instance, consider the following configuration option:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
Flavor: data
No user value, uncomment the following line to provide one.
user_value “\”/dev/ttydiag\””
value_source default
Default value: “\”/dev/ttydiag\””
};

The desired value of the configuration option should be a valid C string, complete with quote characters. If the
savefile was edited to:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
Flavor: data
user_value “/dev/ttydiag”
value_source default
Default value: “\”/dev/ttydiag\””
};

then the Tcl interpreter would remove the quote marks when the savefile is read back in, so the option’s value
would not have any quote marks and would not be a valid C string. The configuration system is not yet able to
perform the required validation so the following#define would be generated in the configuration header file:

#define CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE /dev/ttydiag

This is likely to cause a compile-time failure when building eCos.

A quoted argument continues until the closing quote character is encountered, which means that it can span multiple
lines. This can also be encountered in eCos savefiles, for instance, in theCYGDAT_UITRON_MEMPOOLVAR_EXTERNS

example mentioned earlier. Newline or semicolon characters do not terminate the current command in such cases.

The Tcl interpreter supports much the same forms of backslash substitution as other common programming lan-
guages. Some backslash sequences such as\n will be replaced by the appropriate character. The sequence\\ will

119

Chapter 28. Manual Configuration

be replaced by a single backslash. A backslash at the very end of a line will cause that backslash, the newline
character, and any white space at the start of the next line to be replaced by a single space. Hence the following
two Tcl commands are equivalent:

puts “Hello\nworld\n”
puts \
“Hello
world
“

In addition to quote and backslash characters, the Tcl interpreter treats square brackets, the$ character, and braces
specially. Square brackets are used for command substitution, for example:

puts “The answer is [expr 6 * 9]”

When the Tcl interpreter encounters the square brackets it will treat the contents as another command that should
be executed first, and the result of executing that is used when continuing to process the script. In this case the Tcl
interpreter will execute the commandexpr 6 * 9 , yielding a result of 54, and then the Tcl interpreter will execute
puts “The answer is 54” . It should be noted that the interpreter contains only one level of substitution: if the
result of performing command substitution performs further special characters such as square brackets then these
will not be treated specially.

Command line substitution is very unlikely to prove useful in the context of an eCos savefile, but it is part of the
Tcl language and hence cannot be easily suppressed while reading in a savefile. As a result care has to be taken
when savefile data involves square brackets. Consider the following:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
...
user_value \

“static char fpool1[2000],
fpool2[2000];”

...
};

The Tcl interpreter will interpret the square brackets as an attempt at command substitution and hence it will
attempt to execute the command2000 with no arguments. No such command is defined by the Tcl language or by
the savefile-related extensions provided by the configuration system, so this will result in an error when an attempt
is made to read back the savefile. Instead it is necessary to backslash-escape the square brackets and thus suppress
command substitution:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
...
user_value \

“static char fpool1\[2000 \],
fpool2\[2000 \];”

...
};

Similarly the$ character is used in Tcl scripts to perform variable substitution:

set x [expr 6 * 9]
puts “The answer is $x”

120

Chapter 28. Manual Configuration

Variable substitution, like command substitution, is very unlikely to prove useful in the context of an eCos savefile.
Should it be necessary to have a$ character in configuration data then again a backslash escape needs to be used.

cdl_option FOODAT_MONITOR_PROMPT {
...
user_value “\$ “
...

};

Braces are used to collect a sequence of characters into a single argument, just like quotes. The difference is that
variable, command and backslash substitution do not occur inside braces (with the sole exception of backslash
substitution at the end of a line). So, for example, theCYGDAT_UITRON_MEMPOOL_EXTERNFIXED_EXTERNSvalue
could be written as:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
...
user_value \

{static char fpool1[2000],
fpool2[2000];}

...
};

The configuration system does not use this when generating savefiles because for simple edits of a savefile by
inexperienced users the use of brace characters is likely to be a little bit more confusing than the use of quotes.

At this stage it is worth noting that the basic format of each configuration option in the savefile makes use of braces:

cdl_option <name> {
...

};

The configuration system extends the Tcl language with a small number of additional commands such as
cdl_option . These commands take two arguments, a name and a body, where the body consists of all the text
between the braces. First a check is made that the specified option is actually present in the configuration. Then
the body is executed in a recursive invocation of the Tcl interpreter, this time with additional commands such as
user_value andvalue_source . If, after editing, the braces are not correctly matched up then the savefile will
no longer be a valid Tcl script and errors will be reported when the savefile is loaded again.

Comments in Tcl scripts are introduced by a hash character#. However, a hash character only introduces a comment
if it occurs where a command is expected. Consider the following:

This is a comment
puts “Hello” # world

The first line is a valid comment, since the hash character occurs right at the start where a command name is
expected. The second line does not contain a comment. Instead it is an attempt to invoke theputs command with
three arguments:Hello , # andworld . These are not valid arguments for theputs command so an error will be
raised.

If the second line was rewritten as:

puts “Hello”; # world

121

Chapter 28. Manual Configuration

then this is a valid Tcl script. The semicolon identifies the end of the current command, so the hash character occurs
at a point where the next command would start and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behaviour. Consider the following:

cdl_option WHATEVER {
This is a comment }
user_value 42
...

}

Consider the way the Tcl interpreter processes this. The command name and the first argument do not pose any
special difficulties. The opening brace is interpreted as the start of the next argument, which continues until a
closing brace is encountered. In this case the closing brace occurs on the second line, so the second argument passed
to cdl_option is \n # This is a comment . This second argument is processed in a recursive invocation of the
Tcl interpreter and does not contain any commands, just a comment. Toplevel savefile processing then resumes, and
the next command that is encountered isuser_value . Since the relevant savefile code is not currently processing
a configuration option this is an error. Later on the Tcl interpreter would encounter a closing brace by itself, which
is also an error. Fortunately this sequence of events is very unlikely to occur when editing generated savefiles.

This should be sufficient information about Tcl to allow for safe editing of eCos savefiles. Further information is
available from a wide variety of sources, for example the bookTcl and the Tk Toolkitby John K Ousterhout.

Editing the Sources
For many users, controlling the packages and manipulating the available configuration options will be sufficient to
create an embedded operating system that meets the application’s requirements. However, since eCos is shipped
entirely in source form, it is possible to go further when necessary: you can edit the eCos sources themselves. This
requires some understanding of the way the eCos build system works.

The most obvious place to edit the source code is directly in the component repository. For example, you could edit
the filekernel/ <version> /src/sync/mutex.cxx to change the way kernel mutexes work, or possibly just to
add some extra diagnostics or assertions. Once the file has been edited, it is possible to invokemakeat the top level
of the build tree and the target library will be rebuilt as required. A small optimization is possible: the build tree is
largely a mirror of the component repository, so it too will contain a subdirectorykernel/ <version> ; if make is
invoked in this directory then it will only check for changes to the kernel sources, which is a bit more efficient than
checking for changes throughout the component repository.

Editing a file in the component repository is fine if this tree is used for only one eCos configuration. If the repository
is used for several different configurations, however, and especially if it is shared by multiple users, then making
what may be experimental changes to the master sources would be a bad idea. The build system provides an
alternative. It is possible to make a copy of the file in the build tree, in other words copymutex.cxx from the
kernel/ <version> /src/sync directory in the component repository tokernel/ <version> /src/sync in the
build tree, and edit the file in the build tree. Whenmake is invoked it will pick up local copies of any of the
sources in preference to the master versions in the component repository. Once you have finished modifying the
eCos sources you can install the final version back in the component repository. If the changes were temporary in
nature and only served to aid the debugging process, then you can discard the modified version of the sources.

The situation is slightly more complicated for the header files that a package may export, such as the C library’s
stdio.h header file, which can be found in the directorylanguage/c/libc/ <version> /include . If such a

122

Chapter 28. Manual Configuration

header file is changed, either directly in the component repository or after copying it to the build tree, thenmake
must be invoked at the top level of the build tree. In cases like this it is not safe to rebuild just the C library because
other packages may depend on the contents ofstdio.h .

Modifying the Memory Layout
Each eCos platform package is supplied with linker script fragments which describe the location of memory regions
on the evaluation board and the location of memory sections within these regions. The correct linker script fragment
is selected and included in the eCos linker scripttarget.ld when eCos is built.

It is not necessary to modify the default memory layouts in order to start development with eCos. However, it
will be necessary to edit a linker script fragment when the memory map of the evaluation board is changed. For
example, if additional memory is added, the linker must be notified that the new memory is available for use. As
a minimum, this would involve modifying the length of the corresponding memory region. Where the available
memory is non-contiguous, it may be necessary to declare a new memory region and reassign certain linker output
sections to the new region.

Linker script fragments and memory layout header files should be edited within the eCos install tree. They are
located atinclude/pkgconf/mlt_*.* . Where multiple start-up types are in use, it will be necessary to edit
multiple linker script fragments and header files. The information provided in the header file and the corresponding
linker script fragment must always match. A typical linker script fragment is shown below:

Example 28-1. eCos linker script fragment

MEMORY
{

rom : ORIGIN = 0x40000000, LENGTH = 0x80000
ram : ORIGIN = 0x48000000, LENGTH = 0x200000

}

SECTIONS
{

SECTIONS_BEGIN
SECTION_rom_vectors (rom, 0x40000000, LMA_EQ_VMA)
SECTION_text (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_fini (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_rodata (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_rodata1 (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_fixup (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_gcc_except_table (rom, ALIGN (0x1), LMA_EQ_VMA)
SECTION_data (ram, 0x48000000, FOLLOWING (.gcc_except_table))
SECTION_bss (ram, ALIGN (0x4), LMA_EQ_VMA)
SECTIONS_END

}

The file consists of two blocks, theMEMORYblock contains lines describing the address (ORIGIN) and the size
(LENGTH) of each memory region. TheMEMORYblock is followed by theSECTIONSblock which contains lines
describing each of the linker output sections. Each section is represented by a macro call. The arguments of these
macros are ordered as follows:

1. The memory region in which the section will finally reside.

123

Chapter 28. Manual Configuration

2. The final address (VMA) of the section. This is expressed using one of the following forms:

n

at the absolute address specified by the unsigned integern

ALIGN (n)

following the final location of the previous section with alignment to the nextn-byte boundary

3. The initial address (LMA) of the section. This is expressed using one of the following forms:

LMA_EQ_VMA

theLMAequals theVMA(no relocation)

AT (n)

at the absolute address specified by the unsigned integern

FOLLOWING (.name)

following the initial location of sectionname

In order to maintain compatibility with linker script fragments and header files exported by the eCos Configuration
Tool, the use of other expressions within these files is not recommended.

Note that the names of the linker output sections will vary between target architectures. A description of these
sections can be found in the specific GCC documentation for your architecture.

124

Chapter 29. Managing the Package Repository
A source distribution of eCos consists of a number of packages, such as the kernel, the C library, and theµITRON
subsystems. These are individually versioned in the tree structure of the source code, to support distribution on
a per-package basis and to support third party packages whose versioning systems might be different. The eCos
Package Administration Tool is used to manage the installation and removal of packages from a variety of sources
with potentially multiple versions.

The presence of the version information in the source tree structure might be a hindrance to the use of a separate
source control system such asCVSor SourceSafe. To work in this way, you can rename all the version components
to some common name (such as “current”) thus unifying the structure of source trees from distinct eCos releases.

The eCos build system will treat any such name as just another version of the package(s), and support building
in exactly the same way. However, performing this rename invalidates any existing build trees that referred to the
versioned source tree, so do the rename first, before any other work, and do a complete rebuild afterwards.

Package Installation
Package installation and removal is performed using the eCos Package Administration Tool. This tool is a Tcl script
namedecosadmin.tclwhich allows the user to add new eCos packages and new versions of existing packages to
an eCos repository. Such packages must be distributed as a single file in the eCos package distribution format.
Unwanted packages may also be removed from the repository using this tool. A graphical version of the tool is
provided as part of the eCos Configuration Tool.

Using the Administration Tool

The graphical version of the eCos Package Administration Tool, provided as part of the eCos Configuration Tool,
provides functions equivalent to the command-line version for those who prefer a Windows-based interface.

It may be invoked in one of two ways:

• from thestart menu (by defaultStart->Programs-> eCos->Package Administration Tool)

• from the eCos Configuration Tool via theTools->Administration menu item

125

Chapter 29. Managing the Package Repository

The main window of the tool displays the packages which are currently installed in the form of a tree. The installed
versions of each package may be examined by expanding the tree.

Packages may be added to the eCos repository by clicking on theAddbutton. The eCos package distribution file to
be added is then selected via aFile Opendialog box.

Packages may be removed by selecting a package in the tree and then clicking on theRemovebutton. If a package
node is selected, all versions of the selected package will be removed. If a package version node is selected, only
the selected version of the package will be removed.

Using the command line

Theecosadmin.tclscript is located in the base of the eCos repository. Use a command of the following form under
versions of UNIX:

$ tclsh ecosadmin.tcl <command>

Under Windows, a command of the following form may be used at the Cygwin command line prompt:

$ cygtclsh80 ecosadmin.tcl <command>

The following commands are available:

add <file>

Adds the packages contained with the specified package distribution file to the eCos repository and updates
the package database accordingly. By convention, eCos package distribution files are given the.epk suffix.

remove<package> [--version=<version>]

Removes the specified package from the eCos repository and updates the package database accordingly.
Where the optional version qualifier is used, only the specified version of the package is removed.

list

Produces a list of the packages which are currently installed and their versions. The available templates and
hardware targets are also listed.

Note that is is possible to remove critical packages such as the common HAL package using this tool. Users should
take care to avoid such errors since core eCos packages may only be re-installed in the context of a complete
re-installation of eCos.

Package Structure
The files in an installed eCos source tree are organized in a natural tree structure, grouping together files which
work together intoPackages. For example, the kernel files are all together in:

BASE_DIR/kernel/ <version> /include/
BASE_DIR/kernel/ <version> /src/
BASE_DIR/kernel/ <version> /tests/

126

Chapter 29. Managing the Package Repository

andµITRON compatibility layer files are in:

BASE_DIR/compat/uitron/ <version> /include/
BASE_DIR/compat/uitron/ <version> /src/
BASE_DIR/compat/uitron/ <version> /tests/

The feature of these names which is of interest here is the<version> near the end. It may seem odd to place a
version number deep in the path, rather than having something likeBASE_DIR/ <version> /...everything...

or leaving it up to you to choose a different install-place when a new release of the system arrives.

There is a rationale for this organization: as indicated, the kernel and theµITRON compatibility subsystem are
examples of software packages. For the first few releases of eCos, all the packages will move along in step, i.e.
Release 1.3.x will feature Version 1.3.x of every package, and so forth. But in future, especially when third party
packages become available, it is intended that the package be the unit of software distribution, so it will be possible
to build a system from a selection of packages with different version numbers, and even differing versioning
schemes. A Tcl scriptecosadmin.tclis provided in the eCos repository to manage the installation and removal of
packages in this way.

Many users will have their own source code control system, version control system or equivalent, and will want
to use it with eCos sources. In that case, since a new release of eCos comes with different pathnames for all the
source files, a bit of work is necessary to import a new release into your source repository.

One way of handling the import is to rename all the version parts to some common name, for example “current”,
and continue to work. “current” is suggested becauseecosconfigrecognizes it and places it first in any list of
versions. In the future, we may provide a tool to help with this, or an option in the install wizard. Alternatively, in
a POSIX shell environment (Linux or Cygwin on Windows) use the following command:

find . -name <version> -type d -printf ’mv %p %h/current\n’ | sh

Having carried out such a renaming operation, your source tree will now look like this:

BASE_DIR/kernel/current/include/
BASE_DIR/kernel/current/src/
BASE_DIR/kernel/current/tests/

...
BASE_DIR/compat/uitron/current/include/
BASE_DIR/compat/uitron/current/src/
BASE_DIR/compat/uitron/current/tests/

which is a suitable format for import into your own source code control system. When you get a subsequent release
of eCos, do the same thing and use your own source code control system to manage the new source base, by
importing the new version from

NEW_BASE_DIR/kernel/current/include/

and so on.

The eCos build tool will now offer only the “current” version of each package; select this for the packages you
wish to use.

Making such a change has implications for any build trees you already have in use. A configured build tree contains
information about the selected packages and their selected versions. Changing the name of the “versioning” folder
in the source tree invalidates this information, and in consequence it also invalidates any local configuration options
you have set up in this build tree. So if you want to change the version information in the source tree, do it first,

127

Chapter 29. Managing the Package Repository

before investing any serious time in configuring and building your system. When you create a new build tree to
deal with the new source layout, it will contain default settings for all the configuration options, just like the old
build tree did before you configured it. You will need to redo that configuration work in the new tree.

Moving source code around also invalidates debugging information in any programs or libraries built from the old
tree; these will need to be rebuilt.

128

VII. Appendixes

Appendix A. Target Setup
The following sections detail the setup of many of the targets supported by eCos.

Caution
This information is presented here only temporarily. It is intended that there will be separate
documents detailing this information for each target in future releases. Consequently not
much effort has been put into bringing the following documentation up to date -- much of it is
obsolete, bogus or just plain wrong.

MN10300 stdeval1 Hardware Setup
The eCos Developer’s Kit package comes with a pair of EPROMs which provide GDB support for the Matsushita
MN10300 (AM31) series evaluation board using CygMon, the Cygnus ROM monitor. Images of these EPROMs are
also provided atBASE_DIR/loaders/mn10300-stdeval1/cygmon.bin . The LSB EPROM (LROM) is installed
to socket IC8 on the board and the MSB EPROM (UROM) is installed to socket IC9. Attention should be paid to
the correct orientation of these EPROMs during installation.

The CygMon stubs allows communication with GDB by way of the serial port at connector CN2. The commu-
nication parameters are fixed at 38400 baud, 8 data bits, no parity bit, and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a standard RS232C serial cable (not a null
modem cable). A gender changer may also be required.

MN10300 Architectural Simulator Setup
The MN10300 simulator is an architectural simulator for the Matsushita MN10300 that implements all features
of the microprocessor necessary to run eCos. The current implementation provides accurate simulation of the
instruction set, interrupt controller, timers, and serial I/O.

In this release, you can run the same eCos binaries in the simulator that can run on target hardware, if built for
ROM start-up, with the exception of those that use the watchdog timer.

However, note that AM33 devices required to run eCos are not simulated; therefore you cannot run eCos binaries
built for the AM33 under the simulator. For the AM33, the simulator is effectively an instruction-set only simulator.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define msim
target sim --board=stdeval1 --memory-region 0x34004000,0x8

rbreak cyg_test_exit
rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the command

msim

131

Appendix A. Target Setup

on the command line:

(gdb) msim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

AM33 STB Hardware Setup
The Matsushita AM33 STB System Reference Board may be used in two modes: via a JTAG debugger, or by
means of a GDB stub ROM.

Use with GDB Stub ROM

The eCos Developer’s Kit package comes with a ROM image which provides GDB support for the Matsushita(R)
AM33 STB System Reference Board. To install the GDB stub ROM requires the use of the JTAG debugger
and the Flash ROM programming code available from Matsushita. An image of this ROM is also provided at
loaders/am33-stb/gdbload.bin under the root of your eCos installation.

Ensure that there is a Flash ROM card in MAIN MEMORY SLOT<0>. Follow the directions for programming a
Flash ROM supplied with the programming software.

The final programming of the ROM will need to be done with a command similar to the following:

fdown "gdbload.bin",0x80000000,16,1

Once the ROM has been programmed, close down the JTAG debugger, turn the STB off, and disconnect the JTAG
cable. Ensure that the hardware switches are in the following configuration:

U U D D D U D D

D = lower part of rocker switch pushed in
U = upper part of rocker switch pushed in

This is also the configuration required by the Flash programming code, so it should not be necessary to change
these.

Restart the STB and the stub ROM will now be able to communicate with GDB. eCos programs should be built
with RAM startup.

Programs can then be downloaded via a standard RS232 null modem serial cable connected to the SERIAL1
connector on the STB front panel (the AM33"s serial port 0). This line is programmed to run at 38400 baud, 8
data bits, no parity and 1 stop bit (8-N-1) with no flow control. A gender changer may also be required. Diagnostic
output will be output to GDB using the same connection.

This procedure also applies for programming ROM startup eCos programs into ROM, given a binary format image
of the program from

mn10300-elf-objcopy.

132

Appendix A. Target Setup

Use with the JTAG debugger

To use eCos from the JTAG debugger, executables must be built with ROM startup and then downloaded via the
JTAG debugger. For this to work there must be an SDRAM memory card in SUB MEMORY SLOT<0> and the
hardware switches on the front panel set to the following:

D U D D D U D D

D = lower part of rocker switch pushed in
U = upper part of rocker switch pushed in

Connect the JTAG unit and run the debugger as described in the documentation that comes with it.

eCos executables should be renamed to have a “.out” extension and may then be loaded using the debugger"s “l”
or “lp” commands.

Diagnostic output generated by the program will be sent out of the AM33"s serial port 0 which is connected to the
SERIAL1 connector on the STB front panel. This line is programmed to run at 38400 baud, 8 data bits, no parity,
and one stop bit (8-N-1) with no flow control. Connection to the host computer should be using a standard RS232
null modem serial cable. A gender changer may also be required.

Building the GDB stub ROM image

eCos comes with a pre-built GDB stub ROM image for the AM33-STB platform. This can be found at
loaders/am33-stb/gdbload.bin relative to the eCos installation directory.

If necessary, the ROM image can be re-built as follows:

1. On Windows hosts, open a Bash session usingStart->Programs->Red Hat eCos->eCos Development Envi-
ronment

2. Create a build directory and cd into it

3. Run (all as one line):

cygtclsh80 BASE_DIR/packages/pkgconf.tcl \
--target=mn10300_am33 --platform stb --startup rom \
--disable-kernel --disable-uitron --disable-libc --disable-libm \
--disable-io --disable-io_serial --disable-wallclock

--disable-watchdog

where BASE_DIR is the path to the eCos installation directory.

4. Edit the configuration filepkgconf/hal.h in the build directory tree by ensuring the following configuration
options are set as follows:

#define CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
#define CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
#undef CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT
#define CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT
#define CYG_HAL_ROM_MONITOR

5. Run: make

133

Appendix A. Target Setup

6. Run: make -C hal/common/current/current/src/stubrom

7. The file hal/common/current/src/stubrom will be an ELF format executable of the ROM image. Use
mn10300-elf-objcopy to convert this to the appropriate format for loading into the Matsushita FLASH ROM
programmer, mode “binary” in this case:

$ mn10300-elf-objcopy -O binary hal/common/current/src/stubrom/ \
stubrom stubrom.img

TX39 Hardware Setup
The eCos Developer’s Kit package comes with a pair of ROMs that provide GDB support for the Toshiba JMR-
TX3904 RISC processor reference board by way of CygMon.

Images of these ROMs are also provided atBASE_DIR/loaders/tx39-jmr3904/cygmon50.bin and
BASE_DIR/loaders/tx39-jmr3904/cygmon66.bin for 50 MHz and 66 MHz boards respectively. The ROMs
are installed to sockets IC6 and IC7 on the memory daughterboard according to their labels. Attention should be
paid to the correct orientation of these ROMs during installation.

The GDB stub allows communication with GDB using the serial port (channel C) at connector PJ1. The commu-
nication parameters are fixed at 38400 baud, 8 data bits, no parity bit, and 1 stop bit (8-N-1). No handshaking is
employed. Connection to the host computer should be made using an RS232C null modem cable.

CygMon and eCos currently provide support for a 16Mbyte 60ns 72pin DRAM SIMM fitted to the PJ21
connector. Different size DRAMs may require changes in the value stored in the DCCR0 register. This value
may be found near line 211 inhal/mips/arch/ <version> /src/vectors.S in eCos, and near line 99 in
libstub/mips/tx39jmr/tx39jmr-power.S in CygMon. eCos does not currently use the DRAM for any
purpose itself, so it is entirely available for application use.

TX39 Architectural Simulator Setup
The TX39 simulator is an architectural simulator which implements all the features of the Toshiba TX39 needed to
run eCos. The current implementation provides accurate simulation of the instruction set, interrupt controller, and
timers, as well as having generic support for diagnostic output, serial I/O, and exceptions.

In this release, you can run the same eCos binaries in the simulator that can run on target hardware, if it is built for
ROM start-up.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define tsim
target sim --board=jmr3904pal --memory-region 0xffff8000,0x900 \

--memory-region 0xffffe000,0x4 \
--memory-region 0xb2100000,0x4

rbreak cyg_test_exit
rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the commandtsim on the command line:

134

Appendix A. Target Setup

(gdb) tsim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

TX49 Hardware Setup
The eCos installation CD contains a copy of the eCos GDB stubs in SREC format which must be programmed into
the board’s FLASH memory.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directoryloaders/tx49-ref4955 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the TX49 REF4955 hardware.

3. While still displaying theBuild->Templatesdialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs usingBuild->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new ref4955 stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
images have the prefix gdb_module.

135

Appendix A. Target Setup

Installing GDB stubs into FLASH

Boot into the board’s firmware in little-endian mode:

Set the switches like this:

SW1: 10000000 (first lever up, the rest down) SW2: 10000010

Connect serial cable on the lower connector, configure terminal emulator for 38400, 8-N-1.

When booting the board, you should get this prompt:

HCP5 rev 0.9B .
HCP5?

Select o (option), a (FLASH) and b (boot write). You should see this:

Boot ROM Write
ROM address-ffffffffbd000000, Boot Bus-[32bit]
ID2 0 4 ffffffffa002ad40
zzz SS-40000 IV-1 CS-20000 CC-2
Flash ROM-[28F640J5], [16bit chip] * 2 * 1
Block size-00040000 count-64
ROM adr ffffffffbd000000-ffffffffbe000000 mask-00fc0000
Send Srecord file sa=00000000 size=ffffffffffffffff
ra=fffffffffe000000

Now send the stub SREC data down to the board using the terminal emulator’s ‘send ASCII’ (or similar) function-
ality.

Red Hat has experienced some sensitivity to how fast the data is written to the board. Under Windows you should
configure Minicom to use a line delay of 100 milliseconds. Under Linux, use the slow_cat.tcl script:

% cd BASE_DIR/packages/hal/mips/ref4955/ <version> /misc
% slow_cat.tcl < [path]/gdb_module.srec > /dev/ttyS0

Power off the board, and change it to boot the GDB stubs in big-endian mode by setting the switches like this:

SW1: 00000000 (all levers down) SW2: 10001010

The GDB stubs allow communication with GDB using the serial port at connector PJ7A (lower connector). The
communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a straight through serial cable.

VR4300 Hardware Setup
The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the NEC VRC4373
evaluation board. An image of this EPROM is also provided atloaders/vr4300-vrc4373/gdbload.bin under
the root of your eCos installation.

The EPROM is installed to socket U12 on the board. Attention should be paid to the correct orientation of the
EPROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as the
socket would otherwise risk getting damaged.

136

Appendix A. Target Setup

The GDB stub in the EPROM allows communication with GDB using the serial port at connector J1. The com-
munication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using a straight-through serial cable.

VRC4375 Hardware Setup
For information about setting up the VRC4375 to run with RedBoot, consult the RedBoot User"s Guide. If using
serial debugging, the serial line runs at 38400 baud 8-N-1 and should be connected to the debug host using the
cable supplied with the board.

Atlas/Malta Hardware Setup
For information about setting up the Atlas and Malta boards to run with RedBoot, consult the RedBoot User"s
Guide.

PowerPC Cogent Hardware Setup
The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Cogent evaluation
board. An image of this EPROM is also provided atloaders/powerpc-cogent/gdbload.bin under the root of
your eCos installation. The same EPROM and image can be used on all three supported daughterboards: CMA287-
23 (MPC823), CMA287-50 (MPC850), and CMA286-60 (MPC860).

The EPROM is installed to socket U4 on the board. Attention should be paid to the correct orientation of the
EPROM during installation.

If you are going to burn a new EPROM using the binary image, be careful to get the byte order correct. It needs
to be big-endian. If the EPROM burner software has a hex-editor, check that the first few bytes of the image look
like:

00000000: 3c60 fff0 6063 2000 7c68 03a6 4e80 0020 <`..`c.|h..N..

If the byte order is wrong you will see 603c instead of 3c60 etc. Use the EPROM burner software to make a
byte-swap before you burn to image to the EPROM.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector P12 (CMA101)
or P3 (CMA102). The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit
(8-N-1). No flow control is employed. Connection to the host computer should be made using a dedicated serial
cable as specified in the Cogent CMA manual.

Installing the Stubs into ROM

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled

137

Appendix A. Target Setup

binaries in the directoryloaders/powerpc-cogent relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the PowerPC CMA28x hardware.

3. While still displaying theBuild->Templatesdialog box, select the “stubs” package template to build a GDB
stub. ClickOK.

4. Build eCos usingBuild->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cma28x stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into socket U4 as described at the beginning of thisHardware Setupsection.

PowerPC MBX860 Hardware Setup
The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Motorola PowerPC
MBX860 evaluation board. An image of this EPROM is also provided atloaders/powerpc-mbx/gdbload.bin

under the root of your eCos installation.

The EPROM is installed to socket XU1 on the board. Attention should be paid to the correct orientation of the
EPROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as the
socket would otherwise risk getting damaged.

138

Appendix A. Target Setup

The GDB stub in the EPROM allows communication with GDB using the serial port at connector SMC1/COM1.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow
control is employed. Connection to the host computer should be made using a suitable serial cable.

In order to make the board execute the EPROM that you just installed (rather than the on-board FLASH memory),
it may be necessary move some links on the board. Specifically, ensure that link J4 is in position 1-2. If in doubt,
refer to the MBX documentation from Motorola, ensuring that Boot Port Size=8 Bits/ROM for BOOT (CS#7), in
their terminology.

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directoryloaders/powerpc-mbx relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the PowerPC Motorola MBX860/821 hardware.

3. While still displaying theBuild->Templatesdialog box, select the “stubs” package template to build a GDB
stub. ClickOK.

4. Build eCos usingBuild->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new mbx stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your
ROM programmer.

139

Appendix A. Target Setup

2. Plug the ROM/FLASH into socket XU1 as described near the beginning of thisHardware Setupsection.

Installing the Stubs into FLASH

This assumes you have EPPC-Bug in the on-board FLASH. This can be determined by setting up the board ac-
cording to the below instructions and powering up the board. The EPPC-Bug prompt should appear on the SMC1
connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU2 FLASH to be programmed]

2. Set jumper 4 to 2-3 [boot EPPC-Bug]

Program FLASH

1. Prepare EPPC-Bug for download:

EPPC-Bug>lo 0

At this point the monitor is ready for input. It will not return the prompt until the file has been downloaded.

2. Use the terminal emulator’s ASCII download feature (or a simple clipboard copy/paste operation) to download
the gdb_module.srec data. Note that on Linux, Minicom’s ASCII download feature seems to be broken. A
workaround is to load the file into Emacs (or another editor) and copy the full contents to the clipboard. Then
press the mouse paste-button (usually the middle one) over the Minicom window.

3. Program the FLASH with the downloaded data:

EPPC-Bug>pflash 40000 60000 fc000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should now boot using
the newly programmed stubs.

PowerPC Architectural Simulator Setup
The PowerPC simulator is an architectural simulator which implements all the features of the PowerPC needed
to run eCos. The current implementation provides accurate simulation of the instruction set and timers, as well as
having generic support for diagnostic output and exceptions.

The simulator also allows devices to be simulated, but no device simulation support has been defined for the serial
device drivers in this release.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define psim
target sim -o ’/iobus/pal@0xf0001000/reg 0xf0001000 32’
rbreak cyg_test_exit
rbreak cyg_assert_fail

140

Appendix A. Target Setup

end

You can then connect to the simulator by invoking the commandpsim on the command line:

(gdb) psim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

Note: The PowerPC simulator cannot execute binaries built for any of the supported hardware targets. You
must generate a configuration using the PowerPC simulator platform:

$ ecosconfig new psim

or some such.

SPARClite Hardware Setup
The eCos Developer’s Kit package comes with a ROM which provides GDB support for the Fujitsu SPARClite
Evaluation Board by way of CygMon.

An image of this ROM is also provided atBASE_DIR/loaders/sparclite-sleb/cygmon.bin. The ROM is
installed in socket IC9 on the evaluation board. Attention should be paid to the correct orientation of the ROM
during installation.

The GDB stub allows communication with GDB using a TCP channel via the ethernet port at connector J5.

Ethernet Setup

The ethernet setup is described in the board’s manual, but here is a recapitulation.

Set the board’s ethernet address using SW1 on the motherboard:

SW1-4 SW1-3 SW1-2 SW1-1 Ethernet Address
----- ----- ----- ----- ----------------
OFF OFF OFF OFF No ethernet, use serial
OFF OFF OFF ON 00:00:0E:31:00:01
OFF OFF ON OFF 00:00:0E:31:00:02
OFF OFF ON ON 00:00:0E:31:00:03
OFF ON OFF OFF 00:00:0E:31:00:04
OFF ON OFF ON 00:00:0E:31:00:05
OFF ON ON OFF 00:00:0E:31:00:06
OFF ON ON ON 00:00:0E:31:00:07
ON OFF OFF OFF 00:00:0E:31:00:08
ON OFF OFF ON 00:00:0E:31:00:09
ON OFF ON OFF 00:00:0E:31:00:0A
ON OFF ON ON 00:00:0E:31:00:0B
ON ON OFF OFF 00:00:0E:31:00:0C
ON ON OFF ON 00:00:0E:31:00:0D
ON ON ON OFF 00:00:0E:31:00:0E
ON ON ON ON 00:00:0E:31:00:0F

141

Appendix A. Target Setup

BOOTP/DHCP service on Linux

Configure the BOOTP or DHCP server on the network to recognize the evaluation board’s ethernet address
so it can assign the board an IP address. Below is a sample DHCP server configuration from a Linux system
(/etc/dhcpd.conf). It shows a setup for three evaluation boards.

#
DHCP server configuration.
#
allow bootp;

subnet 192.168.1.0 netmask 255.255.255.0 {
host mb831evb {

hardware ethernet 00:00:0e:31:00:01;
fixed-address mb831evb;

}
host mb832evb {

hardware ethernet 00:00:0e:31:00:02;
fixed-address mb832evb;

}
host mb833evb {

hardware ethernet 00:00:0e:31:00:03;
fixed-address mb833evb;

}
}

BOOTP/DHCP boot process

Even when configured to use a TCP channel, CygMon will still print a boot message to the serial channel. If the
BOOTP process was successful and an IP address was found, a message “BOOTP found xxx.xxx.xxx.xxx” will be
printed where xxx.xxx.xxx.xxx is the IP address assigned by the BOOTP or DHCP server. If the BOOTP process
fails, a message indicating failure will be printed and the serial port will be used as the debug channel.

Once the board finds an IP address it will respond to ICMP echo request packets (ping). This gives a simple means
to test the health of the board.

As described in “Ethernet Setup” on page 72, it should now be possible to connect to the SPARClite board from
within GDB by using the command:

(gdb) target remote <host>:1000

Serial Setup

The CygMon stubs also allow communication with GDB by way of the serial port at connector CON1. The com-
munication parameters are fixed at 19200 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using a null modem cable. A gender changer may also
be required.

142

Appendix A. Target Setup

SPARClite Architectural Simulator Setup
The ESA SPARClite simulator is an architectural simulator which implements all the features of the SPARClite
needed to run eCos. The current implementation provides accurate simulation of the instruction set, interrupt con-
troller, and timers, as well as having generic support for diagnostic output and exceptions.

Note that the ESA SPARClite simulator is unsupported, but is included in the release as a convenience.

To simplify connection to the simulator, you are advised to create a GDB macro by putting the following code in
your personal GDB start-up file (gdb.ini on Windows and .gdbinit on UNIX).

define ssim
target sim -nfp -sparclite -dumbio
rbreak cyg_test_exit
rbreak cyg_assert_fail

end

You can then connect to the simulator by invoking the commandssimon the command line:

(gdb) ssim

You can achieve the same effect by typing out the macro’s content on the command line if necessary.

ARM PID Hardware Setup
eCos comes with two ROM images that provide GDB support for the ARM PID board. The first ROM image
provides a port of the CygMon ROM monitor, which includes a command-line interface and a GDB remote stub.
The second ROM image provides a remote GDB stub only, which is a minimal environment for downloading and
debugging eCos programs solely using GDB.

eCos, CygMon and the GDB stubs all support the PID fitted with both ARM7T and ARM9 daughterboards. Cyg-
Mon and the stubs can be programmed into either the programmable ROM (U12) or the FLASH (U13). Pre-built
forms of both ROM images are provided in the directory loaders/arm-pid under the root of your eCos installation,
along with a tool that will program the stubs into the FLASH memory on the board. CygMon images are prefixed
with the name ’cygmon’ and GDB stub ROM images are given the prefix ’gdb_module’. Images may be provided
in a number of formats including ELF (.img extension), binary (.bin extension) and SREC (.srec extension). Note
that some unreliability has been experienced in downloading files using Angel 1.00. Angel 1.02 appears to be more
robust in this application.

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/arm-pid relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

143

Appendix A. Target Setup

2. Choose theBuild -> Templatesmenu item, and then select the ARM PID hardware.

3. While still displaying theBuild -> Templatesdialog box, select either the "stubs" package template to build a
GDB stub image, or the "cygmon" template to build the CygMon ROM Monitor. ClickOK.

4. Build eCos usingBuild -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new pid stubs

or to build a CygMon ROM monitor image, enter the command:

$ ecosconfig new pid cygmon

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Building the FLASH Tool with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the ARM PID hardware.

3. Enable the "Build flash programming tool" option in the ARM PID HAL
(CYGBLD_BUILD_FLASH_TOOL) and resolve any resulting configuration conflicts.

4. Build eCos usingBuild -> Library

5. When the build completes, the FLASH tool image file can be found in the bin/ subdirectory of the install tree,
with the prefix "prog_flash"

Building the FLASH Tool with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it

2. Enter the command:

$ ecosconfig new pid

144

Appendix A. Target Setup

3. Edit the file ecos.ecc and enable the option CYGBLD_BUILD_FLASH_TOOL by uncommenting its
user_value property and setting it to 1.

4. Enter the commands:

$ ecosconfig resolve

[there will be some output]

$ ecosconfig tree
$ make

5. When the build completes, the FLASH tool image file can be found in the bin/ subdirectory of the install tree,
with the prefix "prog_flash"

Prepare the Board for FLASH Programming

Each time a new image is to be programmed in the FLASH, the jumpers on the board must be set to allow Angel
to run:

1. Set jumper 7-8 on LK6 [using the Angel code in the 16 bit EPROM]

2. Set jumper 5-6 on LK6 [select 8bit ROM mode]

3. Set jumper LK18 [ROM remap - this is also required for eCos]

4. Set S1 to 0-0-1-1 [20MHz operation]

5. Open jumper LK4 [enable little-endian operation] Attach a serial cable from Serial A on the PID board to
connector 1 on the development system. This is the cable through which the binaries will be downloaded.
Attach a serial cable from Serial B on the PID board to connector 2 on the development system (or any system
that will work as a terminal). Through this cable, the FLASH tool will write its instructions (at 38400 baud).

Program the FLASH

1. Download the FLASH ROM image onto the PID board. For example. for the GDB stubs image:

bash$ arm-elf-gdb -nw gdb_module.img
GNU gdb 4.18-DEVTOOLSVERSION
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies
of it under certain conditions. Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i586-pc-cygwin32 --target=arm-elf".
(no debugging symbols found)...
(gdb) target rdi s=com1
Angel Debug Monitor for PID (Built with Serial(x1), Parallel, DCC) 1.00
(Advanced RISC Machines SDT 2.10)
Angel Debug Monitor rebuilt on Jan 20 1997 at 02:33:43
Connected to ARM RDI target.
(gdb) load
Loading section .rom_vectors, size 0x44 lma 0x60000
Loading section .text, size 0x1f3c lma 0x60044

145

Appendix A. Target Setup

Loading section .rodata, size 0x2c lma 0x61f80
Loading section .data, size 0x124 lma 0x61fac
Start address 0x60044 , load size 8400
Transfer rate: 5169 bits/sec.
(gdb) q
The program is running. Exit anyway? (y or n) y

Note: On a UNIX or Linux system, the serial port must be /dev/ttyS0 instead of COM1. You need to make sure
that the /dev/ttyS0 files have the right permissions:

$ su
Password:
chmod o+rw /dev/ttyS0*
exit

If you are programming the GDB stub image, it will now be located at 0x60000..0x64000. If you are pro-
gramming the Cygmon ROM Monitor, it will be located at 0x60000..0x80000.

2. Now download the FLASH programmer tool

bash$ arm-elf-gdb prog_flash.img
GNU gdb 4.18-DEVTOOLSVERSION
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute
copies of it under certain conditions. Type "show copying" to see
the conditions. There is absolutely no warranty for GDB. Type "show
warranty" for details.
This GDB was configured as "--host=i586-pc-cygwin32 --target=arm-elf".
(gdb) target rdi s=com1
Angel Debug Monitor for PID (Built with Serial(x1), Parallel, DCC) 1.00
(Advanced RISC Machines SDT 2.10)
Angel Debug Monitor rebuilt on Jan 20 1997 at 02:33:43
Connected to ARM RDI target.
(gdb) load
Loading section .rom_vectors, size 0x44 lma 0x40000
Loading section .text, size 0x44a4 lma 0x40044
Loading section .rodata, size 0x318 lma 0x444e8
Loading section .data, size 0x1c8 lma 0x44800
Start address 0x40044 , load size 18888
Transfer rate: 5596 bits/sec.
(gdb) c

3. The FLASH tool will output some text on the board serial port B at 38400 baud:

ARM
eCos

FLASH here!
manuf: 8, device: 40
Error: Wrong Manufaturer: 08
... Please change FLASH jumper

146

Appendix A. Target Setup

4. This text is repeated until you remove the jumper 7-8 on LK6. Then the output will be:

manuf: 1F, device: A4
AT29C040A recognised
About to program FLASH using data at 60000..64000
*** Press RESET now to abort!

5. You have about 10 seconds to abort the operation by pressing reset. After this timeout, the FLASH program-
ming happens:

...Programming FLASH
All done!

6. Quit/kill the GDB process, which will hang.

7. Next time you reset the board, the stub will be in control, communicating on Serial A at 38400 baud.

Note: If you do not have two serial ports available on your host computer, you may still verify the FLASH
programming completed successfully by quitting/killing the GDB process after running "c" in step 2 above.
Then switch the serial cable on the PID from Serial A to Serial B and run a terminal emulator on the host
computer. In a few seconds you should see the the repeated text described in step 2 above and you may
continue the remaining steps as normal.

Programming the FLASH for big-endian mode

The process is almost identical to the previous instructions which apply to a PID board running in little-endian
mode only.

The only adjustments to make are that if programming aGDB stub ROM image (or CygMon ROM
monitor image), you must enable the option "Use Big-endian mode" in theeCos Configuration Tool
(CYGHWR_HAL_ARM_BIGENDIAN if using ecosconfig and editing ecos.ecc).

When programming the FLASH there are two options:

1. Program FLASH using the little-endian FLASH tool. After powering off, replace the ROM controller with the
special big-endian version which can be acquired from ARM. (This has not been tested by Red Hat).

2. Use a special big-endian version of the FLASH tool which byte-swaps all the words as they are written to the
FLASH.

Build this tool by enabling the "Build flash programming tool for BE images on LE boards" option (CYG-
BLD_BUILD_FLASH_TOOL_BE), resulting in a utility with the prefix "prog_flash_BE_image_LE_system"
which should be used instead of "prog_flash".

Note that there is a limitation to this method: no sub-word data can be read from the ROM. To work around this,
the .rodata section is folded into the .data section and thus copied to RAM before the system starts.

Given that Thumb instructions are 16 bit, it is not possible to run ROM-startup Thumb binaries on the PID board
using this method.

147

Appendix A. Target Setup

When the image has been programmed, power off the board, and set jumper LK4 to enable big-endian operation.

Installing the Stubs into ROM

1. Program the binary image file gdb_module.bin into ROM referring to the instructions of your ROM program-
mer.

2. Plug the ROM into socket U12 and install jumper LK6 pins 7-8 to enable the ROM.

ARM AEB-1 Hardware Setup

Overview

The ARM AEB-1 comes with tools in ROM. These include a simple FLASH management tool and the Angel®
monitor. eCos for the ARM AEB-1 comes with GDB stubs suitable for programming into the onboard FLASH.
GDB is the preferred debug environment for GDB, and while Angel provides a subset of the features in the eCos
GDB stub, Angel is unsupported.

Both eCos and the stubs support both Revision B and Revision C of the AEB-1 board. Stub ROM images for both
types of board can be found in the loaders/arm-aeb directory under the root of your eCos installation. You can
select which board you are using by selecting either the aeb or aebC platform by selecting the appropriate platform
HAL in the eCos Configuration Tool.

The GDB stub can be downloaded to the board for programming in the FLASH using the board’s on-board ROM
monitor:

1. talk to the AEB-1 board with a terminal emulator (or a real terminal!)

2. use the board’s rom menu to download a UU-encoded version of the GDB stubs which will act as a ROM
monitor

3. tell the board to use this new monitor, and then hook GDB up to it for real debugging

Talking to the Board

Connect a terminal or computer’s serial port to the ARM AEB-1. On a PC with a 9-pin serial port, you can use the
cable shipped by ARM with no modification.

Set the terminal or terminal emulator to 9600N1 (9600 baud, no parity, 1 stop bit).

Reset the board by pressing the little reset button on the top. You will see the following text:

ARM Evaluation Board Boot Monitor 0.01 (19 APR 1998)
Press ENTER within 2 seconds to stop autoboot

Press ENTER quickly, and you will get the boot prompt:

Boot:

148

Appendix A. Target Setup

Downloading the Stubs via the Rom Menu

Using the AEB-1 rom menu to download the GDB stubs from the provided ".UU" file.

Note: This is an annotated ’terminal’ session with the AEB-1 monitor:

+Boot: help
Module is BootStrap 1.00 (14 Aug 1998)

Help is available on:

Help Modules ROMModules UnPlug PlugIn
Kill SetEnv UnSetEnv PrintEnv DownLoad
Go GoS Boot PC FlashWrite
FlashLoad FlashErase

Boot: download c000
Ready to download. Use ’transmit’ option on terminal
emulator to download file.

... at this point, download the ASCII file "loaders/arm-aeb/
gdb_module.img.UU". The details of this operation differ
depending on which terminal emulator is used. It may be
necessary to enter "^D" (control+D) when the download completes

to get the monitor to return to command mode.

Loaded file gdb_module.img.bin at address
0000c000, size = 19392

Activating the GDB Stubs

Commit the GDB stubs module to FLASH:

Boot: flashwrite 4018000 C000 8000

Verify that the eCos/"GDB stubs" module is now added in the list of modules in the board:

Boot: rommodules

You should see output similar to the following:

Header Base Limit
04000004 04000000 040034a8 BootStrap 1.00 (14 Aug 1998)
04003a74 04003800 04003bc0 Production Test 1.00 (13 Aug 1998)
0400e4f4 04004000 0400e60f Angel 1.02 (12 MAY 1998)
0401c810 04018000 0401cbc0 eCos 1.3 (27 Jan 2000)

GDB stubs

Now make the eCos/"GDB stubs" module be the default monitor:

149

Appendix A. Target Setup

Boot: plugin eCos

Note: Since the GDB stubs are always linked at the same address (0x4018000), the operation of writing to the
FLASH and selecting the stubs as default monitor is an idempotent operation. You can download a new set of
stubs following the same procedure - you do not have to unregister or delete anything.

Building the GDB Stub FLASH ROM Images

Pre-built GDB stubs images are provided in the directory loaders/arm-aeb relative to the root of your eCos instal-
lation, but here are instructions on how to rebuild them if you should ever need to.

Building the GDB Stubs with the eCos Configuration Tool

1. Start with a new document - selecting theFile -> Newmenu item if necessary to do this.

2. Choose theBuild -> Templatesmenu item, and then select the ARM AEB-1 hardware.

3. While still displaying theBuild->Templatesdialog box, select the "stubs" package template to build a GDB
stub image. ClickOK.

4. If applicable, set the "AEB board revision" option to "C" from "B" depending on the board revision being
used.

5. Build eCos usingBuild -> Library.

6. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new aeb stubs

3. If applicable, edit ecos.ecc and set the AEB board revision. (CYGHWR_HAL_ARM_AEB_REVISION) from
the default "B" to "C" by uncommenting the user_value property and setting it to "C".

4. Enter the commands

$ ecosconfig tree
$ make

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

150

Appendix A. Target Setup

ARM Cogent CMA230 Hardware Setup
The eCos Developer’s Kit package comes with an EPROM which provides GDB support for the Cogent evaluation
board. An image of this EPROM is also provided at loaders/arm-cma230/gdbload.bin under the root of your eCos
installation.

The EPROM is installed to socket U3 on the board. Attention should be paid to the correct orientation of the
EPROM during installation.

If you are going to burn a new EPROM using the binary image, be careful to get the byte order correct. It needs to
be little-endian, which is usually the default in PC based programmer software.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector P12 (CMA101)
or P3 (CMA102). The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit
(8-N-1). No flow control is employed. Connection to the host computer should be made using a dedicated serial
cable as specified in the Cogent CMA manual.

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-cma230 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

CygMon images are prefixed with the name ’cygmon’ and GDB stub ROM images

are given the prefix ’gdb_module’. Images may be provided in a number of formats including ELF (.img extension),
binary (.bin extension) and SREC (.srec extension).

Building the GDB Stubs with the eCos Configuration Tool

1. 1. Start with a new document - selecting the File->New menu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the ARM CMA230 hardware.

3. While still displaying theBuild -> Templatesdialog box, select the "stubs" package template to build a GDB
stub image. ClickOK.

4. Build eCos usingBuild -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

1. 1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cma230 stubs

151

Appendix A. Target Setup

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Cirrus Logic ARM EP7211 Development Board Hardware Setup
eCos comes with two Flash ROM images that provide GDB support for the Cirrus Logic EP7211 Development
Board (also known as the EDB7211).. Note that on some board revisions, the board is silk-screened as EDB7111-2.
The first Flash ROM image provides a port of the CygMon ROM monitor, which includes a command-line interface
and a GDB remote stub. The second Flash ROM image provides a remote GDB stub only.

Both ROM images are provided in the directory loaders/arm-edb7211 under the root of your eCos installation.
CygMon images are prefixed with the name ’edb7211_cygmon’ and are provided in a number of formats
including binary (.bin extension) and SREC (.srec) extension. GDB stub ROM images are given the prefix
’edb7211_gdb_module’.

The ROM images provided for the EP7211 Development Board must be programmed into the FLASH. Please refer
to the section titled "Loading the ROM image into On-Board flash" on how to program the ROM onto the board.

Both Cygmon and GDB Stub ROMS allow communication with GDB via the serial connector labelled ’UART 1’.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow
control is employed. Connection to the host computer should be made using a null modem cable. A gender changer
may also be required. Note that the GDB Configuration tool uses the serial port identifiers 0 and 1 to identify the
EB7211 serial ports UART1 and UART2 respectively.

Both eCos and the ROM images assume the core clock is generated with a 3.6864 MHz PLL input. The CPU will
be configured to run at 73.728MHz.

Note: The EP7211 CPU needs a two step RESET process. After pressing the `URESET’ pushbutton, the
`WAKEUP’ pushbutton must be pressed to complete the process.

Note: When an eCos program is run on an EDB7211 board fitted with either CygMon or a GDB stub ROM,
then the code in ROM loses control. This means that if you require the ability to remotely stop execution on the
target, or want thread debugging capabilities, you must include GDB stub support when configuring eCos.

Building programs for programming into FLASH

If your application is to be run directly from FLASH, you must configure eCos appropriately for "ROM" startup.
This can be done in theeCos Configuration Toolby setting the "Startup type" HAL option to "ROM". If using the
ecosconfig utility, set the user_value of the CYG_HAL_STARTUP option in ecos.ecc to "ROM".

When you have linked your application with eCos, you will then have an ELF executable. To convert this into a
format appropriate for the Cirrus Logic FLASH download utility, or the dl_7xxx utility on Linux, you can use the
utility arm-elf-objcopy, as in the following example:

$ arm-elf-objcopy -O binary helloworld.exe helloworld.bin

152

Appendix A. Target Setup

This will produce a binary format image helloworld.bin which can be downloaded into FLASH.

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-edb7211 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

CygMon images are prefixed with the name ’cygmon’ and GDB stub ROM images are given the prefix
’gdb_module’. Images may be provided in a number of formats including ELF (.img extension), binary (.bin
extension) and SREC (.srec extension).

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the "Cirrus Logic development board" hardware.

3. While still displaying theBuild -> Templatesdialog box, select either the "stubs" package template to build a
GDB stub image, or the "cygmon" template to build the CygMon ROM Monitor. ClickOK.

4. Build eCos usingBuild -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new edb7xxx stubs

or to build a CygMon ROM monitor image, enter the command:

$ ecosconfig new edb7xxx cygmon

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix "gdb_module". CygMon images have the prefix "cygmon".

153

Appendix A. Target Setup

Loading the ROM Image into On-board Flash

Program images can be written into Flash memory by means of a bootstrap program which is built into the
EDB7211. This program communicates with a support program on your host to download and program an im-
age into the Flash memory.

Cirrus Logic provides such a program for use with Windows/DOS. eCos comes with a similar program which will
run under Linux. The basic operation of both programs is the same.

1. Connect a serial line to ’UART 1’.

2. Power off the EDB7211.

3. Install jumper ’PROGRAM ENABLE’ which enables this special mode for downloading Flash images. Note
that some board revisions have this jumper labelled “BOOT ENABLE”.

4. Power on the EDB7211.

5. Execute the Flash writing program on your host. On Linux, this would be:

dl_edb7xxx <PATH>/gdb_module.bin

where ’<PATH>’ is the path to the binary format version of the ROM image you wish to load, either as built in
the previous section or the "loaders/arm-edb7211/" subdirectory of your eCos installation. The download tool
defaults to 38400 baud and device /dev/ttyS1 for communication. To change these, specify them as parameters,
e.g.

dl_edb7xxx <PATH>/gdb_module.bin 9600 /dev/ttyS0

6. The download program will indicate that it is waiting for the board to come alive. At this point, press ’RESET’
and then ’WAKEUP’ switches in order. There should be some indication of progress, first of the code being
downloaded, then of the programming process.

7. Upon completion of the programming, power off the EDB7211.

8. Remove the ’PROGRAM ENABLE/BOOT ENABLE’ jumper.

9. Power on the EDB7211, press ’RESET’ and ’WAKEUP’. The new ROM image should now be running on the
board.

10.The GDB debugger will now be able to communicate with the board to download and debug RAM based
programs. This procedure also applies for loading ROM-startup eCos programs into the on-board FLASH
memory, given a binary format image of the program from arm-elf-objcopy. Loading a ROM-startup eCos
program into Flash will overwrite the GDB Stub ROM/CygMon in Flash, so you would have to reload the
GDB Stub ROM/CygMon to return to normal RAM-startup program development.

Building the Flash Downloader on Linux

eCos provides a Flash download program suitable for use with the EP7211 Development Board which will run on
Linux. Follow these steps to build this program. Note: at the time of the writing of these instructions, the download
program is built directly within the eCos source repository since it is not configuration specific.

cd <eCos install dir>/packages/hal/arm/edb7xxx/ <version> /support

make

154

Appendix A. Target Setup

(where ’# ’ is your shell prompt)

Note: this program was adapted from the Cirrus Logic original DOS program and still contains some vestiges of
that environment.

Developing eCos Programs with the ARM Multi-ICE

The EP7211 Development Board supports use of the ARM Multi-processor EmbeddedICE(tm), also known as the
Multi-ICE. Full instructions on how to install and use the Multi-ICE in conjunction with GDB are provided in
the "GNUPro Toolkit Reference for eCos ARM/Thumb"manual. However, the following platform-specific details
should be noted.

You will need an ARM Multi-ICE Server configuration file for the EP7211 Development Board. Here is a suggested
configuration file to use:

======== File "720T.cfg" ========
;Total IR length = 4
[TITLE]
Multi-ICE configuration for EP7211

[TAP 0]
ARM720T

[TAPINFO]
YES

[Timing]
Low=0
High=0
Adaptive=OFF
==================================

You must ensure that the board has the appropriate soldered connections. For the EP7211 this involves connecting
TEST0 and TEST1 of the EP7211 to ground. To do this you must solder a wire from ground at JP33 to TP8 and
TP9.

With respect to using multiple devices simultaneously, note that the EP7211 is not ID sensitive.

If you wish to view diagnostic output from your program that was downloaded via the Multi-ICE, you will note
that by default the output on the serial line (as viewed by a terminal such as Hyperterm in Windows, or cu in Unix)
is in the form of GDB packets.

To get legible output, the solution is to set the "GDB Serial port" to a different device from the "Diagnostic serial
port", and you should use the Diagnostic serial port to view the diagnostic output.

Warning: The multi-ice-gdb-server will fail on startup if the board has not been both reset and awakened before
running the server.

To resolve this, it is necessary to free up the connection from within the ARM Multi-ICE server itself. However
when this happens, the next time you use GDB to load the program into the board, you will see lots of "Readback
did not match original data" messages in the output of the multi-ice-gdb-server program. This indicates your pro-
gram did not load correctly, and you should restart the multi-ice-gdb-server program, taking care to reset the board
correctly before reconnecting.

155

Appendix A. Target Setup

As a reminder, you must specify --config-dialog to the multi-ice-gdb-server program to connect to the board cor-
rectly. If you do not, the multi-ice-gdb-server program will not be able to connect.

Cirrus Logic ARM EP7212 Development Board Hardware Setup
The Cirrus Logic EP7212 Development Board is almost identical to the EP7211 Development Board from a hard-
ware setup viewpoint, and is based on the same port of eCos. Therefore the earlier documentation for the EP7211
Development Board can be considered equivalent, but with the following changes:

• The first serial port is silk screened as "UART 1" on the EP7211 Development Board, but is silk screened as
"Serial Port 0" on the EP7212 Development Board. Similarly "UART 2" is silk screened as "Serial Port 1" on
the EP7212 Development Board.

• JP2 (used to control reprogramming of the FLASH) is not silkscreened with "Boot Enable".

• To setup the EP7212 Development Board for use with the ARM Multi-ICE JTAG debugging interface unit,
it is necessary to connect TEST0 and TEST1 of the EP7212 to ground. On the Development Board, this is
accomplished by placing shorting blocks on JP47 and JP48. When the shorting blocks are fitted, the board can
only be operated through the Multi-ICE - debugging over a serial line is not possible.

• Pre-built GDB stubs are provided in the directoryloaders/arm-edb7212 relative to the root of your eCos
installation

• When rebuilding the GDB stub ROM image, change the "Cirrus Logic processor variant" option
(CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the EP7212. This can be selected in the
eCos Configuration Tool, or if using ecosconfig, can be set by uncommenting the user_value property of this
option in ecos.ecc and setting it to "EP7212".

Cirrus Logic ARM EP7312 Development Board Hardware Setup
The Cirrus Logic EP7312 Development Board is similar to the EP7212 Development Board from a hardware setup
viewpoint, and is based on the same port of eCos.

When rebuilding the RedBoot ROM image or an eCos application, change the "Cirrus Logic processor variant"
option (CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the EP7312. This can be selected in
theeCos Configuration Tool, or if using ecosconfig, can be set by uncommenting the user_value property of this
option in ecos.ecc and setting it to "EP7312".

See the RedBoot documentation for building and installing RedBoot for this target. Only RedBoot is supported as
a boot image; ROMRAM startup is recommended.

90MHz Operation

The EP7xxx targets offer a choice of clock speeds, from 18MHz to a maximum, normally, of 72MHz. These are
described as kHz values 18432 36864 49152 and 73728 within the configuration tool. If you have a release which
supports it, you will also see 90317 as an available option here, for 90MHz operation.

This option only applies to certain EP7312 hardware, not all EP7312 boards support it. Do not select 90MHz when
building RedBoot or your eCos application unless you are absolutely sure that your board supports it.

156

Appendix A. Target Setup

If you do have a 90MHz board and wish to execute at 90MHz, it is in fact not necessary to build RedBoot specially,
if you build your eCos application configured for 90MHz. RedBoot will run at 72MHz and your application will
run at 90MHz. If you do install a 90MHz RedBoot, then you must build eCos for 90MHz or timing and baud rates
on serial I/O will be wrong.

In other words, code (either eCos app or RedBoot) built for 90MHz will “change up a gear” when it starts up; but
code built for 72MHz, because it needs to run correctly on boards without the “gearbox” does not change back
down, so if you mix the two, unexpected timing can result. To run a non-eCos application without any hardware
initialization code at 90MHz, you must install a specially-built RedBoot.

Cirrus Logic ARM EP7209 Development Board Hardware Setup
Note: At time of writing, no EP7209 Development Board is available, and consequently eCos has not been verified
for use with the EP7209 Development Board.

The Cirrus Logic EP7209 Development Board is almost identical to the EP7212 Board in all respects, except that
it is not fitted with DRAM, nor has it a DRAM controller.

The only valid configuration for the EDB7209 is ROM based. The STUBS and RAM startup modes are not avail-
able as no DRAM is fitted.

Cirrus Logic ARM CL-PS7111 Evaluation Board Hardware Setup
The implementation of the port of eCos to the Cirrus Logic ARM CL-PS7111 Evaluation Board (also known as
EB7111) is based on the EP7211 Development Board port.

For that reason, the setup required is identical to the EP7211 Development Board as described above, with the
following exceptions:

• The Cygmon ROM monitor is not supported

• The ARM Multi-ICE is not supported

• Pre-built GDB stubs are provided in the directory loaders/arm-eb7111 relative to the root of your eCos installa-
tion

• If rebuilding the GDB stub ROM image, change the "Cirrus Logic processor variant" option
(CYGHWR_HAL_ARM_EDB7XXX_VARIANT) from the EP7211 to the CL_PS7111. This can be selected
in theeCos Configuration Tool, or if using ecosconfig, can be set by uncommenting the user_value property of
this option in ecos.ecc and setting it to "CL_PS7111"

All remote serial communication is done with the serial I/O connector

/misc
% slow_cat.tcl < [path]/gdb_module.srec > /dev/ttyS0

Power off the board, and change it to boot the GDB stubs in big-endian mode by setting the switches like this:

SW1: 00000000 (all levers down) SW2: 10001010

157

Appendix A. Target Setup

The GDB stubs allow communication with GDB using the serial port at connector PJ7A (lower connector). The
communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control
is employed. Connection to the host computer should be made using a straight through serial cable.

StrongARM EBSA-285 Hardware Setup
The eCos Developer’s Kit package comes with a ROM image which provides GDB support for the Intel® Stron-
gARM® Evaluation Board EBSA-285. Both eCos and the Stub ROM image assume the clocks are: 3.6864 MHz
PLL input for generating the core clock, and 50MHz osc input for external clocks. An image of this ROM is also
provided atloaders/arm-ebsa285/gdbload.bin under the root of your eCos installation.

The ROM monitor image (an eCos GDB stub) provided for the EBSA-285 board must be programmed into the
flash, replacing the Angel monitor on the board. Please refer to the section titled "Loading the ROM Image into
On-Board flash" on how to program the ROM onto the board.

The Stub ROM allows communication with GDB via the serial connector on the bulkhead mounting bracket COM0.
The communication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow
control is employed.

Building the GDB Stub FLASH ROM images

Pre-built GDB stubs images are provided in the directory loaders/arm-ebsa285 relative to the root of your eCos
installation, but here are instructions on how to rebuild them if you should ever need to.

Building the GDB Stubs with the eCos Configuration Tool

1. Start with a new document - selecting theFile -> Newmenu item if necessary to do this.

2. Choose theBuild -> Templatesmenu item, and then select the StrongARM EBSA285 hardware.

3. While still displaying theBuild -> Templatesdialog box, select the "stubs" package template to build a GDB
stub image. ClickOK.

4. Build eCos usingBuild -> Library

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Building the GDB Stub ROMs with ecosconfig

(See “Using ecosconfig on UNIX” on page 72)

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new ebsa285 stubs

3. Enter the commands:

158

Appendix A. Target Setup

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. The GDB
stub ROM images have the prefix "gdb_module".

Loading the ROM Image into On-board Flash

There are several ways to install the eCos gdb stub ROM image in the EBSA board’s flash memory. Once installed,
the gdb stub ROM provides standard eCos download and debug via the EBSA board"s serial port. The options
available include the Linux based EBSA flash upgrade utility provided by Red Hat, direct writing of the flash via
MultiICE (JTAG) hardware debugger, and other flash management utilities from Intel (these only support DOS,
and proprietary ARM tools and image formats). Only the Red Hat flash upgrade tool is supported and tested in this
release.

The flash upgrade tool requires the EBSA board to be configured as a PCI slave (rather than a master, its normal
operating mode) and plugged into a Linux host computer"s PCI bus.

Configuring the board for flash loading: Follow the instructions in the EBSA-285 Reference Manual, pages A-2
and A-3 to configure the board as an add-in card, and enable flash blank programming. Briefly: assuming the board
was in the default setting to execute as a bus master ("Host Bridge") make jumper 9 (J9), move jumper 10 (J10) to
external reset (PCI_RST), and move jumper 15 (J15) link 4-6-5 to connect 5-6 instead of 4-6.

Configuring the board for execution of eCos programs: Follow the instructions in the EBSA-285 Reference Manual,
pages A-2 and A-3 to configure the board as a "Host Bridge" with "Central Function". Briefly: unset J9, move J10
to on-board reset (BRD_RST), and set J15 to make 4-6 instead of 5-6 (see page A-8 also). Plug the card into its
own PCI bus, not the Linux PC used for the flash-programming process.

Building the Linux software: the Linux software sources are in directory

<BASE_DIR>/packages/hal/arm/ebsa285/v1_3/support/linux/safl_util

in the eCos source repository. There are two parts to the system: a loadable kernel module and the flash utility. The
loadable kernel module is safl.o and the utility is sa_flash. To build:

cd to this directory, or a copy of it.

make

This builds safl.o and sa_flash. The kernel module must be installed, and a device file created for it. Both of these
operations require root permissions. Create the device file by:

% mknod /dev/safl c 10 178

Programming the flash: switch off the EBSA-285, and remove the EBSA-285 board from its PCI bus. Take appro-
priate anti-static precautions. Configure it for flash loading as above, halt your Linux system and turn it off. Install
the EBSA-285 board in the PCI bus of the Linux system and boot it up. (Single user is good enough, assuming
your image and safl_util build dir are on a local disc partition.) Change directory to the safl_util directory, then, to
load the kernel module and flash an image onto the eval board (as root):

% insmod safl.o
% sa_flash <image_file>

159

Appendix A. Target Setup

Halt and turn off the Linux machine and remove the EBSA-285 card. Take appropriate anti-static precautions.
Configure it for execution of eCos programs as above, and plug it into its own PCI bus. Restart the Linux machine
however you wish.

This information is replicated in the README file within the safl_util directory and its parents, and in the EBSA-
285 Reference Manual from Intel, appendix A "Configuration Guide". If in doubt, please refer to those documents
also.

This procedure also applies for loading ROM-startup eCos programs into the on-board flash memory, given a
binary format image of the program from arm-elf-objcopy. Loading a ROM-startup eCos program into flash will
overwrite the StubROM in flash, so you would have to reload the StubROM to return to normal RAM-startup
program development.

Running your eCos Program Using GDB and the StubROM

Note: You must first load the StubROM image into the flash memory on the EBSA-285 board before doing this.
See “Loading the ROM Image into On-board Flash”, page 93 for details.

Connect to the StubROM in the board and run your eCos program<PROGRAM> as

follows:

$ arm-elf-gdb -nw <PROGRAM>
(gdb) set remotebaud 38400
(gdb) target remote <DEVICE>

Where<DEVICE> is /dev/ttyS0 or COM1: or similar, depending on your environment and how you connected
your serial line to the host computer. Expect some output here, for example:

Remote debugging using /dev/ttyS0
0x410026a4 in ?? ()

then, to load the program

(gdb) load

which will report locations and sizes of sections as they load, then begin execution using

(gdb) continue

If you have no eCos program yet, but you want to connect to the board just to verify serial communications, tell gdb
"set endian little" before anything else, so that it understands the board (GDB normally infers this from information
within the eCos program).

Note: When an eCos program is run on the EBSA-285 board, the GDB stub in ROM loses control. This means
that if you require the ability to stop execution on the target remotely, or want thread debugging capabilities,
you must include GDB stub support when configuring eCos.

160

Appendix A. Target Setup

Compaq iPAQ PocketPC Hardware Setup
For setting up the iPAQ to run with RedBoot, see the theRedBoot User’s Guide. Connections may be made using the
Compact Flash Ethernet interface. A serial cable may be connected directly, or via the cradle. Serial communication
uses the parameters 38400,8,N,1. The LCD/Touchscreen may also be used as an interface to RedBoot and eCos
applications.

SH3/EDK7708 Hardware Setup
The eCos Developer’s Kit package comes with a ROM which provides GDB support for the Hitachi
EDK7708 board (a big-endian and a little-endian version). Images of these ROMs are also provided at
loaders/sh-edk7708/gdbload.bin andloaders/sh-edk7708le/gdbload.bin under the root of your eCos
installation.

The ROM is installed to socket U6 on the board. When using the big-endian ROM, jumper 9 must be set to 2-3.
When using the little-endian ROM, jumper 9 must be set to 1-2. Attention should be paid to the correct orientation
of the ROM during installation. Only replace the board"s existing ROM using a proper PLCC extraction tool, as
the socket would otherwise risk being damaged.

If you are going to program a new ROM or FLASH using the binary image, you may have to experiment to get the
right byte-order in the device. Depending on the programming software you use, it might be necessary to enable
byte-swapping. If the GDB stub ROM/FLASH you program does not work, try reversing the byte-order.

The GDB stub in the EPROM allows communication with GDB using the serial port at connector J1. The com-
munication parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is
employed. Connection to the host computer should be made using the dedicated serial cable included in the EDK
package.

Installing the Stubs into FLASH

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/sh-edk7708 and loaders/sh-edk7708le relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the SH EDK7708 hardware.

3. While still displaying theBuild->Templatesdialog box, select the “stubs” package template to build a GDB
stub. ClickOK.

4. If building a little-endian image, disable the “Use big-endian mode” option in the SH EDK7708 HAL
(CYGHWR_HAL_SH_BIGENDIAN).

5. Build eCos usingBuild->Library.

6. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

161

Appendix A. Target Setup

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new edk7708 stubs

3. If building a little-endian image, uncomment the user value in ecos.ecc for
CYGHWR_HAL_SH_BIGENDIAN and change it to 0.

4. Enter the commands:

$ ecosconfig tree
$ make

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your ROM
programmer.

2. Plug the ROM/FLASH into socket U6. If the image is little-endian set jumper 9 to 1-2. If the image is big-
endian set jumper 9 to 2-3.

SH3/CQ7708 Hardware Setup

Preparing the board

Make sure the DIP switches on the board are set as follows:

SW1-1 ON
SW1-2 OFF
SW1-3 ON
SW1-4 OFF

SW2-1 ON
SW2-2 ON
SW2-3 OFF
SW2-4 OFF

If you are using a straight through serial cable which has flow control lines, you will also need to cut JP12 (5-6) as
the flow control lines can cause NMIs.

162

Appendix A. Target Setup

eCos GDB Stubs

The eCos installation CD contains a copy of the eCos GDB stubs in binary format which must be programmed into
an EPROM or FLASH and installed on the board.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directory loaders/sh3-cq7708 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the SH3 cq7708 hardware.

3. While still displaying theBuild->Templatesdialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs usingBuild->Library.

5. When the build completes, the image files can be found in thebin/ subdirectory of the install tree. GDB stub
images have the prefixgdb_module .

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cq7708 stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in thebin/ subdirectory of the install tree. GDB stub
images have the prefixgdb_module .

Programming the stubs in EPROM/FLASH

The board can use different sizes of ROMs. Use this table to adjust the board’s jumpers to the ROM sizes you are
using.

size(kbit) JP7 JP9 JP10 JP11
256 2-3 2-3 open open
512 1-2 2-3 open open
1000 1-2 open open 2-3
2000 1-2 1-2 open 2-3
4000 1-2 1-2 short 2-3

163

Appendix A. Target Setup

8000 1-2 1-2 short 1-2

There are two ways to program the stubs. We advise you to use method 1, since it is simpler. Method 2 is unsup-
ported and requires a bit of fiddling.

Method 1:

Program the binary stub image into two EPROMs, E and O. EPROM E should contain the even bytes, and O the
odd bytes (your EPROM programmer should have the ability to split the image).

EPROM E should be installed in socket IC8, and EPROM O should be installed in socket IC4.

Set JP6 to 16 bit mode (1-2 soldered, 2-3 cut) Set SW1-4 to ON and SW2-1 to OFF.

Method2:

Assuming that the stub binary is smaller than 32 KB, you can install it in a single EPROM.

Compile themkcqrom.c program found in themisc directory.

Use it to convert the binary image to the required format. See themkcqrom.c source for a description of what is
done, and why it is necessary.

% mkcqrom gdb_module.bin gdb_mangled.bin

Program thegdb_mangled.bin file into an EPROM and install it in socket IC4

Set JP6 to 8 bit mode (cut 1-2, solder 2-3)

The GDB stubs allow communication with GDB using the serial port at connector CN7. The communication
parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a straight through serial cable.

SH3/HS7729PCI Hardware Setup
Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

SH3/SE77x9 Hardware Setup
Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

SH4/CQ7750 Hardware Setup

Preparing the board

Make sure the DIP switches on the board are set as follows:

SW1-1 ON
SW1-2 OFF
SW1-3 ON
SW1-4 OFF

164

Appendix A. Target Setup

SW2-1 ON
SW2-2 ON
SW2-3 OFF
SW2-4 OFF

If you are using a straight through serial cable which has flow control lines, you will also need to cut JP12 (5-6) as
the flow control lines can cause NMIs.

eCos GDB Stubs

The eCos installation CD contains a copy of the eCos GDB stubs in binary format which must be programmed into
an EPROM or FLASH and installed on the board.

Preparing the GDB stubs

These stub preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled stubs in the
directory loaders/sh3-cq7708 relative to the installation root.

Building the GDB stub image with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the SH3 cq7708 hardware.

3. While still displaying theBuild->Templatesdialog box, select the stubs package template to build a GDB stub.
Click OK.

4. Build eCos stubs usingBuild->Library.

5. When the build completes, the image files can be found in thebin/ subdirectory of the install tree. GDB stub
images have the prefixgdb_module .

Building the GDB stub image with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new cq7708 stubs

3. Enter the commands:

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in thebin/ subdirectory of the install tree. GDB stub
images have the prefixgdb_module .

165

Appendix A. Target Setup

Programming the stubs in EPROM/FLASH

The board can use different sizes of ROMs. Use this table to adjust the board’s jumpers to the ROM sizes you are
using.

size(kbit) JP7 JP9 JP10 JP11
256 2-3 2-3 open open
512 1-2 2-3 open open
1000 1-2 open open 2-3
2000 1-2 1-2 open 2-3
4000 1-2 1-2 short 2-3
8000 1-2 1-2 short 1-2

There are two ways to program the stubs. We advise you to use method 1, since it is simpler. Method 2 is unsup-
ported and requires a bit of fiddling.

Method 1:

Program the binary stub image into two EPROMs, E and O. EPROM E should contain the even bytes, and O the
odd bytes (your EPROM programmer should have the ability to split the image).

EPROM E should be installed in socket IC8, and EPROM O should be installed in socket IC4.

Set JP6 to 16 bit mode (1-2 soldered, 2-3 cut) Set SW1-4 to ON and SW2-1 to OFF.

Method2:

Assuming that the stub binary is smaller than 32 KB, you can install it in a single EPROM.

Compile themkcqrom.c program found in themisc directory.

Use it to convert the binary image to the required format. See themkcqrom.c source for a description of what is
done, and why it is necessary.

% mkcqrom gdb_module.bin gdb_mangled.bin

Program thegdb_mangled.bin file into an EPROM and install it in socket IC4

Set JP6 to 8 bit mode (cut 1-2, solder 2-3)

The GDB stubs allow communication with GDB using the serial port at connector CN7. The communication
parameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a straight through serial cable.

SH4/SE7751 Hardware Setup
Please see the RedBoot manual for instructions on how to prepare the board for use with eCos.

NEC CEB-V850/SA1 Hardware Setup
The CEB-V850 board is fitted with a socketed EPROM. The internal Flash of the V850 supplied with the CEB-
V850 boards defaults to vectoring into this EPROM. A GDB stub image should be programmed into an EPROM

166

Appendix A. Target Setup

fitted to this board, and a pre-built image is provided atloaders/v850-ceb_v850/v850sa1/gdb_module.bin

under the root of your eCos installation.

The EPROM is installed to the socket labelled U7 on the board. Attention should be paid to the correct orientation
of the EPROM during installation.

When programming an EPROM using the binary image, be careful to get the byte order correct. It needs to be little-
endian. If the EPROM burner software has a hex-editor, check that the first few bytes of the image look similar
to:

00000000: 0018 8007 5e02 0000 0000 0000 0000 0000

If the byte order is wrong you will see 1800 instead of 0018 etc. Use the EPROM burner software to make a
byte-swap before you burn to image to the EPROM.

If the GDB stub EPROM you burn does not work, try reversing the byte-order, even if you think you have it the
right way around. At least one DOS-based EPROM burner program is known to have the byte-order upside down.

The GDB stub in the EPROM allows communication with GDB using the serial port. The communication pa-
rameters are fixed at 38400 baud, 8 data bits, no parity bit and 1 stop bit (8-N-1). No flow control is employed.
Connection to the host computer should be made using a dedicated serial cable as specified in the CEB-V850/SA1
manual.

Installing the Stubs into ROM

Preparing the Binaries

These two binary preparation steps are not strictly necessary as the eCos distribution ships with pre-compiled
binaries in the directory loaders/v850-ceb_v850 relative to the installation root.

Building the ROM images with the eCos Configuration Tool

1. Start with a new document - selecting theFile->Newmenu item if necessary to do this.

2. Choose theBuild->Templatesmenu item, and then select the NEC CEB-V850/SA1 hardware.

3. While still displaying theBuild->Templatesdialog box, select the “stubs” package template to build a GDB
stub. ClickOK.

4. Build eCos usingBuild->Library.

5. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Building the ROM images with ecosconfig

1. Make an empty directory to contain the build tree, and cd into it.

2. To build a GDB stub ROM image, enter the command:

$ ecosconfig new ceb-v850 stubs

3. Enter the commands:

167

Appendix A. Target Setup

$ ecosconfig tree
$ make

4. When the build completes, the image files can be found in the bin/ subdirectory of the install tree. GDB stub
ROM images have the prefix “gdb_module”.

Installing the Stubs into ROM or FLASH

1. Program the binary image file gdb_module.bin into ROM or FLASH referring to the instructions of your
ROM programmer.

2. Plug the ROM/FLASH into the socket as described at the beginning of this section.

Debugging with the NEC V850 I.C.E.

eCos applications may be debugged using the NEC V850 In Circuit Emulator (I.C.E.) A PC running Microsoft
Windows is required in order to run the NEC ICE software and drivers. In addition Red Hat have developed a
“libremote” server application named v850ice.exe which is used on the PC connected to the I.C.E. in order to
allow connections from GDB.

The I.C.E. must be physically connected to a Windows NT system through NEC"s PCI or PC Card interface. A
driver, DLLs, and application are provided by NEC to control the I.C.E.

v850ice is a Cygwin based server that runs on the NT system and provides an interface between the gdb client
and the I.C.E. software. v850-elf-gdb may be run on the Windows NT system or on a remote system. v850-
elf-gdb communicates with the libremote server using the gdb remote protocol over a TCP/IP socket. v850ice
communicates with the I.C.E. by calling functions in the NECMSG.DLL provided by NEC.

INITIAL SETUP

1. Configure the hardware including the I.C.E., SA1 or SB1 Option Module, and target board. Install the interface
card in the Windows NT system. Reference NEC"s documentation for interface installation, jumper settings,
etc.

2. Install the Windows NT device driver provided by NEC.

3. Copy the NEC DLLs, MDI application, and other support files to a directory on the Windows NT system.
The standard location is C:\NecTools32. This directory will be referred to as the "libremote server directory"
in this document. v850ice.exe must also be copied to this directory after being built. The required files are:
cpu.cfg, Nec.cfg, MDI.EXE, NECMSG.DLL, EX85032.DLL, V850E.DLL, IE850.MON, IE850E.MON, and
D3037A.800.

4. Make certain the file cpu.cfg contains the line:

CpuOption=SA1

if using a V850/SA1 module, or:

CpuOption=SB1

if using a V850/SB1 module.

168

Appendix A. Target Setup

5. Set the environment variable IEPATH to point to the libremote server

directory.

BUILD PROCEDURES

A pre-built v850ice.exe executable is supplied in the loaders/v850-ceb_v850 directory relative to the root of the
eCos installation. However the following process will allow the rebuilding of this executable if required:

For this example assume the v850ice libremote tree has been copied to a directory named "server". The directory
structure will be similar to the following diagram:

server
|

devo
/ \

config libremote
/ \

lib v850ice

Build the v850ice source as follows. Be sure to use the native Cygwin compiler tools that were supplied alongside
eCos.

cd server mkdir build cd build ../devo/configure --target=v850-elf --host=i686-pc-cygwin make

The resultant libremote server image (v850ice.exe) can be found in build/libremote/v850ice. Copy v850ice.exe to
the lib remote server directory.

V850ICE.EXE EXECUTION

The v850ice command line syntax is:

v850ice [-d] [-t addr] [port number]

The optional -d option enables debug output. The -t option is associated with thread debugging - see the "eCos
thread debugging" section below for details. By default v850ice listens on port 2345 for an attach request from a
gdb client. A different port number may be specified on the command line.

To run the libremote server:

1. Power on the I.C.E. and target board.

2. Open a Cygwin window.

3. Run v850ice.

4. You will see the MDI interface window appear. In this window you should see the "Connected to In-Circuit
Emulator" message. In the Cygwin window, the libremote server will indicate it is ready to accept a gdb client
connection with the message "v850ice: listening on port 2345."

169

Appendix A. Target Setup

V850-ELF-GDB EXECUTION

Run the v850-elf-gdb client to debug the V850 target. It is necessary to issue certain configuration commands to
the I.C.E. software. These commands may be issued directly in the MDI window or they may be issued from the
gdb client through the "monitor" command.

On the Cosmo CEB-V850 board, on-chip Flash is mapped at address 0x0, the on-board EPROM at 0x100000 and
the on-board RAM at 0xfc0000. Since a stand alone V850 will start executing from address 0x0 on reset, it is
normal to load either an application or a bootstrap loader for Flash at this address. eCos programs may be built to
boot from Flash or the on-board EPROM. If building for the on-board EPROM, it would be expected that the Flash
will contain the default CEB-V850 flash contents. An ELF format version of the default contents may be found in
the eCos distribution with the name v850flash.img.

In stand alone operation, normally the code in this flash image would have been programmed into the V850 on the
Cosmo board, and this would cause it to vector into the on-board EPROM to run the application located there. In
the case of eCos, this application may be a GDB stub ROM application, allowing the further download to RAM
over serial of actual applications to debug.

As an example, we shall demonstrate how to use the I.C.E. to download the v850flash.img and GDB stub EPROM
image using I.C.E. emulator memory only, and not requiring any actual programming of devices.

v850-elf-gdb -nw (gdb) file v850flash.img (gdb) target remote localhost:2345 (gdb) monitor reset (gdb) monitor
cpu r=256 a=16 (gdb) monitor map r=0x100000-L 0x80000 (gdb) monitor map u=0xfc0000-L 0x40000 (gdb)
monitor pinmask k (gdb) monitor step (gdb) monitor step (gdb) monitor step (gdb) monitor step (gdb) load (gdb)
detach (gdb) file gdb_module.img (gdb) target remote localhost:2345 (gdb) load (gdb) continue

NOTE: The four "monitor step" commands are only required the first time the board is connected to the I.C.E.,
otherwise the program will fail.

This is because of a limitation of the I.C.E. hardware that means that the first time it is used, the "map" commands
are not acted on and the addresses "0x100000" and "0xfc0000" are not mapped. This can be observed using the
command "td e-20" in the MDI application"s console to display the trace buffer, which will show that the contents
of address 0x100000 are not valid. Subsequent runs do not require the "monitor step" commands.

It is unusual to load two executable images to a target through gdb. From the example above notice that this is
accomplished by attaching to the libremote server, loading the flash image, detaching, reattaching, and loading the
ROM/RAM image. It is more normal to build an executable image that can be executed directly. In eCos this is
achieved by selecting either the ROM or ROMRAM startup type, and optionally enable building for the internal
FLASH. The I.C.E. emulator memory can emulate both the internal FLASH and the EPROM, so real hardware
programming is not required.

Upon running this example you will notice that the libremote server does not exit upon detecting a detach request,
but simply begins listening for the next attach request. To cause v850ice to terminate, issue the "monitor quit" or
"monitor exit" command from the gdb client. v850ice will then terminate with the next detach request. (You can
also enter control-c in the Cygwin/DOS window where v850ice is running.)

MDI INTERFACE VS. GDB INTERFACE

If a filename is referenced in an MDI command, whether the command is entered in the MDI window or issued
from the gdb client with the monitor command, the file must reside on the Windows NT libremote server system.
When specifying a filename when entering a command in the MDI window it is obvious that a server local file is
being referenced. When issuing an MDI command from the gdb client, the user must remember that the command

170

Appendix A. Target Setup

line is simply passed to the I.C.E. software on the server system. The command is executed by the I.C.E. software
as though it were entered locally.

Executable images may be loaded into the V850 target by entering the "load" command in the MDI window or
with the gdb "load" command. If the MDI load command is used, the executable image must be located on the
server system and must be in S Record format. If the gdb load command is used, the executable image must be
located on the client system and must be in ELF format.

Be aware that the gdb client is not aware of debugger commands issued from the MDI window. It is possible to
cause the gdb client and the I.C.E. software to get out of sync by issuing commands from both interfaces during
the same debugging session.

eCos THREAD DEBUGGING

eCos and the V850 I.C.E. libremote server have been written to work together to allow debugging of eCos threads.
This is an optional feature, disabled by default because of the overheads trying to detect a threaded program
involves.

Obviously thread debugging is not possible for programs with "RAM" startup type, as they are expected to operate
underneath a separate ROM monitor (such as a GDB stub ROM), that itself would provide its own thread debugging
capabilities over the serial line. Thread debugging is relevant only for programs built for Flash, ROM, or ROMRAM
startup.

To configure the libremote server to support thread debugging, use the command:

(gdb) monitor syscallinfo ADDRESS

at the GDB console prompt, where ADDRESS is the address of the syscall information structure included in the
applications. In eCos this has been designed to be located at a consistent address for each CPU model (V850/SA1
or V850/SB1). It may be determined from an eCos executable using the following command at a cygwin bash
prompt:

v850-elf-nm EXECUTABLE | grep hal_v85x_ice_syscall_info

At the current time, this address is 0xfc0400 for a Cosmo board fitted with a V850/SA1, or 0xfc0540 for a Cosmo
board fitted with a V850/SB1.

So for example, the GDB command for the SB1 would be:

(gdb) monitor syscallinfo 0xfc0540

Given that the syscallinfo address is fixed over all eCos executables for a given target, it is possible to define it on
the libremote command line as well using the "-t" option, for example:

bash$ v850ice -t 0xfc0400
v850ice: listening on port 2345

171

Appendix A. Target Setup

NEC CEB-V850/SB1 Hardware Setup
The instructions for setting up the CEB-V850/SB1 are virtually identical to those of the CEB-V850/SA1 above.
The only significant differences are that pre-built loaders are available at loaders/v850-ceb_v850/v850sb1 within
the eCos installation. Binaries supporting boards with both 16MHz and 8MHz clock speeds are supplied. Also
when building applications, or rebuilding the stubs for a V850/SB1 target, then the V850 CPU variant must be
changed in the CEB-V850 HAL to the SB1.

i386 PC Hardware Setup
eCos application on the PC can be run in three ways: via RedBoot, loaded directly from a floppy disk, or loaded
by the GRUB bootloader.

RedBoot Support

For information about setting up the PC to run with RedBoot, consult the RedBoot User"s Guide. If using serial
debugging, the serial line runs at 38400 baud 8-N-1 and should be connected to the debug host using a null modem
cable. If ethernet debugging is required, an i82559 compatible network interface card, such as an Intel EtherExpress
Pro 10/100, should be installed on the target PC and connected to the development PC running GDB. When
RedBoot is configured appropriately to have an IP address set, then GDB will be able to debug directly over
TCP/IP to the target PC.

Floppy Disk Support

If an application is built with a startup type of FLOPPY, then it is configured to be a self-booting image that must
be written onto a formatted floppy disk. This will erase any existing file system or data that is already on the disk,
so proceed with caution.

To write an application to floppy disk, it must first be converted to a pure binary format. This is done with the
following command:

$ i386-elf-objcopy -O binary app.elf app.bin

Hereapp.elf is the final linked application executable, in ELF format (it may not have a.elf extension). The
file app.bin is the resulting pure binary file. This must be written to the floppy disk with the following command:

$ dd conv=sync if=app.bin of=/dev/fd0

For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mounted as/dev/fd0 .
To check if this is the case, type the commandmount at the Cygwin bash prompt. If the floppy drive is already
mounted, it will be listed as something similar to the following line:

172

Appendix A. Target Setup

\\.\a: /dev/fd0 user binmode

If this line is not listed, then mount the floppy drive using the command:

$ mount -f -b //./a: /dev/fd0

To actually install the boot image on the floppy, use the command:

$ dd conv=sync if=app.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot
from A: by default. On reset, the PC will boot from the floppy and the eCos application will load itself and execute
immediately.

NOTE: Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot
image does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the
fdformat command on Linux, or format a: /u on DOS/Windows. If this fails, try a different disk.

GRUB Bootloader Support

If an application is built with the GRUB startup type, it is configured to be loaded by the GRUB bootloader.

GRUB is an open source boot loader that supports many different operating systems. It is available from
http://www.gnu.org/software/grub. The latest version of GRUB should be downloaded from there and installed. In
Red Hat Linux version 7.2 and later it is the default bootloader for Linux and therefore is already installed.

To install GRUB on a floppy disk from Linux you need to execute the following commands:

$ mformat a:
$ mount /mnt/floppy
$ grub-install --root-directory=/mnt/floppy ’(fd0)’
Probing devices to guess BIOS drives. This may take a long time.
Installation finished. No error reported.
This is the contents of the device map /mnt/floppy/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script ‘grub-install’.

(fd0) /dev/fd0
$ cp $ECOS_REPOSITORY/packages/hal/i386/pc/current/misc/menu.lst /mnt/floppy/boot/grub
$ umount /mnt/floppy

The file menu.lst is an example GRUB menu configuration file. It contains menu items to load some of the
standard eCos tests from floppy or from partition zero of the first hard disk. You should, of course, customize
this file to load your own application. Alternatively you can use the command-line interface of GRUB to input
commands yourself.

Applications can be installed, or updated simply by copying them to the floppy disk at the location expected by the
menu.lst file. For booting from floppy disks it is recommended that the executable be stripped of all debug and
symbol table information before copying. This reduces the size of the file and can make booting faster.

173

Appendix A. Target Setup

To install GRUB on a hard disk, refer to the GRUB documentation. Be warned, however, that if you get this wrong
it may compromise any existing bootloader that exists on the hard disk and may make any other operating systems
unbootable. Practice on floppy disks or sacrificial hard disks first. On machines running Red Hat Linux version 7.2
and later, you can just add your own menu items to the/boot/grub/menu.lst file that already exists.

Debugging FLOPPY and GRUB Applications

When RedBoot loads an application it also provides debugging services in the form of GDB remote protocol stubs.
When an application is loaded stand-alone from a floppy disk, or by GRUB, these services are not present. To allow
these application to be debugged, it is possible to include GDB stubs into the application.

To do this, set the "Support for GDB stubs" (CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) configuration option.
Following this any application built will allow GDB to connect to the debug serial port (by default serial device 0,
also known as COM1) whenever the application takes an exception, or if a Control-C is typed to the debug port.
Ethernet debugging is not supported.

The option "Enable initial breakpoint" (CYGDBG_HAL_DEBUG_GDB_INITIAL_BREAK) causes the HAL to take a
breakpoint immediately before calling cyg_start(). This gives the developer a chance to set any breakpoints or
inspect the system state before it proceeds. The configuration sets this option by default if GDB stubs are included,
and this is not a RedBoot build. To make the application execute immediately either disable this option, or disable
CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS.

i386/Linux Synthetic Target Setup
When building for the synthetic Linux target, the resulting binaries are native Linux applications with the HAL
providing suitable bindings between the eCos kernel and the Linux kernel.

Note: Please be aware that the current implementation of the Linux synthetic target does not allow thread-
aware debugging.

These Linux applications cannot be run on a Windows system. However, it is possible to write a similar HAL
emulation for the Windows kernel if such a testing target is desired.

Tools

For the synthetic target, eCos relies on features not available in native compilers earlier than gcc-2.95.1. It also
requires version 2.9.5 or later of the GNU linker. If you have gcc-2.95.1 or later and ld version 2.9.5 or later, then
you do not need to build new tools. eCos does not support earlier versions. You can check the compiler version
usinggcc -vand the linker version usingld -v.

If you have native tools that are sufficiently recent for use with eCos, you should be aware that by default
eCos assumes that the toolsi686-pc-linux-gnu-gcc, i686-pc-linux-gnu-ar, i686-pc-linux-gnu-ld, and
i686-pc-linux-gnu-objcopy are on your system and are the correct versions for use with eCos. But instead,
you can tell eCos to use your native tools by editing the configuration value "Global command prefix"
(CYGBLD_GLOBAL_COMMAND_PREFIX) in your eCos configuration. If left empty (i.e. set to the empty
string) eCos will use your native tools when building.

174

Appendix A. Target Setup

If you have any difficulties, it is almost certainly easiest overall to rebuild the tools as described on:
http://sources.redhat.com/ecos/getstart.html

175

Appendix A. Target Setup

176

Appendix B. Real-time characterization
For a discussion of real-time performance measurement for eCos, see the eCos Users’ Guide.

Caution
As with the target setup descriptions in the previous appendix, this information will eventually
be merged into per-target documents.

Sample numbers:

Board: ARM AEB-1 Revision B Evaluation Board
Board: ARM AEB-1 Revision B Evaluation Board

CPU : Sharp LH77790A 24MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 128 size 2048
Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 13 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 193.49 microseconds (290 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
110.19 104.67 116.00 3.26 42% 28% Create thread

34.00 34.00 34.00 0.00 100% 100% Yield thread [all suspended]
24.67 24.67 24.67 0.00 100% 100% Suspend [suspended] thread
25.05 24.67 25.33 0.33 57% 42% Resume thread
37.14 36.67 37.33 0.27 71% 28% Set priority

3.81 3.33 4.00 0.27 71% 28% Get priority

177

Appendix B. Real-time characterization

80.00 80.00 80.00 0.00 100% 100% Kill [suspended] thread
33.90 33.33 34.00 0.16 85% 14% Yield [no other] thread
45.90 44.00 46.67 0.54 57% 14% Resume [suspended low prio] thread
24.57 24.00 24.67 0.16 85% 14% Resume [runnable low prio] thread
42.29 36.67 43.33 1.61 85% 14% Suspend [runnable] thread
33.90 33.33 34.00 0.16 85% 14% Yield [only low prio] thread
24.67 24.67 24.67 0.00 100% 100% Suspend [runnable->not runnable]
80.00 80.00 80.00 0.00 100% 100% Kill [runnable] thread
43.33 43.33 43.33 0.00 100% 100% Destroy [dead] thread

106.29 101.33 107.33 1.41 85% 14% Destroy [runnable] thread
144.95 141.33 166.00 6.01 85% 85% Resume [high priority] thread

78.31 76.67 254.67 2.75 99% 99% Thread switch

4.00 4.00 4.00 0.00 100% 100% Scheduler lock
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [0 threads]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [1 suspended]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [many suspended]
16.37 16.00 16.67 0.33 56% 43% Scheduler unlock [many low prio]

10.67 10.67 10.67 0.00 100% 100% Init mutex
28.67 28.67 28.67 0.00 100% 100% Lock [unlocked] mutex
30.44 30.00 31.33 0.33 59% 37% Unlock [locked] mutex
25.42 25.33 26.00 0.15 87% 87% Trylock [unlocked] mutex
22.50 22.00 22.67 0.25 75% 25% Trylock [locked] mutex

5.75 5.33 6.00 0.31 62% 37% Destroy mutex
185.33 185.33 185.33 0.00 100% 100% Unlock/Lock mutex

20.17 20.00 20.67 0.25 75% 75% Create mbox
2.92 2.67 3.33 0.31 62% 62% Peek [empty] mbox

32.42 32.00 32.67 0.31 62% 37% Put [first] mbox
3.00 2.67 3.33 0.33 100% 50% Peek [1 msg] mbox

32.50 32.00 32.67 0.25 75% 25% Put [second] mbox
2.92 2.67 3.33 0.31 62% 62% Peek [2 msgs] mbox

32.83 32.67 33.33 0.25 75% 75% Get [first] mbox
32.67 32.67 32.67 0.00 100% 100% Get [second] mbox
31.33 31.33 31.33 0.00 100% 100% Tryput [first] mbox
27.58 27.33 28.00 0.31 62% 62% Peek item [non-empty] mbox
32.83 32.67 33.33 0.25 75% 75% Tryget [non-empty] mbox
26.50 26.00 26.67 0.25 75% 25% Peek item [empty] mbox
28.00 28.00 28.00 0.00 100% 100% Tryget [empty] mbox

3.25 2.67 3.33 0.15 87% 12% Waiting to get mbox
3.25 2.67 3.33 0.15 87% 12% Waiting to put mbox

30.83 30.67 31.33 0.25 75% 75% Delete mbox
101.08 100.67 101.33 0.31 62% 37% Put/Get mbox

11.17 10.67 11.33 0.25 75% 25% Init semaphore
24.17 24.00 24.67 0.25 75% 75% Post [0] semaphore
27.08 26.67 27.33 0.31 62% 37% Wait [1] semaphore
22.75 22.67 23.33 0.15 87% 87% Trywait [0] semaphore
22.21 22.00 22.67 0.29 68% 68% Trywait [1] semaphore

7.33 7.33 7.33 0.00 100% 100% Peek semaphore
5.92 5.33 6.00 0.15 87% 12% Destroy semaphore

110.04 110.00 110.67 0.08 93% 93% Post/Wait semaphore

9.54 9.33 10.00 0.29 68% 68% Create counter

178

Appendix B. Real-time characterization

3.92 3.33 4.00 0.15 87% 12% Get counter value
4.00 4.00 4.00 0.00 100% 100% Set counter value

30.92 30.67 31.33 0.31 62% 62% Tick counter
5.75 5.33 6.00 0.31 62% 37% Delete counter

13.83 13.33 14.00 0.25 75% 25% Create alarm
46.67 46.67 46.67 0.00 100% 100% Initialize alarm

3.67 3.33 4.00 0.33 100% 50% Disable alarm
45.67 45.33 46.00 0.33 100% 50% Enable alarm

8.33 8.00 8.67 0.33 100% 50% Delete alarm
36.33 36.00 36.67 0.33 100% 50% Tick counter [1 alarm]

214.67 214.67 214.67 0.00 100% 100% Tick counter [many alarms]
62.67 62.67 62.67 0.00 100% 100% Tick & fire counter [1 alarm]

1087.04 1075.33 1278.67 21.91 93% 93% Tick & fire counters [>1 together]
246.35 240.67 412.00 10.35 96% 96% Tick & fire counters [>1 separately]
168.01 167.33 237.33 1.08 99% 99% Alarm latency [0 threads]
187.36 168.00 234.67 3.60 86% 1% Alarm latency [2 threads]
187.37 167.33 235.33 3.59 85% 1% Alarm latency [many threads]
303.12 280.00 508.67 3.21 98% 0% Alarm -> thread resume latency

36.65 36.00 38.67 0.00 Clock/interrupt latency

65.79 52.00 152.67 0.00 Clock DSR latency

316 316 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 280 size 2048
All done : Idlethread stack used 268 size 2048

Timing complete - 30390 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Atmel AT91/EB40
Board: Atmel AT91/EB40
CPU : AT91R40807 (ARM7TDMI core), 32MHz
512KB RAM, 64K Flash

Startup, main stack : stack used 420 size 2400
Startup : Interrupt stack used 144 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 127.53 microseconds (130 raw clock ticks)

179

Appendix B. Real-time characterization

Testing parameters:
Clock samples: 32
Threads: 25
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
86.48 71.29 101.56 7.99 48% 28% Create thread
20.70 20.51 21.48 0.31 80% 80% Yield thread [all suspended]
17.15 16.60 17.58 0.48 56% 44% Suspend [suspended] thread
17.07 16.60 17.58 0.49 52% 52% Resume thread
25.51 25.39 26.37 0.21 88% 88% Set priority

3.16 2.93 3.91 0.36 76% 76% Get priority
52.34 51.76 52.73 0.47 60% 40% Kill [suspended] thread
20.70 20.51 21.48 0.31 80% 80% Yield [no other] thread
28.98 28.32 30.27 0.48 60% 36% Resume [suspended low prio] thread
17.11 16.60 17.58 0.49 52% 48% Resume [runnable low prio] thread
27.85 26.37 28.32 0.52 96% 4% Suspend [runnable] thread
20.70 20.51 21.48 0.31 80% 80% Yield [only low prio] thread
17.23 16.60 17.58 0.45 64% 36% Suspend [runnable->not runnable]
52.34 51.76 52.73 0.47 60% 40% Kill [runnable] thread
33.01 32.23 33.20 0.31 80% 20% Destroy [dead] thread
72.03 70.31 72.27 0.38 80% 4% Destroy [runnable] thread
96.99 95.70 112.30 1.22 64% 96% Resume [high priority] thread
51.48 49.80 164.06 1.76 99% 99% Thread switch

2.78 1.95 2.93 0.26 84% 15% Scheduler lock
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [0 threads]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [1 suspended]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [many suspended]
11.81 11.72 12.70 0.17 90% 90% Scheduler unlock [many low prio]

5.49 4.88 5.86 0.46 62% 37% Init mutex
20.20 19.53 20.51 0.42 68% 31% Lock [unlocked] mutex
24.44 24.41 25.39 0.06 96% 96% Unlock [locked] mutex
18.25 17.58 18.55 0.42 68% 31% Trylock [unlocked] mutex
16.11 15.63 16.60 0.49 100% 50% Trylock [locked] mutex

6.10 5.86 6.84 0.37 75% 75% Destroy mutex
124.21 124.02 125.00 0.30 81% 81% Unlock/Lock mutex

9.28 8.79 9.77 0.49 100% 50% Create mbox
2.93 2.93 2.93 0.00 100% 100% Peek [empty] mbox

22.58 22.46 23.44 0.21 87% 87% Put [first] mbox
2.44 1.95 2.93 0.49 100% 50% Peek [1 msg] mbox

22.58 22.46 23.44 0.21 87% 87% Put [second] mbox
2.44 1.95 2.93 0.49 100% 50% Peek [2 msgs] mbox

22.71 22.46 23.44 0.37 75% 75% Get [first] mbox

180

Appendix B. Real-time characterization

22.71 22.46 23.44 0.37 75% 75% Get [second] mbox
21.18 20.51 21.48 0.42 68% 31% Tryput [first] mbox
18.98 18.55 19.53 0.48 56% 56% Peek item [non-empty] mbox
22.46 22.46 22.46 0.00 100% 100% Tryget [non-empty] mbox
18.31 17.58 18.55 0.37 75% 25% Peek item [empty] mbox
19.53 19.53 19.53 0.00 100% 100% Tryget [empty] mbox

2.69 1.95 2.93 0.37 75% 25% Waiting to get mbox
2.93 2.93 2.93 0.00 100% 100% Waiting to put mbox

23.86 23.44 24.41 0.48 56% 56% Delete mbox
67.60 67.38 68.36 0.33 78% 78% Put/Get mbox

5.37 4.88 5.86 0.49 100% 50% Init semaphore
16.97 16.60 17.58 0.46 62% 62% Post [0] semaphore
18.98 18.55 19.53 0.48 56% 56% Wait [1] semaphore
15.81 15.63 16.60 0.30 81% 81% Trywait [0] semaphore
15.29 14.65 15.63 0.44 65% 34% Trywait [1] semaphore

5.62 4.88 5.86 0.37 75% 25% Peek semaphore
6.35 5.86 6.84 0.49 100% 50% Destroy semaphore

72.36 72.27 73.24 0.17 90% 90% Post/Wait semaphore

7.08 6.84 7.81 0.37 75% 75% Create counter
3.17 2.93 3.91 0.37 75% 75% Get counter value
3.05 2.93 3.91 0.21 87% 87% Set counter value

24.11 23.44 24.41 0.42 68% 31% Tick counter
5.49 4.88 5.86 0.46 62% 37% Delete counter

10.92 10.74 11.72 0.30 81% 81% Create alarm
31.46 31.25 32.23 0.33 78% 78% Initialize alarm

3.05 2.93 3.91 0.21 87% 87% Disable alarm
31.49 31.25 32.23 0.37 75% 75% Enable alarm

7.02 6.84 7.81 0.30 81% 81% Delete alarm
31.16 30.27 31.25 0.17 90% 9% Tick counter [1 alarm]

309.26 304.69 425.78 7.28 96% 96% Tick counter [many alarms]
44.83 43.95 44.92 0.17 90% 9% Tick & fire counter [1 alarm]

781.68 774.41 893.55 13.62 93% 93% Tick & fire counters [>1 together]
324.16 320.31 433.59 6.84 96% 96% Tick & fire counters [>1 separately]
114.26 113.28 167.97 0.84 57% 42% Alarm latency [0 threads]
126.91 113.28 159.18 8.20 50% 31% Alarm latency [2 threads]
127.11 113.28 158.20 8.09 51% 28% Alarm latency [many threads]
196.49 189.45 331.05 2.10 98% 0% Alarm -> thread resume latency

23.50 23.44 25.39 0.00 Clock/interrupt latency

40.31 33.20 514.65 0.00 Clock DSR latency

300 271 312 (main stack: 832) Thread stack used (1120 total)
All done, main stack : stack used 832 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 272 size 2048

Timing complete - 30350 ms total

PASS:<Basic timing OK>
EXIT: <done>

181

Appendix B. Real-time characterization

Board: Intel StrongARM EBSA-285 Evaluation Board
Board: Intel StrongARM EBSA-285 Evaluation Board

CPU : Intel StrongARM SA-110 228MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 4.61 microseconds (16 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
4.97 3.26 7.34 0.60 50% 4% Create thread
0.73 0.54 2.17 0.14 60% 37% Yield thread [all suspended]
0.98 0.82 2.99 0.23 81% 68% Suspend [suspended] thread
0.54 0.27 1.63 0.03 92% 6% Resume thread
0.83 0.54 1.90 0.10 73% 14% Set priority
0.21 0.00 0.54 0.21 25% 48% Get priority
2.25 1.90 10.05 0.37 96% 67% Kill [suspended] thread
0.70 0.54 1.09 0.14 53% 45% Yield [no other] thread
0.96 0.82 1.36 0.14 50% 48% Resume [suspended low prio] thread
0.53 0.27 0.82 0.03 92% 6% Resume [runnable low prio] thread
0.90 0.82 1.63 0.13 70% 70% Suspend [runnable] thread
0.70 0.54 0.82 0.13 57% 42% Yield [only low prio] thread
0.55 0.54 0.82 0.01 98% 98% Suspend [runnable->not runnable]
1.64 1.63 2.17 0.02 98% 98% Kill [runnable] thread
0.97 0.82 4.62 0.20 98% 64% Destroy [dead] thread
2.17 1.90 2.17 0.01 98% 1% Destroy [runnable] thread
6.06 5.16 10.60 0.53 59% 31% Resume [high priority] thread
1.69 1.63 5.98 0.11 90% 90% Thread switch

0.14 0.00 1.36 0.14 99% 50% Scheduler lock
0.37 0.27 0.54 0.13 62% 62% Scheduler unlock [0 threads]
0.38 0.27 0.54 0.13 60% 60% Scheduler unlock [1 suspended]

182

Appendix B. Real-time characterization

0.37 0.27 0.54 0.13 63% 63% Scheduler unlock [many suspended]
0.37 0.27 0.54 0.13 63% 63% Scheduler unlock [many low prio]

0.34 0.00 1.90 0.15 78% 6% Init mutex
0.88 0.54 4.62 0.37 93% 71% Lock [unlocked] mutex
0.79 0.54 4.35 0.26 93% 53% Unlock [locked] mutex
0.59 0.27 2.17 0.10 93% 3% Trylock [unlocked] mutex
0.50 0.27 0.82 0.09 78% 18% Trylock [locked] mutex
0.18 0.00 0.54 0.13 59% 37% Destroy mutex
3.85 3.80 5.16 0.08 96% 96% Unlock/Lock mutex

0.64 0.27 3.53 0.24 81% 15% Create mbox
0.61 0.27 2.17 0.21 68% 18% Peek [empty] mbox
0.87 0.54 5.16 0.31 59% 87% Put [first] mbox
0.08 0.00 0.54 0.12 71% 71% Peek [1 msg] mbox
0.71 0.54 1.09 0.14 56% 40% Put [second] mbox
0.08 0.00 0.27 0.12 68% 68% Peek [2 msgs] mbox
0.89 0.54 4.89 0.31 62% 81% Get [first] mbox
0.76 0.54 1.09 0.17 43% 37% Get [second] mbox
0.76 0.54 3.26 0.21 96% 50% Tryput [first] mbox
0.65 0.54 2.45 0.17 81% 81% Peek item [non-empty] mbox
0.76 0.54 2.72 0.19 53% 43% Tryget [non-empty] mbox
0.58 0.54 0.82 0.06 87% 87% Peek item [empty] mbox
0.61 0.54 0.82 0.10 75% 75% Tryget [empty] mbox
0.10 0.00 0.54 0.13 65% 65% Waiting to get mbox
0.10 0.00 0.54 0.13 65% 65% Waiting to put mbox
0.77 0.54 3.26 0.20 53% 43% Delete mbox
2.10 1.90 6.25 0.30 93% 93% Put/Get mbox

0.34 0.27 1.09 0.11 81% 81% Init semaphore
0.60 0.27 1.09 0.12 68% 6% Post [0] semaphore
0.59 0.54 0.82 0.08 81% 81% Wait [1] semaphore
0.59 0.54 2.17 0.10 96% 96% Trywait [0] semaphore
0.48 0.27 0.82 0.11 71% 25% Trywait [1] semaphore
0.24 0.00 0.82 0.09 78% 18% Peek semaphore
0.19 0.00 0.54 0.13 62% 34% Destroy semaphore
2.28 2.17 4.08 0.18 93% 90% Post/Wait semaphore

0.43 0.00 2.72 0.23 90% 6% Create counter
0.40 0.00 1.63 0.25 68% 28% Get counter value
0.13 0.00 0.82 0.15 96% 59% Set counter value
0.71 0.54 1.63 0.16 50% 46% Tick counter
0.16 0.00 0.54 0.14 53% 43% Delete counter

0.47 0.27 1.36 0.15 59% 37% Create alarm
1.58 1.09 7.07 0.44 71% 68% Initialize alarm
0.12 0.00 1.09 0.16 96% 65% Disable alarm
1.01 0.82 2.45 0.17 53% 43% Enable alarm
0.21 0.00 0.27 0.09 78% 21% Delete alarm
0.78 0.54 1.90 0.12 71% 25% Tick counter [1 alarm]
3.90 3.80 4.35 0.13 68% 68% Tick counter [many alarms]
1.25 1.09 1.63 0.14 53% 43% Tick & fire counter [1 alarm]

19.88 19.84 20.11 0.07 84% 84% Tick & fire counters [>1 together]
4.37 4.35 4.62 0.05 90% 90% Tick & fire counters [>1 separately]
3.83 3.80 7.61 0.06 99% 99% Alarm latency [0 threads]

183

Appendix B. Real-time characterization

4.46 3.80 7.88 0.27 71% 24% Alarm latency [2 threads]
16.06 13.59 26.36 1.05 54% 10% Alarm latency [many threads]

6.67 6.52 22.83 0.29 98% 98% Alarm -> thread resume latency

1.89 0.82 9.78 0.00 Clock/interrupt latency

2.17 1.09 7.34 0.00 Clock DSR latency

11 0 316 (main stack: 744) Thread stack used (1120 total)
All done, main stack : stack used 744 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 268 size 2048

Timing complete - 30210 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Cirrus Logic EDB7111-2 Development Board

CPU : Cirrus Logic EP7211 73MHz

Board: Cirrus Logic EDB7111-2 Development Board

CPU : Cirrus Logic EP7211 73MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 356.69 microseconds (182 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

184

Appendix B. Real-time characterization

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
22.71 17.58 37.11 3.07 46% 34% Create thread

4.36 3.91 5.86 0.70 76% 76% Yield thread [all suspended]
4.24 3.91 7.81 0.56 84% 84% Suspend [suspended] thread
4.09 1.95 7.81 0.45 85% 3% Resume thread
5.31 3.91 11.72 0.92 65% 32% Set priority
2.11 1.95 3.91 0.28 92% 92% Get priority

11.54 9.77 25.39 0.99 62% 28% Kill [suspended] thread
4.46 3.91 9.77 0.82 75% 75% Yield [no other] thread
7.57 5.86 13.67 0.69 75% 20% Resume [suspended low prio] thread
3.94 1.95 5.86 0.18 92% 3% Resume [runnable low prio] thread
7.02 5.86 13.67 1.05 53% 45% Suspend [runnable] thread
4.42 3.91 9.77 0.79 76% 76% Yield [only low prio] thread
4.24 1.95 5.86 0.61 79% 1% Suspend [runnable->not runnable]

11.29 9.77 27.34 1.14 57% 37% Kill [runnable] thread
6.29 3.91 11.72 0.84 71% 4% Destroy [dead] thread

13.52 11.72 31.25 0.90 70% 25% Destroy [runnable] thread
24.50 21.48 42.97 1.69 79% 12% Resume [high priority] thread

8.79 7.81 19.53 1.05 99% 53% Thread switch

1.66 0.00 3.91 0.52 83% 15% Scheduler lock
2.59 1.95 3.91 0.86 67% 67% Scheduler unlock [0 threads]
2.62 1.95 3.91 0.88 65% 65% Scheduler unlock [1 suspended]
2.61 1.95 3.91 0.87 66% 66% Scheduler unlock [many suspended]
2.58 1.95 3.91 0.85 67% 67% Scheduler unlock [many low prio]

2.69 1.95 5.86 0.96 65% 65% Init mutex
4.88 3.91 9.77 1.10 96% 56% Lock [unlocked] mutex
4.64 3.91 11.72 1.05 71% 71% Unlock [locked] mutex
3.97 1.95 7.81 0.47 81% 9% Trylock [unlocked] mutex
3.48 1.95 3.91 0.67 78% 21% Trylock [locked] mutex
1.77 0.00 3.91 0.44 84% 12% Destroy mutex

31.92 29.30 42.97 1.65 71% 18% Unlock/Lock mutex

4.09 3.91 9.77 0.35 96% 96% Create mbox
1.83 0.00 3.91 0.34 87% 9% Peek [empty] mbox
5.31 3.91 9.77 0.96 62% 34% Put [first] mbox
1.59 0.00 1.95 0.60 81% 18% Peek [1 msg] mbox
5.19 3.91 9.77 1.04 56% 40% Put [second] mbox
1.65 0.00 3.91 0.62 78% 18% Peek [2 msgs] mbox
5.43 3.91 9.77 0.86 68% 28% Get [first] mbox
5.31 3.91 7.81 0.96 59% 34% Get [second] mbox
4.76 3.91 9.77 1.07 62% 62% Tryput [first] mbox
4.82 1.95 9.77 1.15 93% 3% Peek item [non-empty] mbox
5.55 3.91 11.72 0.82 71% 25% Tryget [non-empty] mbox
3.97 1.95 7.81 0.59 75% 12% Peek item [empty] mbox
4.33 3.91 7.81 0.69 81% 81% Tryget [empty] mbox
1.59 0.00 3.91 0.79 68% 25% Waiting to get mbox
1.71 0.00 3.91 0.53 81% 15% Waiting to put mbox
5.25 3.91 9.77 1.01 59% 37% Delete mbox

17.82 15.63 29.30 1.14 65% 18% Put/Get mbox

185

Appendix B. Real-time characterization

2.69 1.95 5.86 0.96 65% 65% Init semaphore
3.78 1.95 7.81 0.46 84% 12% Post [0] semaphore
4.27 3.91 7.81 0.62 84% 84% Wait [1] semaphore
3.72 1.95 7.81 0.66 75% 18% Trywait [0] semaphore
3.29 1.95 5.86 0.92 62% 34% Trywait [1] semaphore
2.32 1.95 3.91 0.59 81% 81% Peek semaphore
1.89 0.00 3.91 0.24 90% 6% Destroy semaphore

15.75 13.67 29.30 1.07 68% 21% Post/Wait semaphore

2.69 1.95 5.86 0.96 65% 65% Create counter
1.83 0.00 1.95 0.23 93% 6% Get counter value
1.53 0.00 3.91 0.76 71% 25% Set counter value
4.82 3.91 5.86 0.97 53% 53% Tick counter
1.89 0.00 1.95 0.12 96% 3% Delete counter

3.78 1.95 7.81 0.46 84% 12% Create alarm
7.99 5.86 15.63 0.70 81% 9% Initialize alarm
1.71 0.00 1.95 0.43 87% 12% Disable alarm
7.14 5.86 11.72 1.04 56% 40% Enable alarm
2.50 1.95 3.91 0.79 71% 71% Delete alarm
4.94 3.91 7.81 1.04 96% 50% Tick counter [1 alarm]

19.47 17.58 23.44 0.36 87% 9% Tick counter [many alarms]
7.63 5.86 11.72 0.55 81% 15% Tick & fire counter [1 alarm]

99.06 97.66 105.47 1.05 59% 37% Tick & fire counters [>1 together]
22.15 21.48 27.34 0.96 71% 71% Tick & fire counters [>1 separately]

359.16 357.42 378.91 0.87 71% 25% Alarm latency [0 threads]
364.03 357.42 402.34 3.03 58% 15% Alarm latency [2 threads]
408.25 402.34 416.02 2.89 53% 24% Alarm latency [many threads]
381.16 376.95 492.19 2.48 95% 46% Alarm -> thread resume latency

9.79 5.86 19.53 0.00 Clock/interrupt latency

12.13 5.86 31.25 0.00 Clock DSR latency

12 0 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 276 size 2048

Timing complete - 30450 ms total

PASS:<Basic timing OK>
EXIT: <done>

CPU : Cirrus Logic EP7212 73MHz

Board: Cirrus Logic EDB7111-2 Development Board

CPU : Cirrus Logic EP7212 73MHz

186

Appendix B. Real-time characterization

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 356.32 microseconds (182 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
22.43 15.63 33.20 3.02 68% 18% Create thread

4.48 3.91 5.86 0.81 70% 70% Yield thread [all suspended]
4.42 3.91 7.81 0.78 75% 75% Suspend [suspended] thread
4.12 1.95 5.86 0.49 82% 3% Resume thread
5.62 3.91 11.72 0.64 78% 18% Set priority
2.17 1.95 3.91 0.38 89% 89% Get priority

11.54 9.77 27.34 0.88 70% 25% Kill [suspended] thread
4.64 3.91 9.77 0.96 65% 65% Yield [no other] thread
7.51 5.86 15.63 0.72 76% 21% Resume [suspended low prio] thread
3.88 1.95 9.77 0.42 82% 10% Resume [runnable low prio] thread
7.14 5.86 13.67 1.00 59% 39% Suspend [runnable] thread
4.52 3.91 7.81 0.86 70% 70% Yield [only low prio] thread
4.15 1.95 7.81 0.49 85% 1% Suspend [runnable->not runnable]

11.26 9.77 27.34 1.17 56% 39% Kill [runnable] thread
6.22 3.91 13.67 0.88 70% 7% Destroy [dead] thread

13.64 11.72 33.20 1.02 64% 26% Destroy [runnable] thread
24.17 21.48 41.02 1.49 82% 12% Resume [high priority] thread

8.80 7.81 21.48 1.08 98% 54% Thread switch

1.60 0.00 1.95 0.58 82% 17% Scheduler lock
2.61 1.95 3.91 0.87 66% 66% Scheduler unlock [0 threads]
2.59 1.95 3.91 0.86 67% 67% Scheduler unlock [1 suspended]
2.61 1.95 3.91 0.87 66% 66% Scheduler unlock [many suspended]
2.59 1.95 3.91 0.86 67% 67% Scheduler unlock [many low prio]

2.62 1.95 3.91 0.88 65% 65% Init mutex
4.82 3.91 9.77 1.09 96% 59% Lock [unlocked] mutex
4.39 3.91 9.77 0.79 81% 81% Unlock [locked] mutex

187

Appendix B. Real-time characterization

3.84 1.95 7.81 0.36 87% 9% Trylock [unlocked] mutex
3.54 1.95 5.86 0.69 75% 21% Trylock [locked] mutex
1.83 0.00 3.91 0.34 87% 9% Destroy mutex

34.61 31.25 46.88 1.68 78% 9% Unlock/Lock mutex

3.97 1.95 7.81 0.24 93% 3% Create mbox
1.83 0.00 3.91 0.34 87% 9% Peek [empty] mbox
4.76 3.91 9.77 1.07 62% 62% Put [first] mbox
1.71 0.00 3.91 0.64 75% 18% Peek [1 msg] mbox
5.00 3.91 9.77 1.10 96% 50% Put [second] mbox
1.65 0.00 1.95 0.52 84% 15% Peek [2 msgs] mbox
5.31 3.91 11.72 1.05 59% 37% Get [first] mbox
5.13 3.91 7.81 0.99 56% 40% Get [second] mbox
4.76 3.91 11.72 1.12 96% 65% Tryput [first] mbox
4.46 3.91 7.81 0.82 75% 75% Peek item [non-empty] mbox
5.55 3.91 9.77 0.82 68% 25% Tryget [non-empty] mbox
4.03 1.95 7.81 0.58 78% 9% Peek item [empty] mbox
4.27 3.91 5.86 0.59 81% 81% Tryget [empty] mbox
1.77 0.00 3.91 0.44 84% 12% Waiting to get mbox
1.59 0.00 1.95 0.60 81% 18% Waiting to put mbox
5.37 3.91 9.77 0.91 65% 31% Delete mbox

16.66 13.67 27.34 1.42 90% 3% Put/Get mbox

2.62 1.95 5.86 0.92 68% 68% Init semaphore
3.84 1.95 7.81 0.47 81% 12% Post [0] semaphore
4.21 3.91 7.81 0.53 87% 87% Wait [1] semaphore
3.48 1.95 5.86 0.76 71% 25% Trywait [0] semaphore
3.60 1.95 5.86 0.62 78% 18% Trywait [1] semaphore
2.26 1.95 5.86 0.53 87% 87% Peek semaphore
1.89 0.00 1.95 0.12 96% 3% Destroy semaphore

16.05 13.67 29.30 1.40 59% 18% Post/Wait semaphore

2.38 1.95 3.91 0.67 78% 78% Create counter
2.01 0.00 3.91 0.35 84% 6% Get counter value
1.89 0.00 3.91 0.24 90% 6% Set counter value
4.58 3.91 5.86 0.88 65% 65% Tick counter
1.71 0.00 1.95 0.43 87% 12% Delete counter

3.84 1.95 7.81 0.36 87% 9% Create alarm
7.99 5.86 15.63 0.47 93% 3% Initialize alarm
2.01 0.00 3.91 0.35 84% 6% Disable alarm
6.53 5.86 13.67 1.01 75% 75% Enable alarm
2.32 1.95 3.91 0.59 81% 81% Delete alarm
4.76 3.91 7.81 1.01 59% 59% Tick counter [1 alarm]

19.53 17.58 23.44 0.24 90% 6% Tick counter [many alarms]
7.57 5.86 13.67 0.75 75% 21% Tick & fire counter [1 alarm]

98.57 97.66 105.47 1.14 96% 62% Tick & fire counters [>1 together]
22.15 21.48 27.34 0.96 71% 71% Tick & fire counters [>1 separately]

359.18 357.42 384.77 1.10 65% 31% Alarm latency [0 threads]
362.63 357.42 396.48 2.55 43% 27% Alarm latency [2 threads]
408.22 402.34 416.02 2.73 55% 21% Alarm latency [many threads]
378.63 375.00 494.14 2.56 93% 71% Alarm -> thread resume latency

9.78 5.86 19.53 0.00 Clock/interrupt latency

188

Appendix B. Real-time characterization

12.21 5.86 31.25 0.00 Clock DSR latency

12 0 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 276 size 2048

Timing complete - 30550 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: ARM PID Evaluation Board

CPU : ARM 7TDMI 20 MHz

Board: ARM PID Evaluation Board

CPU : ARM 7TDMI 20 MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 6 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 120.74 microseconds (150 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 50
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
99.01 68.00 129.60 15.62 50% 26% Create thread

189

Appendix B. Real-time characterization

21.60 21.60 21.60 0.00 100% 100% Yield thread [all suspended]
15.65 15.20 16.00 0.39 56% 44% Suspend [suspended] thread
15.79 15.20 16.00 0.31 74% 26% Resume thread
23.65 23.20 24.00 0.39 56% 44% Set priority

2.26 1.60 2.40 0.24 82% 18% Get priority
51.39 51.20 52.00 0.29 76% 76% Kill [suspended] thread
21.60 21.60 21.60 0.00 100% 100% Yield [no other] thread
29.47 28.00 29.60 0.22 86% 2% Resume [suspended low prio] thread
15.60 15.20 16.00 0.40 100% 50% Resume [runnable low prio] thread
27.73 24.00 28.00 0.40 74% 2% Suspend [runnable] thread
21.60 21.60 21.60 0.00 100% 100% Yield [only low prio] thread
15.65 15.20 16.00 0.39 56% 44% Suspend [runnable->not runnable]
51.39 51.20 52.00 0.29 76% 76% Kill [runnable] thread
27.66 27.20 28.80 0.41 54% 44% Destroy [dead] thread
68.93 64.80 69.60 0.35 72% 2% Destroy [runnable] thread
91.26 90.40 107.20 0.64 66% 32% Resume [high priority] thread
49.14 48.80 49.60 0.39 57% 57% Thread switch

2.20 1.60 2.40 0.30 75% 25% Scheduler lock
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [0 threads]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [1 suspended]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [many suspended]
10.20 9.60 10.40 0.30 75% 25% Scheduler unlock [many low prio]

6.85 6.40 7.20 0.39 56% 43% Init mutex
18.40 18.40 18.40 0.00 100% 100% Lock [unlocked] mutex
19.57 19.20 20.00 0.40 53% 53% Unlock [locked] mutex
16.55 16.00 16.80 0.34 68% 31% Trylock [unlocked] mutex
14.55 14.40 15.20 0.24 81% 81% Trylock [locked] mutex

3.55 3.20 4.00 0.39 56% 56% Destroy mutex
119.85 119.20 120.00 0.24 81% 18% Unlock/Lock mutex

12.85 12.80 13.60 0.09 93% 93% Create mbox
1.65 1.60 2.40 0.09 93% 93% Peek [empty] mbox

20.70 20.00 20.80 0.17 87% 12% Put [first] mbox
1.65 1.60 2.40 0.09 93% 93% Peek [1 msg] mbox

20.70 20.00 20.80 0.17 87% 12% Put [second] mbox
1.65 1.60 2.40 0.09 93% 93% Peek [2 msgs] mbox

20.85 20.80 21.60 0.09 93% 93% Get [first] mbox
20.85 20.80 21.60 0.09 93% 93% Get [second] mbox
19.90 19.20 20.00 0.17 87% 12% Tryput [first] mbox
17.60 17.60 17.60 0.00 100% 100% Peek item [non-empty] mbox
20.90 20.80 21.60 0.17 87% 87% Tryget [non-empty] mbox
16.80 16.80 16.80 0.00 100% 100% Peek item [empty] mbox
17.65 17.60 18.40 0.09 93% 93% Tryget [empty] mbox

1.85 1.60 2.40 0.34 68% 68% Waiting to get mbox
1.85 1.60 2.40 0.34 68% 68% Waiting to put mbox

19.40 19.20 20.00 0.30 75% 75% Delete mbox
65.05 64.80 65.60 0.34 68% 68% Put/Get mbox

7.05 6.40 7.20 0.24 81% 18% Init semaphore
15.55 15.20 16.00 0.39 56% 56% Post [0] semaphore
17.35 16.80 17.60 0.34 68% 31% Wait [1] semaphore
14.60 14.40 15.20 0.30 75% 75% Trywait [0] semaphore
14.20 13.60 14.40 0.30 75% 25% Trywait [1] semaphore

190

Appendix B. Real-time characterization

4.55 4.00 4.80 0.34 68% 31% Peek semaphore
3.75 3.20 4.00 0.34 68% 31% Destroy semaphore

70.85 70.40 71.20 0.39 56% 43% Post/Wait semaphore

6.05 5.60 6.40 0.39 56% 43% Create counter
2.25 1.60 2.40 0.24 81% 18% Get counter value
2.25 1.60 2.40 0.24 81% 18% Set counter value

19.70 19.20 20.00 0.37 62% 37% Tick counter
3.45 3.20 4.00 0.34 68% 68% Delete counter

9.05 8.80 9.60 0.34 68% 68% Create alarm
29.60 29.60 29.60 0.00 100% 100% Initialize alarm

2.15 1.60 2.40 0.34 68% 31% Disable alarm
29.35 28.80 29.60 0.34 68% 31% Enable alarm

5.10 4.80 5.60 0.37 62% 62% Delete alarm
23.20 23.20 23.20 0.00 100% 100% Tick counter [1 alarm]

138.00 137.60 138.40 0.40 100% 50% Tick counter [many alarms]
40.40 40.00 40.80 0.40 100% 50% Tick & fire counter [1 alarm]

704.25 697.60 804.00 12.47 93% 93% Tick & fire counters [>1 together]
155.20 155.20 155.20 0.00 100% 100% Tick & fire counters [>1 separately]
105.20 104.80 151.20 0.76 99% 94% Alarm latency [0 threads]
117.57 104.80 149.60 7.13 57% 25% Alarm latency [2 threads]
117.49 104.80 148.80 7.10 58% 26% Alarm latency [many threads]
192.59 177.60 316.00 1.93 98% 0% Alarm -> thread resume latency

22.10 21.60 24.00 0.00 Clock/interrupt latency

38.69 32.80 61.60 0.00 Clock DSR latency

297 276 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 272 size 2048

Timing complete - 30350 ms total

PASS:<Basic timing OK>
EXIT: <done>

CPU : ARM 920T 20 MHz

Board: ARM PID Evaluation Board

CPU : ARM 920T 20 MHz

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings

191

Appendix B. Real-time characterization

Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 15 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 291.41 microseconds (364 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 50
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
257.78 168.00 568.00 48.70 56% 28% Create thread

50.21 49.60 50.40 0.29 76% 24% Yield thread [all suspended]
36.26 36.00 36.80 0.35 68% 68% Suspend [suspended] thread
37.20 36.80 37.60 0.40 100% 50% Resume thread
56.24 56.00 56.80 0.34 70% 70% Set priority

5.20 4.80 5.60 0.40 100% 50% Get priority
122.75 122.40 123.20 0.39 56% 56% Kill [suspended] thread

50.19 49.60 50.40 0.31 74% 26% Yield [no other] thread
69.49 66.40 69.60 0.21 92% 2% Resume [suspended low prio] thread
37.01 36.80 37.60 0.31 74% 74% Resume [runnable low prio] thread
64.75 55.20 65.60 0.38 80% 2% Suspend [runnable] thread
50.19 49.60 50.40 0.31 74% 26% Yield [only low prio] thread
36.24 36.00 36.80 0.34 70% 70% Suspend [runnable->not runnable]

122.75 122.40 123.20 0.39 56% 56% Kill [runnable] thread
67.76 67.20 68.00 0.34 70% 30% Destroy [dead] thread

167.07 158.40 168.00 0.35 92% 2% Destroy [runnable] thread
213.49 212.00 249.60 1.46 84% 90% Resume [high priority] thread
122.81 120.00 389.60 4.17 99% 99% Thread switch

4.70 4.00 4.80 0.17 87% 12% Scheduler lock
23.70 23.20 24.00 0.37 62% 37% Scheduler unlock [0 threads]
23.60 23.20 24.00 0.40 100% 50% Scheduler unlock [1 suspended]
23.70 23.20 24.00 0.37 62% 37% Scheduler unlock [many suspended]
23.60 23.20 24.00 0.40 100% 50% Scheduler unlock [many low prio]

15.65 15.20 16.00 0.39 56% 43% Init mutex
42.40 42.40 42.40 0.00 100% 100% Lock [unlocked] mutex
45.37 44.80 46.40 0.36 65% 31% Unlock [locked] mutex
39.20 39.20 39.20 0.00 100% 100% Trylock [unlocked] mutex
34.45 34.40 35.20 0.09 93% 93% Trylock [locked] mutex

8.00 8.00 8.00 0.00 100% 100% Destroy mutex
284.42 284.00 284.80 0.40 53% 46% Unlock/Lock mutex

29.40 28.80 29.60 0.30 75% 25% Create mbox

192

Appendix B. Real-time characterization

3.35 3.20 4.00 0.24 81% 81% Peek [empty] mbox
49.35 48.80 49.60 0.34 68% 31% Put [first] mbox

3.35 3.20 4.00 0.24 81% 81% Peek [1 msg] mbox
49.35 48.80 49.60 0.34 68% 31% Put [second] mbox

3.35 3.20 4.00 0.24 81% 81% Peek [2 msgs] mbox
49.15 48.80 49.60 0.39 56% 56% Get [first] mbox
49.15 48.80 49.60 0.39 56% 56% Get [second] mbox
47.80 47.20 48.00 0.30 75% 25% Tryput [first] mbox
41.40 40.80 41.60 0.30 75% 25% Peek item [non-empty] mbox
49.40 48.80 49.60 0.30 75% 25% Tryget [non-empty] mbox
40.15 40.00 40.80 0.24 81% 81% Peek item [empty] mbox
40.95 40.80 41.60 0.24 81% 81% Tryget [empty] mbox

4.05 4.00 4.80 0.09 93% 93% Waiting to get mbox
4.05 4.00 4.80 0.09 93% 93% Waiting to put mbox

45.60 45.60 45.60 0.00 100% 100% Delete mbox
153.27 152.80 153.60 0.39 59% 40% Put/Get mbox

16.80 16.80 16.80 0.00 100% 100% Init semaphore
36.60 36.00 36.80 0.30 75% 25% Post [0] semaphore
39.60 39.20 40.00 0.40 100% 50% Wait [1] semaphore
34.80 34.40 35.20 0.40 100% 50% Trywait [0] semaphore
33.35 32.80 33.60 0.34 68% 31% Trywait [1] semaphore
10.30 9.60 10.40 0.17 87% 12% Peek semaphore

8.80 8.80 8.80 0.00 100% 100% Destroy semaphore
166.92 166.40 167.20 0.36 65% 34% Post/Wait semaphore

13.60 13.60 13.60 0.00 100% 100% Create counter
4.85 4.80 5.60 0.09 93% 93% Get counter value
4.80 4.80 4.80 0.00 100% 100% Set counter value

45.25 44.80 45.60 0.39 56% 43% Tick counter
7.75 7.20 8.00 0.34 68% 31% Delete counter

20.80 20.80 20.80 0.00 100% 100% Create alarm
69.30 68.80 69.60 0.37 62% 37% Initialize alarm

4.80 4.80 4.80 0.00 100% 100% Disable alarm
67.35 67.20 68.00 0.24 81% 81% Enable alarm
11.80 11.20 12.00 0.30 75% 25% Delete alarm
54.80 54.40 55.20 0.40 100% 50% Tick counter [1 alarm]

372.35 363.20 652.80 17.53 96% 96% Tick counter [many alarms]
95.50 95.20 96.00 0.37 62% 62% Tick & fire counter [1 alarm]

1757.92 1707.20 1996.80 81.43 81% 81% Tick & fire counters [>1 together]
404.37 404.00 404.80 0.40 53% 53% Tick & fire counters [>1 separately]
256.57 254.40 395.20 2.17 98% 97% Alarm latency [0 threads]
296.60 255.20 359.20 23.53 53% 31% Alarm latency [2 threads]
307.49 265.60 357.60 27.52 53% 53% Alarm latency [many threads]
467.04 432.00 788.80 5.03 97% 1% Alarm -> thread resume latency

55.63 54.40 60.80 0.00 Clock/interrupt latency

101.23 80.80 1433.60 0.00 Clock DSR latency

316 316 316 (main stack: 752) Thread stack used (1120 total)
All done, main stack : stack used 752 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 272 size 2048

193

Appendix B. Real-time characterization

Timing complete - 30780 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Intel IQ80310 XScale Development Kit
Board: Intel IQ80310 XScale Development Kit

CPU: Intel XScale 600MHz

Startup, main stack : stack used 388 size 2400
Startup : Interrupt stack used 148 size 4096
Startup : Idlethread stack used 76 size 1120

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 73 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 12.11 microseconds (399 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
6.53 5.48 8.55 0.50 53% 23% Create thread
0.37 0.03 3.24 0.18 87% 1% Yield thread [all suspended]
0.24 0.00 2.06 0.12 87% 1% Suspend [suspended] thread
0.25 0.00 0.73 0.06 71% 1% Resume thread
0.36 0.09 0.82 0.10 89% 1% Set priority
0.03 0.00 0.42 0.05 90% 90% Get priority
1.07 0.52 6.39 0.18 92% 1% Kill [suspended] thread
0.33 0.06 0.91 0.08 78% 3% Yield [no other] thread
0.55 0.03 1.06 0.09 85% 1% Resume [suspended low prio] thread
0.28 0.00 1.79 0.11 84% 4% Resume [runnable low prio] thread
0.43 0.00 1.00 0.12 76% 1% Suspend [runnable] thread
0.31 0.00 1.24 0.09 82% 4% Yield [only low prio] thread

194

Appendix B. Real-time characterization

0.21 0.00 0.42 0.04 73% 1% Suspend [runnable->not runnable]
1.00 0.88 1.45 0.04 78% 4% Kill [runnable] thread
0.59 0.42 3.97 0.13 81% 87% Destroy [dead] thread
1.43 1.27 1.94 0.07 78% 7% Destroy [runnable] thread
3.12 2.58 5.09 0.33 56% 34% Resume [high priority] thread
0.87 0.36 1.39 0.07 86% 0% Thread switch

0.15 0.00 1.39 0.21 81% 81% Scheduler lock
0.16 0.00 0.64 0.08 85% 7% Scheduler unlock [0 threads]
0.16 0.00 0.64 0.08 75% 8% Scheduler unlock [1 suspended]
0.16 0.00 0.70 0.08 78% 6% Scheduler unlock [many suspended]
0.16 0.00 0.64 0.07 81% 4% Scheduler unlock [many low prio]

0.45 0.00 1.39 0.34 56% 46% Init mutex
0.43 0.18 3.27 0.23 87% 87% Lock [unlocked] mutex
0.48 0.09 3.88 0.26 84% 71% Unlock [locked] mutex
0.35 0.21 2.24 0.21 87% 84% Trylock [unlocked] mutex
0.26 0.00 0.67 0.13 78% 9% Trylock [locked] mutex
0.21 0.00 1.27 0.24 78% 75% Destroy mutex
2.58 2.09 3.09 0.13 75% 9% Unlock/Lock mutex

0.99 0.21 2.48 0.41 65% 28% Create mbox
0.04 0.00 0.39 0.07 90% 87% Peek [empty] mbox
0.47 0.27 3.48 0.29 90% 78% Put [first] mbox
0.02 0.00 0.39 0.03 90% 90% Peek [1 msg] mbox
0.29 0.15 0.58 0.04 68% 3% Put [second] mbox
0.02 0.00 0.45 0.04 93% 93% Peek [2 msgs] mbox
0.48 0.21 3.67 0.26 84% 87% Get [first] mbox
0.35 0.09 0.82 0.11 75% 3% Get [second] mbox
0.50 0.21 3.18 0.33 90% 68% Tryput [first] mbox
0.39 0.15 1.39 0.19 78% 68% Peek item [non-empty] mbox
0.43 0.18 3.33 0.23 87% 90% Tryget [non-empty] mbox
0.28 0.03 0.79 0.06 68% 3% Peek item [empty] mbox
0.28 0.21 0.58 0.05 71% 65% Tryget [empty] mbox
0.01 0.00 0.36 0.02 96% 90% Waiting to get mbox
0.05 0.00 0.45 0.09 87% 84% Waiting to put mbox
0.42 0.09 2.88 0.20 84% 12% Delete mbox
1.39 1.27 2.39 0.14 87% 87% Put/Get mbox

0.35 0.00 1.36 0.45 75% 68% Init semaphore
0.19 0.00 0.45 0.04 81% 3% Post [0] semaphore
0.25 0.21 0.88 0.06 84% 81% Wait [1] semaphore
0.32 0.06 1.79 0.21 78% 68% Trywait [0] semaphore
0.20 0.00 0.52 0.06 62% 3% Trywait [1] semaphore
0.07 0.00 0.45 0.10 84% 81% Peek semaphore
0.06 0.00 0.52 0.06 71% 78% Destroy semaphore
1.45 1.42 1.79 0.04 87% 87% Post/Wait semaphore

0.70 0.00 2.88 0.47 43% 34% Create counter
0.05 0.00 0.42 0.09 87% 84% Get counter value
0.02 0.00 0.45 0.04 93% 93% Set counter value
0.38 0.12 0.58 0.06 59% 3% Tick counter
0.03 0.00 0.48 0.05 93% 78% Delete counter

1.10 0.39 4.30 0.47 62% 53% Create alarm

195

Appendix B. Real-time characterization

0.58 0.03 3.12 0.18 87% 3% Initialize alarm
0.04 0.00 0.42 0.07 90% 90% Disable alarm
0.54 0.36 1.36 0.12 84% 43% Enable alarm
0.03 0.00 0.70 0.06 84% 84% Delete alarm
0.50 0.24 0.97 0.08 84% 6% Tick counter [1 alarm]
5.30 5.12 5.97 0.14 84% 75% Tick counter [many alarms]
0.82 0.64 1.36 0.11 78% 43% Tick & fire counter [1 alarm]

14.13 13.85 14.55 0.09 78% 3% Tick & fire counters [>1 together]
5.56 5.45 6.00 0.09 78% 71% Tick & fire counters [>1 separately]
9.69 9.45 12.52 0.22 64% 71% Alarm latency [0 threads]
9.98 9.48 12.76 0.23 69% 14% Alarm latency [2 threads]

10.38 9.48 24.67 0.59 74% 45% Alarm latency [many threads]
11.72 11.30 21.33 0.32 81% 58% Alarm -> thread resume latency

1.87 1.82 10.42 0.00 Clock/interrupt latency

3.02 2.58 7.67 0.00 Clock DSR latency

9 0 260 (main stack: 776) Thread stack used (1120 total)
All done, main stack : stack used 776 size 2400
All done : Interrupt stack used 268 size 4096
All done : Idlethread stack used 244 size 1120

Timing complete - 30300 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Toshiba JMR3904 Evaluation Board
Board: Toshiba JMR3904 Evaluation Board

CPU : TMPR3904F 50MHz

eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 29.68 microseconds (45 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32

196

Appendix B. Real-time characterization

Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
13.62 11.72 27.99 1.51 79% 54% Create thread

2.77 2.60 3.91 0.26 79% 79% Yield thread [all suspended]
3.31 2.60 6.51 0.27 83% 12% Suspend [suspended] thread
2.58 1.95 7.81 0.47 58% 37% Resume thread
4.94 4.56 11.07 0.60 95% 79% Set priority
0.71 0.65 1.95 0.10 95% 95% Get priority

14.97 14.32 25.39 0.87 95% 95% Kill [suspended] thread
2.25 1.95 9.11 0.57 95% 95% Yield [no other] thread
7.27 6.51 12.37 0.42 79% 16% Resume [suspended low prio] thread
2.28 1.95 7.16 0.51 95% 79% Resume [runnable low prio] thread
4.31 3.26 12.37 0.75 87% 79% Suspend [runnable] thread
2.17 1.95 7.16 0.42 95% 95% Yield [only low prio] thread
2.39 1.95 6.51 0.51 95% 58% Suspend [runnable->not runnable]

13.43 12.37 22.79 0.80 91% 91% Kill [runnable] thread
22.30 20.83 37.76 1.76 91% 91% Resume [high priority] thread

4.62 4.56 11.07 0.13 98% 98% Thread switch

1.51 1.30 2.60 0.29 68% 68% Scheduler lock
2.36 1.95 3.26 0.31 61% 37% Scheduler unlock [0 threads]
2.39 1.95 5.21 0.32 62% 36% Scheduler unlock [1 suspended]
2.38 1.95 4.56 0.32 61% 37% Scheduler unlock [many suspended]
2.38 1.95 5.21 0.32 61% 37% Scheduler unlock [many low prio]

0.90 0.65 3.26 0.35 71% 71% Init mutex
2.48 1.95 8.46 0.50 50% 46% Lock [unlocked] mutex
2.83 2.60 9.11 0.42 93% 93% Unlock [locked] mutex
2.30 1.95 6.51 0.45 96% 65% Trylock [unlocked] mutex
1.99 1.30 5.86 0.24 84% 12% Trylock [locked] mutex
0.04 0.00 1.30 0.08 96% 96% Destroy mutex

42.40 42.32 44.92 0.16 96% 96% Unlock/Lock mutex

1.44 1.30 5.86 0.28 96% 96% Create mbox
0.51 0.00 1.30 0.25 71% 25% Peek [empty] mbox
2.93 2.60 9.11 0.51 96% 78% Put [first] mbox
0.51 0.00 1.30 0.25 71% 25% Peek [1 msg] mbox
4.19 3.91 5.21 0.34 59% 59% Put [second] mbox
0.45 0.00 0.65 0.28 68% 31% Peek [2 msgs] mbox
3.28 2.60 10.42 0.45 65% 31% Get [first] mbox
3.34 2.60 9.77 0.40 78% 18% Get [second] mbox
2.69 1.95 9.11 0.40 78% 18% Tryput [first] mbox
2.75 1.95 7.81 0.32 93% 3% Peek item [non-empty] mbox
3.15 2.60 9.11 0.48 53% 43% Tryget [non-empty] mbox
2.22 1.95 6.51 0.41 96% 78% Peek item [empty] mbox
2.40 1.95 5.86 0.42 50% 46% Tryget [empty] mbox
0.47 0.00 0.65 0.26 71% 28% Waiting to get mbox
0.59 0.00 1.30 0.15 84% 12% Waiting to put mbox
4.01 3.26 10.42 0.40 81% 15% Delete mbox

26.18 26.04 30.60 0.28 96% 96% Put/Get mbox

197

Appendix B. Real-time characterization

0.92 0.65 3.91 0.38 71% 71% Init semaphore
2.24 1.95 6.51 0.43 96% 75% Post [0] semaphore
2.32 1.95 7.16 0.48 96% 65% Wait [1] semaphore
2.03 1.30 5.86 0.24 90% 6% Trywait [0] semaphore
1.91 1.30 4.56 0.23 78% 18% Trywait [1] semaphore
0.77 0.00 1.95 0.30 65% 9% Peek semaphore
0.61 0.00 1.95 0.15 84% 12% Destroy semaphore

22.62 22.14 30.60 0.61 96% 62% Post/Wait semaphore

0.92 0.65 3.91 0.38 71% 71% Create counter
0.69 0.65 1.95 0.08 96% 96% Get counter value
0.41 0.00 1.30 0.33 56% 40% Set counter value
3.21 2.60 5.86 0.27 71% 21% Tick counter
0.65 0.00 3.26 0.16 84% 12% Delete counter

1.57 1.30 4.56 0.38 71% 71% Create alarm
4.52 3.91 13.02 0.57 50% 46% Initialize alarm
0.61 0.00 1.95 0.15 84% 12% Disable alarm
4.43 3.91 9.11 0.43 56% 40% Enable alarm
0.87 0.65 2.60 0.32 71% 71% Delete alarm
2.93 2.60 6.51 0.43 96% 65% Tick counter [1 alarm]

14.83 14.32 22.79 0.60 96% 59% Tick counter [many alarms]
4.88 4.56 11.07 0.51 96% 78% Tick & fire counter [1 alarm]

83.25 82.03 102.86 1.23 96% 93% Tick & fire counters [>1 together]
17.58 16.93 27.34 0.61 50% 46% Tick & fire counters [>1 separately]
26.18 24.74 40.36 0.30 97% 0% Alarm latency [0 threads]
33.88 29.30 56.64 1.70 85% 6% Alarm latency [2 threads]
36.37 29.30 61.20 3.25 53% 24% Alarm latency [many threads]

7.85 6.51 14.97 0.00 Clock/interrupt latency

Timing complete - 23540 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Toshiba REF 4955
Board: Toshiba REF 4955

CPU : Toshiba TX4955 66MHz

Startup, main stack : stack used 960 size 2936
Startup : Interrupt stack used 168 size 4096
Startup : Idlethread stack used 372 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ‘ticks’ overhead
... this value will be factored out of all other measurements

198

Appendix B. Real-time characterization

Clock interrupt took 4.00 microseconds (264 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
11.21 9.58 14.11 0.95 48% 34% Create thread

0.66 0.65 1.29 0.02 98% 98% Yield thread [all suspended]
0.63 0.53 3.06 0.17 82% 82% Suspend [suspended] thread
0.54 0.53 1.06 0.02 98% 98% Resume thread
0.78 0.74 1.39 0.05 93% 93% Set priority
0.05 0.05 0.36 0.01 98% 98% Get priority
2.06 1.89 6.65 0.25 95% 79% Kill [suspended] thread
0.65 0.65 0.68 0.00 98% 98% Yield [no other] thread
1.15 1.02 3.03 0.20 81% 81% Resume [suspended low prio] thread
0.54 0.52 1.18 0.03 96% 96% Resume [runnable low prio] thread
0.94 0.88 1.27 0.01 95% 1% Suspend [runnable] thread
0.65 0.65 0.68 0.00 98% 98% Yield [only low prio] thread
0.54 0.53 0.86 0.01 98% 96% Suspend [runnable->not runnable]
1.97 1.89 2.98 0.12 84% 84% Kill [runnable] thread
1.03 0.92 4.94 0.17 89% 89% Destroy [dead] thread
2.55 2.33 4.38 0.24 89% 70% Destroy [runnable] thread
5.62 4.11 13.23 0.99 65% 40% Resume [high priority] thread
1.84 1.83 2.79 0.02 98% 98% Thread switch

0.12 0.02 0.65 0.15 74% 74% Scheduler lock
0.35 0.35 0.35 0.00 100% 100% Scheduler unlock [0 threads]
0.35 0.35 0.35 0.00 100% 100% Scheduler unlock [1 suspended]
0.43 0.35 1.17 0.13 78% 78% Scheduler unlock [many suspended]
0.45 0.35 1.17 0.15 75% 75% Scheduler unlock [many low prio]

0.46 0.15 3.38 0.30 62% 50% Init mutex
0.73 0.64 3.27 0.16 96% 96% Lock [unlocked] mutex
0.77 0.65 4.50 0.23 96% 96% Unlock [locked] mutex
0.58 0.55 1.42 0.05 96% 96% Trylock [unlocked] mutex
0.51 0.50 0.83 0.02 96% 96% Trylock [locked] mutex
0.12 0.11 0.41 0.02 96% 96% Destroy mutex
4.72 4.70 5.58 0.05 96% 96% Unlock/Lock mutex

1.01 0.67 3.48 0.40 71% 71% Create mbox
0.02 0.00 0.53 0.03 96% 96% Peek [empty] mbox
0.89 0.68 4.20 0.29 96% 71% Put [first] mbox
0.02 0.00 0.33 0.02 96% 96% Peek [1 msg] mbox
0.69 0.68 0.76 0.01 50% 46% Put [second] mbox

199

Appendix B. Real-time characterization

0.02 0.00 0.30 0.02 96% 96% Peek [2 msgs] mbox
0.81 0.71 3.83 0.19 96% 96% Get [first] mbox
0.72 0.71 1.02 0.02 96% 96% Get [second] mbox
0.81 0.65 2.74 0.22 96% 71% Tryput [first] mbox
0.67 0.62 2.27 0.10 96% 96% Peek item [non-empty] mbox
0.77 0.71 2.41 0.10 96% 96% Tryget [non-empty] mbox
0.59 0.58 0.88 0.02 96% 96% Peek item [empty] mbox
0.62 0.62 0.67 0.00 96% 96% Tryget [empty] mbox
0.03 0.02 0.32 0.02 96% 96% Waiting to get mbox
0.02 0.02 0.06 0.01 50% 46% Waiting to put mbox
0.75 0.65 3.59 0.18 96% 96% Delete mbox
2.80 2.77 3.59 0.05 96% 96% Put/Get mbox

0.37 0.18 0.88 0.28 71% 71% Init semaphore
0.48 0.47 0.80 0.02 96% 96% Post [0] semaphore
0.60 0.59 0.67 0.01 50% 46% Wait [1] semaphore
0.53 0.50 1.41 0.06 96% 96% Trywait [0] semaphore
0.51 0.50 0.71 0.01 96% 50% Trywait [1] semaphore
0.09 0.09 0.15 0.00 96% 96% Peek semaphore
0.12 0.11 0.41 0.02 96% 96% Destroy semaphore
3.05 3.05 3.05 0.00 100% 100% Post/Wait semaphore

0.57 0.17 2.76 0.24 59% 25% Create counter
0.06 0.05 0.58 0.03 96% 96% Get counter value
0.06 0.03 0.64 0.04 96% 96% Set counter value
0.73 0.71 1.02 0.02 96% 96% Tick counter
0.12 0.11 0.15 0.01 50% 46% Delete counter

0.89 0.64 3.15 0.34 84% 71% Create alarm
1.00 0.95 2.41 0.09 96% 96% Initialize alarm
0.09 0.06 0.68 0.04 96% 96% Disable alarm
1.05 1.00 2.48 0.09 96% 96% Enable alarm
0.18 0.17 0.50 0.02 96% 96% Delete alarm
0.90 0.89 1.11 0.01 96% 96% Tick counter [1 alarm]
5.60 5.59 5.88 0.02 96% 96% Tick counter [many alarms]
1.53 1.52 2.11 0.04 96% 96% Tick & fire counter [1 alarm]

25.48 25.47 25.76 0.02 96% 96% Tick & fire counters [>1 together]
6.22 6.21 6.44 0.01 96% 96% Tick & fire counters [>1 separately]
2.59 2.56 6.17 0.07 98% 98% Alarm latency [0 threads]
4.06 3.95 6.24 0.08 78% 57% Alarm latency [2 threads]
5.03 2.56 9.03 0.89 59% 10% Alarm latency [many threads]
5.68 5.59 15.45 0.15 99% 99% Alarm -> thread resume latency

2.52 1.41 8.12 0.00 Clock/interrupt latency

2.05 1.17 6.00 0.00 Clock DSR latency

34 0 1072 (main stack: 1320) Thread stack used (1912 total)
All done, main stack : stack used 1320 size 2936
All done : Interrupt stack used 136 size 4096
All done : Idlethread stack used 996 size 2048

Timing complete - 30360 ms total

PASS:<Basic timing OK>

200

Appendix B. Real-time characterization

EXIT: <done>

Board: Matsushita STDEVAL1 Board
Board: Matsushita STDEVAL1 Board

CPU : MN103002A 60MHz

eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 18 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 13.73 microseconds (205 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
14.36 11.53 23.53 1.81 54% 33% Create thread

2.64 2.53 5.07 0.20 95% 95% Yield thread [all suspended]
2.25 1.93 4.80 0.31 45% 83% Suspend [suspended] thread
2.19 2.00 4.93 0.28 91% 91% Resume thread
3.42 3.00 8.40 0.47 95% 87% Set priority
0.31 0.13 1.20 0.19 79% 58% Get priority
8.26 7.40 18.80 0.93 95% 87% Kill [suspended] thread
2.58 2.47 5.13 0.21 95% 95% Yield [no other] thread
5.07 4.53 8.67 0.44 62% 50% Resume [suspended low prio] thread
2.27 2.07 4.53 0.23 87% 87% Resume [runnable low prio] thread
4.76 4.07 9.40 0.65 66% 75% Suspend [runnable] thread
2.63 2.53 4.73 0.18 95% 95% Yield [only low prio] thread
2.09 1.87 4.27 0.27 91% 79% Suspend [runnable->not runnable]

10.79 10.00 18.20 0.81 95% 79% Kill [runnable] thread
20.30 18.40 28.80 1.42 79% 54% Resume [high priority] thread

5.53 5.47 12.13 0.11 98% 97% Thread switch

0.28 0.27 2.20 0.03 97% 97% Scheduler lock
1.14 1.13 2.00 0.01 99% 99% Scheduler unlock [0 threads]
1.14 1.13 2.40 0.02 99% 99% Scheduler unlock [1 suspended]
1.16 1.13 3.33 0.06 95% 95% Scheduler unlock [many suspended]

201

Appendix B. Real-time characterization

1.23 1.20 3.13 0.05 95% 95% Scheduler unlock [many low prio]

1.29 1.00 4.20 0.25 65% 50% Init mutex
2.65 2.47 5.27 0.23 93% 87% Lock [unlocked] mutex
3.26 3.07 6.80 0.28 93% 87% Unlock [locked] mutex
2.48 2.33 5.07 0.21 90% 87% Trylock [unlocked] mutex
2.20 2.07 4.67 0.21 93% 87% Trylock [locked] mutex
0.23 0.20 1.00 0.05 96% 93% Destroy mutex

25.11 24.73 27.53 0.21 65% 31% Unlock/Lock mutex

2.49 2.00 5.73 0.32 81% 37% Create mbox
0.11 0.00 1.60 0.15 84% 81% Peek [empty] mbox
3.01 2.60 9.47 0.52 96% 78% Put [first] mbox
0.10 0.00 1.67 0.15 87% 81% Peek [1 msg] mbox
3.09 2.60 8.33 0.50 93% 75% Put [second] mbox
0.06 0.00 1.13 0.08 96% 87% Peek [2 msgs] mbox
3.10 2.80 7.93 0.40 93% 84% Get [first] mbox
3.13 2.80 7.53 0.43 90% 78% Get [second] mbox
2.99 2.60 8.53 0.52 93% 75% Tryput [first] mbox
2.65 2.33 6.80 0.42 90% 78% Peek item [non-empty] mbox
3.05 2.73 7.60 0.42 93% 78% Tryget [non-empty] mbox
3.16 2.93 6.27 0.31 84% 84% Peek item [empty] mbox
2.48 2.27 5.73 0.30 84% 84% Tryget [empty] mbox
0.23 0.13 2.07 0.14 96% 87% Waiting to get mbox
0.22 0.13 1.93 0.13 96% 75% Waiting to put mbox
3.08 2.80 7.93 0.42 84% 84% Delete mbox

16.01 15.53 19.00 0.52 78% 59% Put/Get mbox

0.85 0.67 3.27 0.19 96% 50% Init semaphore
2.00 1.93 3.87 0.12 96% 90% Post [0] semaphore
2.05 2.00 3.47 0.09 96% 96% Wait [1] semaphore
1.85 1.80 3.47 0.10 96% 96% Trywait [0] semaphore
1.82 1.80 2.53 0.04 96% 96% Trywait [1] semaphore
0.36 0.33 1.33 0.06 96% 96% Peek semaphore
0.38 0.33 1.87 0.09 96% 96% Destroy semaphore

12.38 12.20 16.27 0.30 93% 87% Post/Wait semaphore

1.18 0.73 4.07 0.24 78% 18% Create counter
0.20 0.13 1.40 0.11 87% 87% Get counter value
0.24 0.20 1.40 0.08 93% 93% Set counter value
3.17 3.13 4.20 0.07 93% 93% Tick counter
0.44 0.40 1.73 0.08 96% 96% Delete counter

2.24 1.67 5.13 0.47 68% 65% Create alarm
3.86 3.40 9.67 0.51 90% 78% Initialize alarm
0.15 0.07 1.60 0.12 96% 68% Disable alarm
3.76 3.47 7.67 0.35 93% 75% Enable alarm
0.57 0.47 2.73 0.16 96% 84% Delete alarm
3.64 3.60 4.73 0.07 96% 96% Tick counter [1 alarm]

21.72 21.67 23.27 0.10 96% 96% Tick counter [many alarms]
6.13 6.07 8.07 0.12 96% 96% Tick & fire counter [1 alarm]

101.40 99.53 132.73 2.75 93% 93% Tick & fire counters [>1 together]
24.21 24.13 26.40 0.14 96% 96% Tick & fire counters [>1 separately]
11.74 11.60 22.67 0.26 98% 98% Alarm latency [0 threads]
14.58 11.73 24.93 1.59 54% 28% Alarm latency [2 threads]

202

Appendix B. Real-time characterization

18.18 15.20 41.07 1.96 60% 43% Alarm latency [many threads]

3.06 2.13 10.33 0.00 Clock/interrupt latency

Timing complete - 23480 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Fujitsu SPARClite Evaluation Board
Board: Fujitsu SPARClite Evaluation Board

CPU : Fujitsu SPARClite MB8683X 100MHz

eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 17.19 microseconds (17 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
48.59 47.00 63.01 1.41 66% 70% Create thread

2.13 2.00 5.00 0.24 95% 95% Yield thread [all suspended]
2.92 2.00 10.00 0.69 58% 37% Suspend [suspended] thread
2.13 1.00 10.00 0.66 75% 20% Resume thread
2.79 2.00 11.00 0.86 95% 54% Set priority
1.00 0.00 5.00 0.33 79% 16% Get priority
7.17 5.00 34.00 2.24 95% 95% Kill [suspended] thread
2.42 2.00 12.00 0.80 95% 95% Yield [no other] thread
3.46 2.00 14.00 1.10 75% 83% Resume [suspended low prio] thread
2.00 1.00 9.00 0.58 66% 29% Resume [runnable low prio] thread
4.21 3.00 20.00 1.38 95% 91% Suspend [runnable] thread
2.33 2.00 10.00 0.64 95% 95% Yield [only low prio] thread
2.00 1.00 9.00 0.67 58% 33% Suspend [runnable->not runnable]

203

Appendix B. Real-time characterization

5.79 4.00 30.00 2.07 95% 95% Kill [runnable] thread
39.34 37.00 75.01 3.36 91% 91% Resume [high priority] thread
15.20 15.00 31.00 0.40 97% 97% Thread switch

1.04 1.00 4.00 0.08 97% 97% Scheduler lock
1.42 1.00 5.00 0.51 60% 60% Scheduler unlock [0 threads]
1.41 1.00 5.00 0.50 61% 61% Scheduler unlock [1 suspended]
1.41 1.00 5.00 0.50 60% 60% Scheduler unlock [many suspended]
1.40 1.00 5.00 0.50 62% 62% Scheduler unlock [many low prio]

1.19 1.00 6.00 0.35 93% 93% Init mutex
2.34 2.00 12.00 0.64 93% 93% Lock [unlocked] mutex
3.41 3.00 13.00 0.71 96% 87% Unlock [locked] mutex
2.16 1.00 10.00 0.49 87% 9% Trylock [unlocked] mutex
1.78 1.00 7.00 0.59 59% 37% Trylock [locked] mutex
0.72 0.00 2.00 0.45 65% 31% Destroy mutex

25.25 24.00 41.00 0.98 71% 25% Unlock/Lock mutex

1.44 1.00 9.00 0.68 96% 78% Create mbox
0.94 0.00 3.00 0.23 84% 12% Peek [empty] mbox
3.06 2.00 13.00 0.62 71% 25% Put [first] mbox
0.69 0.00 3.00 0.52 59% 37% Peek [1 msg] mbox
2.44 2.00 10.00 0.68 96% 78% Put [second] mbox
0.78 0.00 3.00 0.44 68% 28% Peek [2 msgs] mbox
3.78 3.00 14.00 0.83 96% 53% Get [first] mbox
2.97 2.00 9.00 0.61 56% 31% Get [second] mbox
2.53 2.00 12.00 0.80 96% 75% Tryput [first] mbox
2.72 2.00 12.00 0.81 96% 56% Peek item [non-empty] mbox
2.63 2.00 13.00 0.94 90% 75% Tryget [non-empty] mbox
1.97 1.00 6.00 0.42 68% 21% Peek item [empty] mbox
2.09 1.00 9.00 0.49 78% 15% Tryget [empty] mbox
0.84 0.00 4.00 0.42 71% 25% Waiting to get mbox
0.81 0.00 4.00 0.46 68% 28% Waiting to put mbox
2.38 2.00 11.00 0.66 96% 87% Delete mbox

23.41 22.00 47.00 1.47 96% 96% Put/Get mbox

1.03 0.00 6.00 0.31 84% 12% Init semaphore
2.66 2.00 8.00 0.66 96% 50% Post [0] semaphore
1.97 1.00 10.00 0.55 68% 28% Wait [1] semaphore
1.78 1.00 8.00 0.63 56% 40% Trywait [0] semaphore
1.84 1.00 8.00 0.58 62% 34% Trywait [1] semaphore
1.00 0.00 5.00 0.25 84% 12% Peek semaphore
0.81 0.00 4.00 0.46 68% 28% Destroy semaphore

19.03 18.00 41.00 1.37 96% 96% Post/Wait semaphore

1.38 1.00 6.00 0.56 75% 75% Create counter
1.09 1.00 3.00 0.18 93% 93% Get counter value
1.00 0.00 5.00 0.31 78% 15% Set counter value
3.09 2.00 6.00 0.35 78% 9% Tick counter
0.91 0.00 5.00 0.40 75% 21% Delete counter

2.53 2.00 9.00 0.70 96% 65% Create alarm
6.03 5.00 22.00 1.00 50% 46% Initialize alarm
0.78 0.00 4.00 0.49 65% 31% Disable alarm
2.91 2.00 13.00 0.91 87% 50% Enable alarm

204

Appendix B. Real-time characterization

0.97 0.00 5.00 0.30 81% 15% Delete alarm
2.69 2.00 9.00 0.69 96% 50% Tick counter [1 alarm]

12.00 11.00 23.00 0.69 62% 34% Tick counter [many alarms]
4.16 3.00 13.00 0.55 84% 12% Tick & fire counter [1 alarm]

72.69 72.01 87.01 1.03 96% 96% Tick & fire counters [>1 together]
13.66 13.00 23.00 0.82 96% 62% Tick & fire counters [>1 separately]
13.26 13.00 42.00 0.51 98% 98% Alarm latency [0 threads]
16.75 11.00 53.01 2.78 64% 16% Alarm latency [2 threads]
24.06 18.00 58.01 3.55 67% 25% Alarm latency [many threads]

3.61 2.00 13.00 0.00 Clock/interrupt latency

Timing complete - 23590 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Cogent CMA MPC860 (PowerPC) Evaluation
Board: Cogent CMA MPC860 (PowerPC) Evaluation
CPU : MPC860, revision A3 33MHz

eCOS Kernel Timings
Note: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 14.46 microseconds (30 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 24
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
26.78 23.52 41.76 1.97 66% 37% Create thread

4.00 3.84 4.80 0.23 70% 70% Yield thread [all suspended]
3.78 3.36 7.68 0.38 50% 45% Suspend [suspended] thread

205

Appendix B. Real-time characterization

3.56 3.36 7.68 0.37 95% 91% Resume thread
5.28 4.32 12.96 0.76 83% 66% Set priority
0.84 0.48 3.84 0.39 91% 54% Get priority

11.76 10.08 32.16 1.70 95% 95% Kill [suspended] thread
4.14 3.84 8.64 0.45 95% 75% Yield [no other] thread
7.14 5.76 17.76 1.07 79% 70% Resume [suspended low prio] thread
3.60 3.36 8.16 0.42 95% 87% Resume [runnable low prio] thread
6.10 5.28 14.88 0.80 62% 70% Suspend [runnable] thread
4.00 3.84 5.76 0.25 79% 79% Yield [only low prio] thread
3.66 3.36 8.64 0.47 95% 79% Suspend [runnable->not runnable]

11.66 10.08 30.24 1.58 79% 91% Kill [runnable] thread
31.12 27.84 53.28 2.35 87% 50% Resume [high priority] thread

7.52 7.20 15.84 0.30 50% 48% Thread switch

1.00 0.48 2.88 0.21 63% 14% Scheduler lock
2.57 2.40 3.84 0.23 65% 65% Scheduler unlock [0 threads]
2.58 2.40 4.32 0.23 64% 64% Scheduler unlock [1 suspended]
2.59 2.40 4.32 0.24 62% 62% Scheduler unlock [many suspended]
2.59 2.40 4.32 0.24 61% 61% Scheduler unlock [many low prio]

1.69 1.44 5.76 0.37 96% 71% Init mutex
4.15 3.84 10.56 0.47 96% 75% Lock [unlocked] mutex
5.82 5.28 10.56 0.38 62% 28% Unlock [locked] mutex
3.70 3.36 8.64 0.41 96% 59% Trylock [unlocked] mutex
3.42 2.88 6.72 0.26 75% 15% Trylock [locked] mutex
0.36 0.00 1.92 0.25 62% 34% Destroy mutex

43.41 42.72 45.12 0.34 81% 3% Unlock/Lock mutex

3.27 2.88 8.16 0.39 96% 50% Create mbox
0.57 0.00 2.40 0.34 50% 21% Peek [empty] mbox
6.16 5.76 11.04 0.48 87% 87% Put [first] mbox
0.48 0.00 1.92 0.27 50% 28% Peek [1 msg] mbox
5.92 5.28 10.56 0.35 90% 6% Put [second] mbox
0.60 0.00 2.40 0.30 62% 12% Peek [2 msgs] mbox
4.69 4.32 12.00 0.54 93% 93% Get [first] mbox
4.68 4.32 11.52 0.52 93% 93% Get [second] mbox
5.86 5.28 11.04 0.47 62% 31% Tryput [first] mbox
4.00 3.36 9.12 0.38 87% 9% Peek item [non-empty] mbox
4.59 3.84 12.48 0.61 71% 75% Tryget [non-empty] mbox
3.75 3.36 7.68 0.34 53% 43% Peek item [empty] mbox
3.93 3.36 9.60 0.45 65% 31% Tryget [empty] mbox
0.63 0.00 2.40 0.28 68% 6% Waiting to get mbox
0.54 0.00 1.92 0.19 75% 9% Waiting to put mbox
4.84 4.32 12.00 0.47 56% 40% Delete mbox

24.18 23.52 29.76 0.66 81% 75% Put/Get mbox

1.72 0.96 3.84 0.33 90% 6% Init semaphore
3.15 2.88 6.24 0.34 96% 62% Post [0] semaphore
3.85 3.36 8.64 0.30 68% 28% Wait [1] semaphore
3.24 2.88 6.24 0.34 46% 46% Trywait [0] semaphore
3.22 2.88 6.24 0.32 50% 46% Trywait [1] semaphore
0.96 0.48 2.88 0.12 84% 12% Peek semaphore
0.99 0.96 1.92 0.06 96% 96% Destroy semaphore

24.71 24.00 28.80 0.40 87% 6% Post/Wait semaphore

206

Appendix B. Real-time characterization

2.31 1.44 6.24 0.77 46% 56% Create counter
0.45 0.00 0.96 0.08 87% 9% Get counter value
0.42 0.00 0.96 0.16 75% 18% Set counter value
4.14 3.84 4.80 0.26 50% 43% Tick counter
0.91 0.48 2.40 0.19 71% 21% Delete counter

5.23 4.32 7.68 0.61 65% 53% Create alarm
5.58 4.80 12.96 0.72 68% 84% Initialize alarm
0.75 0.48 1.92 0.30 90% 56% Disable alarm
8.02 7.20 14.40 0.53 84% 68% Enable alarm
1.32 0.96 3.84 0.29 56% 40% Delete alarm
4.63 4.32 6.24 0.28 53% 43% Tick counter [1 alarm]

23.67 23.52 25.44 0.23 78% 78% Tick counter [many alarms]
7.24 6.72 10.56 0.21 84% 12% Tick & fire counter [1 alarm]

106.83 106.56 110.40 0.35 96% 65% Tick & fire counters [>1 together]
26.18 25.44 29.76 0.46 81% 9% Tick & fire counters [>1 separately]
10.79 10.08 29.28 0.66 53% 55% Alarm latency [0 threads]
17.20 13.92 35.52 1.48 67% 21% Alarm latency [2 threads]
29.69 22.56 47.04 3.58 57% 17% Alarm latency [many threads]

7.66 3.84 19.20 0.00 Clock/interrupt latency

Timing complete - 23530 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: NEC VR4373
Board: NEC VR4373

CPU : NEC VR4300 133MHz

Startup, main stack : stack used 1304 size 3576
Startup : Interrupt stack used 980 size 4096
Startup : Idlethread stack used 494 size 2552

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.49 microseconds (431 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 16
Thread switches: 128
Mutexes: 32
Mailboxes: 32

207

Appendix B. Real-time characterization

Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
17.21 16.18 22.14 0.88 75% 68% Create thread

0.84 0.78 1.29 0.10 81% 81% Yield thread [all suspended]
0.90 0.62 3.20 0.35 87% 87% Suspend [suspended] thread
0.74 0.65 1.16 0.12 81% 68% Resume thread
1.11 0.90 1.70 0.25 75% 68% Set priority
0.11 0.05 0.35 0.09 75% 75% Get priority
2.93 2.24 8.27 0.78 93% 75% Kill [suspended] thread
0.88 0.78 1.92 0.16 93% 81% Yield [no other] thread
1.82 1.20 4.71 0.62 87% 62% Resume [suspended low prio] thread
0.70 0.63 0.86 0.09 68% 68% Resume [runnable low prio] thread
1.21 1.07 1.61 0.13 81% 68% Suspend [runnable] thread
0.86 0.78 1.58 0.13 81% 81% Yield [only low prio] thread
0.69 0.62 0.84 0.09 68% 68% Suspend [runnable->not runnable]
2.64 2.24 4.35 0.43 81% 62% Kill [runnable] thread
1.50 1.07 5.82 0.56 93% 87% Destroy [dead] thread
3.66 2.75 7.74 0.82 50% 56% Destroy [runnable] thread

13.65 8.33 27.88 3.70 50% 43% Resume [high priority] thread
2.04 1.89 3.32 0.15 46% 49% Thread switch

0.19 0.05 0.83 0.13 48% 44% Scheduler lock
0.50 0.41 1.59 0.13 89% 73% Scheduler unlock [0 threads]
0.52 0.41 1.29 0.14 89% 64% Scheduler unlock [1 suspended]
0.56 0.41 1.49 0.15 42% 47% Scheduler unlock [many suspended]
0.56 0.41 1.41 0.15 43% 47% Scheduler unlock [many low prio]

0.57 0.20 2.33 0.27 65% 50% Init mutex
0.89 0.75 3.35 0.20 96% 75% Lock [unlocked] mutex
0.90 0.74 4.38 0.25 96% 93% Unlock [locked] mutex
0.77 0.65 2.63 0.17 96% 75% Trylock [unlocked] mutex
0.66 0.59 1.16 0.10 75% 75% Trylock [locked] mutex
0.07 0.00 0.45 0.09 75% 75% Destroy mutex
7.95 7.71 9.49 0.19 50% 46% Unlock/Lock mutex

1.04 0.81 3.44 0.27 93% 68% Create mbox
0.10 0.02 0.57 0.11 71% 68% Peek [empty] mbox
1.15 0.83 4.71 0.31 53% 71% Put [first] mbox
0.10 0.02 0.57 0.12 68% 68% Peek [1 msg] mbox
1.01 0.83 3.83 0.22 93% 75% Put [second] mbox
0.09 0.02 0.57 0.10 71% 71% Peek [2 msgs] mbox
1.03 0.81 5.02 0.27 96% 87% Get [first] mbox
0.93 0.81 1.61 0.14 84% 62% Get [second] mbox
1.07 0.77 4.18 0.23 68% 50% Tryput [first] mbox
0.89 0.72 3.49 0.21 93% 71% Peek item [non-empty] mbox
1.04 0.83 4.09 0.26 90% 81% Tryget [non-empty] mbox
0.79 0.68 1.97 0.15 87% 68% Peek item [empty] mbox
0.84 0.72 2.36 0.17 93% 68% Tryget [empty] mbox

208

Appendix B. Real-time characterization

0.13 0.02 0.59 0.13 87% 62% Waiting to get mbox
0.13 0.02 0.90 0.13 90% 62% Waiting to put mbox
0.93 0.77 3.23 0.21 90% 71% Delete mbox
4.74 4.51 8.80 0.32 93% 78% Put/Get mbox

0.50 0.21 1.95 0.29 90% 50% Init semaphore
0.86 0.57 2.87 0.29 93% 56% Post [0] semaphore
1.01 0.74 3.62 0.28 93% 56% Wait [1] semaphore
0.87 0.60 3.17 0.28 90% 59% Trywait [0] semaphore
0.74 0.62 1.70 0.14 93% 56% Trywait [1] semaphore
0.36 0.11 1.11 0.26 65% 56% Peek semaphore
0.25 0.12 1.19 0.14 93% 56% Destroy semaphore
7.85 7.52 8.93 0.21 62% 43% Post/Wait semaphore

0.90 0.44 3.08 0.29 65% 28% Create counter
0.07 0.05 0.89 0.05 96% 96% Get counter value
0.06 0.05 0.33 0.02 96% 96% Set counter value
0.88 0.86 1.62 0.05 96% 96% Tick counter
0.13 0.12 0.41 0.02 96% 96% Delete counter

1.37 0.81 2.95 0.27 62% 25% Create alarm
1.35 1.17 6.03 0.31 96% 93% Initialize alarm
0.11 0.08 0.65 0.05 90% 90% Disable alarm
1.23 1.14 3.05 0.15 93% 87% Enable alarm
0.21 0.18 0.47 0.04 90% 90% Delete alarm
1.03 0.99 2.11 0.07 96% 96% Tick counter [1 alarm]
4.96 4.96 4.96 0.00 100% 100% Tick counter [many alarms]
1.70 1.67 2.51 0.05 96% 96% Tick & fire counter [1 alarm]

26.39 26.38 26.71 0.02 96% 96% Tick & fire counters [>1 together]
5.65 5.64 5.91 0.02 96% 96% Tick & fire counters [>1 separately]
2.55 2.38 9.86 0.19 96% 54% Alarm latency [0 threads]
5.37 3.80 9.73 0.95 50% 34% Alarm latency [2 threads]
8.79 5.83 16.12 1.29 57% 14% Alarm latency [many threads]

5.85 2.26 16.24 0.00 Clock/interrupt latency

1540 1536 1544 (main stack: 1664) Thread stack used (2552 total)
All done, main stack : stack used 1664 size 3576
All done : Interrupt stack used 312 size 4096
All done : Idlethread stack used 1440 size 2552

Timing complete - 23810 ms total

PASS:<Basic timing OK>
EXIT: <done>

209

Appendix B. Real-time characterization

Board: Intel SA1110 (Assabet)
Board: Intel SA1110 (Assabet)

CPU : StrongARM 221.2 MHz

Microseconds for one run through Dhrystone: 3.3
Dhrystones per Second: 306748.5
VAX MIPS rating = 174.586

Startup, main stack : stack used 420 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.20 microseconds (11 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
5.98 4.88 14.38 0.70 57% 35% Create thread
0.86 0.81 1.90 0.08 87% 87% Yield thread [all suspended]
1.05 0.81 3.53 0.19 46% 39% Suspend [suspended] thread
1.07 0.81 3.80 0.18 48% 35% Resume thread
1.36 1.09 5.97 0.22 45% 39% Set priority
0.73 0.54 1.90 0.19 85% 50% Get priority
2.93 2.44 13.56 0.39 79% 70% Kill [suspended] thread
0.89 0.81 4.34 0.14 89% 89% Yield [no other] thread
1.63 1.36 4.61 0.17 57% 29% Resume [suspended low prio] thread
1.03 0.81 3.53 0.19 46% 42% Resume [runnable low prio] thread
1.74 1.36 6.51 0.22 87% 6% Suspend [runnable] thread
0.93 0.81 4.61 0.18 98% 78% Yield [only low prio] thread
1.06 0.81 3.26 0.19 42% 39% Suspend [runnable->not runnable]
2.56 1.90 13.02 0.41 87% 34% Kill [runnable] thread
2.02 1.63 7.05 0.22 92% 3% Destroy [dead] thread
3.09 2.44 15.19 0.51 78% 46% Destroy [runnable] thread
6.77 5.43 13.02 0.59 75% 17% Resume [high priority] thread

210

Appendix B. Real-time characterization

1.81 1.63 7.87 0.18 49% 49% Thread switch

0.25 0.00 1.36 0.05 89% 10% Scheduler lock
0.51 0.27 1.36 0.06 85% 13% Scheduler unlock [0 threads]
0.51 0.27 1.09 0.06 85% 13% Scheduler unlock [1 suspended]
0.51 0.27 1.09 0.07 85% 14% Scheduler unlock [many suspended]
0.51 0.27 1.09 0.06 85% 13% Scheduler unlock [many low prio]

0.52 0.27 2.17 0.15 62% 31% Init mutex
0.97 0.54 4.34 0.28 84% 65% Lock [unlocked] mutex
1.05 0.81 5.15 0.28 96% 96% Unlock [locked] mutex
0.86 0.54 3.26 0.24 65% 31% Trylock [unlocked] mutex
0.79 0.54 3.53 0.23 43% 46% Trylock [locked] mutex
0.33 0.27 1.63 0.11 90% 90% Destroy mutex
4.16 3.80 8.95 0.30 75% 96% Unlock/Lock mutex

0.70 0.54 2.98 0.21 96% 65% Create mbox
0.59 0.27 1.63 0.14 75% 9% Peek [empty] mbox
1.33 1.09 5.70 0.31 96% 93% Put [first] mbox
0.61 0.27 1.63 0.13 81% 3% Peek [1 msg] mbox
1.35 1.09 5.43 0.31 96% 87% Put [second] mbox
0.58 0.27 1.36 0.11 78% 6% Peek [2 msgs] mbox
1.38 1.09 4.88 0.25 59% 37% Get [first] mbox
1.40 1.09 5.15 0.26 62% 34% Get [second] mbox
1.27 0.81 4.88 0.28 90% 65% Tryput [first] mbox
1.34 0.81 4.61 0.22 59% 6% Peek item [non-empty] mbox
1.47 1.09 5.15 0.27 84% 12% Tryget [non-empty] mbox
1.12 0.81 4.34 0.23 59% 31% Peek item [empty] mbox
1.14 0.81 4.07 0.24 71% 25% Tryget [empty] mbox
0.59 0.27 1.36 0.12 78% 6% Waiting to get mbox
0.59 0.27 1.36 0.12 78% 6% Waiting to put mbox
1.28 0.81 5.43 0.32 87% 78% Delete mbox
2.64 2.17 10.31 0.48 96% 96% Put/Get mbox

0.47 0.27 2.17 0.19 46% 46% Init semaphore
0.77 0.54 3.80 0.26 90% 56% Post [0] semaphore
0.90 0.54 4.07 0.26 75% 21% Wait [1] semaphore
0.85 0.54 3.26 0.21 56% 28% Trywait [0] semaphore
0.69 0.54 2.17 0.18 96% 62% Trywait [1] semaphore
0.44 0.27 2.17 0.19 96% 56% Peek semaphore
0.38 0.27 1.90 0.17 96% 75% Destroy semaphore
2.74 2.44 9.49 0.42 96% 96% Post/Wait semaphore

0.43 0.27 1.90 0.18 96% 56% Create counter
0.49 0.00 2.17 0.18 56% 3% Get counter value
0.33 0.00 1.63 0.13 78% 6% Set counter value
1.03 0.81 2.44 0.22 84% 50% Tick counter
0.42 0.27 1.90 0.20 90% 65% Delete counter

0.70 0.54 2.44 0.20 93% 62% Create alarm
1.65 1.36 6.78 0.40 96% 81% Initialize alarm
0.75 0.54 1.63 0.18 43% 43% Disable alarm
1.75 1.36 7.05 0.38 65% 81% Enable alarm
0.81 0.54 2.44 0.15 62% 28% Delete alarm
1.01 0.81 2.17 0.16 56% 40% Tick counter [1 alarm]

211

Appendix B. Real-time characterization

4.19 4.07 5.43 0.16 96% 68% Tick counter [many alarms]
1.48 1.36 3.80 0.20 96% 78% Tick & fire counter [1 alarm]

20.23 20.07 22.52 0.21 96% 65% Tick & fire counters [>1 together]
4.70 4.61 6.78 0.16 87% 87% Tick & fire counters [>1 separately]
2.81 2.71 14.38 0.20 98% 98% Alarm latency [0 threads]
3.19 2.71 13.56 0.38 73% 59% Alarm latency [2 threads]
9.71 7.87 18.17 1.25 59% 53% Alarm latency [many threads]
5.77 5.43 45.57 0.68 97% 97% Alarm -> thread resume latency

2.38 0.81 9.49 0.00 Clock/interrupt latency

2.02 1.09 7.32 0.00 Clock DSR latency

11 0 316 (main stack: 764) Thread stack used (1120 total)
All done, main stack : stack used 764 size 2400
All done : Interrupt stack used 287 size 4096
All done : Idlethread stack used 272 size 2048

Timing complete - 30220 ms total

Board: Intel SA1100 (Brutus)
Board: Intel SA1100 (Brutus)

CPU : StrongARM 221.2 MHz

Microseconds for one run through Dhrystone: 3.3
Dhrystones per Second: 306748.5
VAX MIPS rating = 174.586

Startup, main stack : stack used 404 size 2400
Startup : Interrupt stack used 136 size 4096
Startup : Idlethread stack used 87 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.09 microseconds (11 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

212

Appendix B. Real-time characterization

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
6.63 5.43 18.99 0.77 70% 37% Create thread
0.83 0.81 2.17 0.04 98% 98% Yield thread [all suspended]
1.27 0.81 5.15 0.30 68% 73% Suspend [suspended] thread
1.25 0.81 5.15 0.25 82% 1% Resume thread
1.52 1.09 7.87 0.30 78% 75% Set priority
0.97 0.54 2.71 0.28 64% 51% Get priority
3.45 2.71 19.53 0.66 84% 76% Kill [suspended] thread
0.90 0.81 6.24 0.17 98% 98% Yield [no other] thread
1.86 1.36 6.24 0.33 68% 50% Resume [suspended low prio] thread
1.25 0.81 5.15 0.25 82% 1% Resume [runnable low prio] thread
2.01 1.63 10.04 0.32 70% 84% Suspend [runnable] thread
0.90 0.81 6.24 0.17 98% 98% Yield [only low prio] thread
1.25 0.81 5.15 0.24 84% 1% Suspend [runnable->not runnable]
2.92 1.90 18.72 0.57 85% 43% Kill [runnable] thread
2.45 1.90 10.31 0.33 95% 54% Destroy [dead] thread
3.95 2.71 23.60 0.89 68% 54% Destroy [runnable] thread
8.55 6.24 19.53 1.15 60% 23% Resume [high priority] thread
1.85 1.63 11.94 0.21 49% 49% Thread switch

0.25 0.00 1.63 0.05 89% 10% Scheduler lock
0.52 0.27 1.90 0.07 85% 13% Scheduler unlock [0 threads]
0.51 0.27 1.36 0.06 85% 13% Scheduler unlock [1 suspended]
0.51 0.27 1.36 0.06 85% 13% Scheduler unlock [many suspended]
0.51 0.27 1.63 0.06 85% 13% Scheduler unlock [many low prio]

0.58 0.27 3.53 0.20 71% 21% Init mutex
1.07 0.54 5.70 0.35 87% 59% Lock [unlocked] mutex
1.14 0.81 6.51 0.40 96% 81% Unlock [locked] mutex
0.96 0.54 5.15 0.34 68% 65% Trylock [unlocked] mutex
0.94 0.54 4.88 0.34 65% 65% Trylock [locked] mutex
0.33 0.27 2.17 0.11 96% 96% Destroy mutex
4.21 3.80 10.85 0.41 71% 96% Unlock/Lock mutex
0.76 0.54 4.07 0.25 96% 56% Create mbox
0.75 0.54 1.90 0.20 84% 50% Peek [empty] mbox
1.56 1.09 6.78 0.39 68% 59% Put [first] mbox
0.75 0.54 1.90 0.20 84% 50% Peek [1 msg] mbox
1.55 1.09 6.78 0.40 68% 62% Put [second] mbox
0.77 0.54 1.63 0.17 46% 37% Peek [2 msgs] mbox
1.67 1.09 6.24 0.31 87% 34% Get [first] mbox
1.63 1.09 6.24 0.31 75% 34% Get [second] mbox
1.50 1.09 6.51 0.40 56% 62% Tryput [first] mbox
1.58 1.09 5.43 0.37 68% 53% Peek item [non-empty] mbox
1.79 1.09 7.05 0.43 71% 25% Tryget [non-empty] mbox
1.29 1.09 5.15 0.32 87% 87% Peek item [empty] mbox
1.33 1.09 5.97 0.37 96% 84% Tryget [empty] mbox
0.73 0.54 1.90 0.21 84% 56% Waiting to get mbox
0.76 0.54 1.90 0.19 40% 43% Waiting to put mbox
1.47 1.09 6.78 0.39 59% 84% Delete mbox
2.70 2.17 12.75 0.63 96% 96% Put/Get mbox

0.47 0.27 2.71 0.20 96% 50% Init semaphore

213

Appendix B. Real-time characterization

0.89 0.54 4.88 0.33 56% 75% Post [0] semaphore
0.96 0.54 5.15 0.33 71% 75% Wait [1] semaphore
0.86 0.54 4.88 0.32 96% 81% Trywait [0] semaphore
0.69 0.54 3.26 0.22 96% 75% Trywait [1] semaphore
0.49 0.27 3.26 0.28 84% 84% Peek semaphore
0.39 0.27 2.44 0.19 96% 78% Destroy semaphore
2.83 2.44 11.66 0.55 96% 96% Post/Wait semaphore

0.52 0.27 3.26 0.20 56% 40% Create counter
0.59 0.00 2.71 0.34 81% 46% Get counter value
0.36 0.00 2.44 0.21 81% 9% Set counter value
1.13 0.81 2.98 0.26 59% 37% Tick counter
0.39 0.27 1.90 0.19 90% 78% Delete counter

0.86 0.54 4.07 0.24 65% 31% Create alarm
1.86 1.36 9.77 0.54 96% 90% Initialize alarm
0.77 0.54 2.71 0.23 84% 50% Disable alarm
1.86 1.36 9.22 0.51 96% 75% Enable alarm
0.89 0.54 3.26 0.25 65% 21% Delete alarm
0.99 0.81 3.26 0.21 96% 59% Tick counter [1 alarm]
4.22 4.07 6.78 0.22 96% 71% Tick counter [many alarms]
1.51 1.36 4.61 0.24 96% 78% Tick & fire counter [1 alarm]

20.29 20.07 23.33 0.23 96% 53% Tick & fire counters [>1 together]
4.71 4.61 7.87 0.20 96% 96% Tick & fire counters [>1 separately]
2.88 2.71 23.87 0.33 99% 99% Alarm latency [0 threads]
3.24 2.71 17.36 0.40 79% 58% Alarm latency [2 threads]

15.71 12.48 27.40 1.47 53% 17% Alarm latency [many threads]
5.95 5.43 64.56 1.02 97% 97% Alarm -> thread resume latency

3.25 0.81 14.11 0.00 Clock/interrupt latency

2.68 1.09 12.75 0.00 Clock DSR latency

29 0 316 (main stack: 764) Thread stack used (1120 total)
All done, main stack : stack used 764 size 2400
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 260 size 2048

Timing complete - 30280 ms total

Board: Motorola MBX
Board: Motorola MBX

CPU : Motorola MPC860 66MHZ

Startup, main stack : stack used 643 size 5664
Startup : Interrupt stack used 427 size 4096
Startup : Idlethread stack used 236 size 2048

214

Appendix B. Real-time characterization

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 25.36 microseconds (79 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 16
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
27.58 25.60 44.16 2.07 93% 93% Create thread

5.94 5.76 7.04 0.22 93% 62% Yield thread [all suspended]
6.06 5.44 10.56 0.57 75% 75% Suspend [suspended] thread
5.42 4.80 9.60 0.53 87% 81% Resume thread
7.10 6.40 14.08 0.90 93% 87% Set priority
0.86 0.64 1.92 0.22 93% 50% Get priority

16.74 15.04 36.48 2.47 93% 93% Kill [suspended] thread
6.14 5.76 10.56 0.55 93% 93% Yield [no other] thread
9.74 8.96 18.56 1.10 93% 93% Resume [suspended low prio] thread
5.28 4.80 9.28 0.54 93% 81% Resume [runnable low prio] thread
9.40 8.32 18.56 1.14 93% 93% Suspend [runnable] thread
6.04 5.76 8.96 0.38 93% 93% Yield [only low prio] thread
5.68 5.12 9.60 0.52 68% 75% Suspend [runnable->not runnable]

16.10 14.40 35.20 2.39 93% 93% Kill [runnable] thread
8.54 7.68 16.00 0.94 93% 87% Destroy [dead] thread

20.20 18.56 40.64 2.55 93% 93% Destroy [runnable] thread
39.02 36.48 57.28 3.28 87% 87% Resume [high priority] thread
13.13 12.80 22.08 0.15 78% 20% Thread switch

0.59 0.32 1.60 0.09 82% 16% Scheduler lock
3.67 3.52 5.12 0.17 99% 54% Scheduler unlock [0 threads]
3.67 3.52 4.80 0.17 99% 53% Scheduler unlock [1 suspended]
3.67 3.52 4.80 0.17 54% 54% Scheduler unlock [many suspended]
3.69 3.52 5.12 0.17 99% 50% Scheduler unlock [many low prio]

2.41 2.24 5.44 0.25 96% 75% Init mutex
6.83 6.40 11.84 0.34 75% 90% Lock [unlocked] mutex
6.74 6.40 13.12 0.40 96% 96% Unlock [locked] mutex
5.53 5.12 9.60 0.25 84% 12% Trylock [unlocked] mutex
4.84 4.48 7.36 0.17 78% 15% Trylock [locked] mutex
0.34 0.00 0.96 0.06 90% 3% Destroy mutex

56.10 55.68 59.52 0.21 93% 3% Unlock/Lock mutex

215

Appendix B. Real-time characterization

4.72 4.48 10.24 0.37 96% 96% Create mbox
0.75 0.64 1.92 0.16 75% 75% Peek [empty] mbox
6.79 6.40 12.80 0.41 96% 90% Put [first] mbox
0.46 0.32 1.60 0.19 93% 68% Peek [1 msg] mbox
6.68 6.40 12.16 0.37 96% 96% Put [second] mbox
0.50 0.32 1.60 0.20 93% 56% Peek [2 msgs] mbox
7.13 6.40 14.08 0.49 90% 46% Get [first] mbox
6.97 6.40 13.44 0.47 84% 78% Get [second] mbox
6.24 5.76 11.52 0.38 78% 81% Tryput [first] mbox
5.98 5.44 11.20 0.39 78% 62% Peek item [non-empty] mbox
6.52 6.08 13.12 0.49 93% 81% Tryget [non-empty] mbox
5.50 5.12 10.24 0.30 68% 28% Peek item [empty] mbox
5.76 5.44 10.88 0.32 96% 96% Tryget [empty] mbox
0.50 0.32 1.60 0.19 96% 53% Waiting to get mbox
0.50 0.32 1.60 0.19 96% 53% Waiting to put mbox
7.45 7.04 15.04 0.49 96% 93% Delete mbox

37.47 36.80 48.64 0.70 96% 96% Put/Get mbox

2.49 2.24 6.08 0.28 96% 56% Init semaphore
5.09 4.80 8.64 0.27 46% 46% Post [0] semaphore
6.25 5.76 10.88 0.32 93% 3% Wait [1] semaphore
4.84 4.48 8.32 0.23 68% 25% Trywait [0] semaphore
4.98 4.80 8.00 0.26 96% 71% Trywait [1] semaphore
1.66 1.28 3.84 0.20 68% 15% Peek semaphore
1.24 0.96 3.20 0.17 65% 31% Destroy semaphore

40.74 40.32 49.28 0.53 96% 96% Post/Wait semaphore

2.65 2.24 6.08 0.23 84% 9% Create counter
0.85 0.64 2.24 0.22 90% 53% Get counter value
0.68 0.64 1.92 0.08 96% 96% Set counter value
7.13 6.72 8.64 0.24 78% 18% Tick counter
1.30 0.96 3.20 0.12 84% 12% Delete counter

3.69 3.52 7.68 0.29 96% 84% Create alarm
8.98 8.32 17.60 0.61 68% 62% Initialize alarm
0.96 0.64 2.88 0.14 71% 21% Disable alarm
8.76 8.32 17.60 0.59 96% 87% Enable alarm
1.99 1.60 5.12 0.21 81% 12% Delete alarm
7.44 7.36 9.92 0.15 96% 96% Tick counter [1 alarm]

21.68 21.44 24.64 0.25 96% 53% Tick counter [many alarms]
10.95 10.56 15.04 0.26 78% 18% Tick & fire counter [1 alarm]

132.79 132.48 136.32 0.23 59% 37% Tick & fire counters [>1 together]
25.18 24.96 28.80 0.29 96% 65% Tick & fire counters [>1 separately]
23.06 22.72 47.36 0.40 98% 98% Alarm latency [0 threads]
31.53 27.20 56.00 0.63 96% 0% Alarm latency [2 threads]
36.86 30.40 58.88 4.15 50% 28% Alarm latency [many threads]

11.41 8.96 16.32 0.00 Clock/interrupt latency

609 603 651 (main stack: 1059) Thread stack used (1704 total)
All done, main stack : stack used 1059 size 5664
All done : Interrupt stack used 251 size 4096
All done : Idlethread stack used 587 size 2048

216

Appendix B. Real-time characterization

Timing complete - 23690 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: Hitachi EDK7708

Board: Hitachi EDK7708

CPU: Hitachi SH3/7708 60MHz

Startup, main stack : stack used 444 size 4112
Startup : Interrupt stack used 76 size 4096
Startup : Idlethread stack used 96 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 2 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 14.75 microseconds (55 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 16
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
15.43 13.60 24.00 1.29 62% 50% Create thread

3.33 3.20 4.27 0.18 93% 68% Yield thread [all suspended]
2.90 2.40 5.33 0.36 81% 62% Suspend [suspended] thread
2.93 2.67 4.80 0.27 93% 87% Resume thread
4.30 3.73 10.13 0.73 93% 93% Set priority
0.65 0.27 2.13 0.28 68% 62% Get priority
9.72 8.53 21.33 1.45 93% 93% Kill [suspended] thread
3.33 3.20 4.53 0.20 93% 75% Yield [no other] thread
5.30 4.80 10.13 0.65 93% 87% Resume [suspended low prio] thread
2.80 2.40 4.53 0.27 81% 75% Resume [runnable low prio] thread
4.82 4.00 8.27 0.49 68% 25% Suspend [runnable] thread

217

Appendix B. Real-time characterization

3.32 3.20 4.00 0.16 93% 68% Yield [only low prio] thread
2.82 2.40 4.27 0.25 81% 12% Suspend [runnable->not runnable]
9.45 8.53 19.47 1.25 93% 93% Kill [runnable] thread
5.30 4.53 11.20 0.74 87% 93% Destroy [dead] thread

11.83 10.67 25.07 1.65 93% 93% Destroy [runnable] thread
19.53 17.33 31.20 1.88 75% 75% Resume [high priority] thread

6.70 6.67 11.47 0.07 99% 99% Thread switch

0.33 0.27 0.80 0.10 75% 75% Scheduler lock
1.74 1.60 2.67 0.14 99% 50% Scheduler unlock [0 threads]
1.72 1.60 3.20 0.14 99% 57% Scheduler unlock [1 suspended]
1.81 1.60 3.20 0.10 75% 23% Scheduler unlock [many suspended]
1.86 1.60 3.20 0.02 94% 4% Scheduler unlock [many low prio]

1.22 1.07 3.20 0.20 96% 65% Init mutex
3.21 2.93 5.87 0.17 68% 28% Lock [unlocked] mutex
3.36 2.93 7.47 0.30 84% 75% Unlock [locked] mutex
2.83 2.67 5.33 0.22 96% 65% Trylock [unlocked] mutex
2.53 2.40 2.93 0.14 96% 53% Trylock [locked] mutex
0.28 0.27 0.80 0.03 96% 96% Destroy mutex

20.09 19.73 23.20 0.23 84% 12% Unlock/Lock mutex

2.38 2.13 4.53 0.17 59% 34% Create mbox
0.45 0.27 1.33 0.15 56% 40% Peek [empty] mbox
3.70 3.20 7.20 0.29 84% 59% Put [first] mbox
0.45 0.27 0.80 0.13 62% 34% Peek [1 msg] mbox
3.67 3.20 5.60 0.23 81% 6% Put [second] mbox
0.42 0.27 0.53 0.13 59% 40% Peek [2 msgs] mbox
3.98 3.47 7.47 0.24 59% 9% Get [first] mbox
3.97 3.47 4.80 0.24 59% 12% Get [second] mbox
3.51 3.20 6.67 0.28 56% 78% Tryput [first] mbox
3.29 2.93 5.60 0.29 59% 65% Peek item [non-empty] mbox
4.06 3.47 7.20 0.26 68% 3% Tryget [non-empty] mbox
3.03 2.67 5.33 0.19 93% 3% Peek item [empty] mbox
3.36 3.20 4.80 0.18 96% 56% Tryget [empty] mbox
0.57 0.27 1.33 0.09 84% 3% Waiting to get mbox
0.52 0.27 1.07 0.11 62% 21% Waiting to put mbox
3.88 3.47 7.47 0.30 78% 65% Delete mbox

12.04 11.73 17.33 0.33 96% 96% Put/Get mbox

1.17 1.07 2.40 0.16 71% 71% Init semaphore
2.67 2.40 4.27 0.15 62% 25% Post [0] semaphore
3.00 2.67 4.53 0.17 65% 12% Wait [1] semaphore
2.54 2.40 4.80 0.20 96% 71% Trywait [0] semaphore
2.42 2.40 2.93 0.03 96% 96% Trywait [1] semaphore
0.79 0.53 2.13 0.15 59% 28% Peek semaphore
0.77 0.53 1.87 0.12 71% 25% Destroy semaphore

12.64 12.27 17.07 0.28 84% 96% Post/Wait semaphore

1.27 1.07 2.93 0.17 53% 43% Create counter
0.54 0.27 1.33 0.13 59% 21% Get counter value
0.47 0.27 1.60 0.17 46% 43% Set counter value
3.47 3.20 4.80 0.16 53% 28% Tick counter
0.80 0.53 2.13 0.13 62% 25% Delete counter

218

Appendix B. Real-time characterization

1.86 1.60 4.00 0.21 43% 40% Create alarm
5.12 4.80 9.07 0.36 93% 75% Initialize alarm
0.44 0.27 1.33 0.19 87% 53% Disable alarm
4.77 4.27 9.60 0.35 87% 62% Enable alarm
1.02 0.80 2.67 0.18 53% 40% Delete alarm
3.56 3.47 5.33 0.15 84% 84% Tick counter [1 alarm]

15.04 14.93 16.27 0.16 71% 71% Tick counter [many alarms]
5.75 5.60 8.00 0.21 96% 68% Tick & fire counter [1 alarm]

79.60 79.47 81.07 0.17 96% 65% Tick & fire counters [>1 together]
17.04 16.80 18.93 0.15 65% 31% Tick & fire counters [>1 separately]
12.44 12.27 29.60 0.31 96% 96% Alarm latency [0 threads]
14.06 12.27 27.20 0.53 82% 4% Alarm latency [2 threads]
19.62 17.07 38.40 1.44 57% 34% Alarm latency [many threads]

2.79 2.40 6.13 0.00 Clock/interrupt latency

376 376 376 (main stack: 764) Thread stack used (992 total)
All done, main stack : stack used 764 size 4112
All done : Interrupt stack used 176 size 4096
All done : Idlethread stack used 352 size 2048

Timing complete - 23860 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: CQ CqREEK SH3 Evaluation Board (cq7708)
Board: CQ CqREEK SH3 Evaluation Board (cq7708)

CPU: Hitachi SH3/7708 60MHz

Startup, main stack : stack used 448 size 4112
Startup : Interrupt stack used 80 size 4096
Startup : Idlethread stack used 96 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 2 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 19.17 microseconds (71 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128

219

Appendix B. Real-time characterization

Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
20.62 14.40 26.93 3.23 48% 26% Create thread

3.16 2.93 4.27 0.09 78% 20% Yield thread [all suspended]
2.91 2.40 5.87 0.17 57% 1% Suspend [suspended] thread
2.73 2.40 6.40 0.19 64% 15% Resume thread
4.05 3.73 11.47 0.27 62% 90% Set priority
0.82 0.27 2.67 0.17 56% 3% Get priority
9.07 8.53 24.27 0.51 78% 71% Kill [suspended] thread
3.19 2.93 7.20 0.14 70% 28% Yield [no other] thread
5.45 4.53 17.87 0.49 78% 17% Resume [suspended low prio] thread
2.67 2.40 5.07 0.15 56% 28% Resume [runnable low prio] thread
4.95 4.27 11.47 0.28 82% 14% Suspend [runnable] thread
3.15 2.93 4.53 0.11 73% 25% Yield [only low prio] thread
2.82 2.40 5.60 0.21 84% 10% Suspend [runnable->not runnable]
8.92 8.00 24.27 0.51 84% 14% Kill [runnable] thread
5.10 4.53 12.00 0.27 59% 39% Destroy [dead] thread

11.81 10.93 37.33 0.81 87% 95% Destroy [runnable] thread
22.15 20.80 54.67 1.27 92% 92% Resume [high priority] thread

6.85 6.67 13.60 0.19 99% 50% Thread switch

0.27 0.27 1.07 0.01 99% 99% Scheduler lock
1.74 1.60 2.67 0.14 99% 50% Scheduler unlock [0 threads]
1.74 1.60 2.93 0.14 99% 50% Scheduler unlock [1 suspended]
1.81 1.60 4.27 0.11 72% 26% Scheduler unlock [many suspended]
1.75 1.60 4.00 0.15 50% 49% Scheduler unlock [many low prio]

1.22 1.07 4.27 0.23 96% 78% Init mutex
3.18 2.93 7.20 0.27 96% 53% Lock [unlocked] mutex
3.40 3.20 8.00 0.31 96% 96% Unlock [locked] mutex
2.77 2.40 5.87 0.22 87% 9% Trylock [unlocked] mutex
2.35 2.13 3.47 0.14 65% 31% Trylock [locked] mutex
0.78 0.53 2.67 0.14 68% 28% Destroy mutex

22.80 22.40 28.80 0.51 96% 71% Unlock/Lock mutex

2.61 2.40 6.13 0.26 96% 62% Create mbox
0.52 0.27 1.60 0.19 40% 37% Peek [empty] mbox
3.54 3.20 7.73 0.35 93% 78% Put [first] mbox
0.50 0.27 1.60 0.17 46% 37% Peek [1 msg] mbox
3.62 3.20 6.93 0.34 59% 65% Put [second] mbox
0.52 0.27 2.13 0.23 31% 43% Peek [2 msgs] mbox
3.93 3.47 10.13 0.43 65% 65% Get [first] mbox
3.92 3.47 7.47 0.40 56% 56% Get [second] mbox
3.37 2.93 6.93 0.36 59% 68% Tryput [first] mbox
3.30 2.67 6.93 0.38 84% 40% Peek item [non-empty] mbox
3.93 3.47 9.33 0.44 65% 71% Tryget [non-empty] mbox
2.94 2.67 6.13 0.25 43% 43% Peek item [empty] mbox
3.23 2.93 6.67 0.27 56% 84% Tryget [empty] mbox
0.58 0.27 2.67 0.20 62% 21% Waiting to get mbox
0.55 0.27 1.87 0.14 62% 21% Waiting to put mbox

220

Appendix B. Real-time characterization

3.82 3.47 9.87 0.39 96% 93% Delete mbox
13.35 12.80 21.33 0.50 87% 78% Put/Get mbox

1.22 1.07 2.93 0.19 96% 59% Init semaphore
2.42 2.13 4.27 0.12 81% 15% Post [0] semaphore
2.96 2.67 5.07 0.16 68% 21% Wait [1] semaphore
2.37 2.13 4.53 0.17 62% 34% Trywait [0] semaphore
2.29 2.13 3.47 0.17 96% 53% Trywait [1] semaphore
0.66 0.53 2.13 0.17 96% 68% Peek semaphore
0.81 0.53 2.93 0.13 75% 21% Destroy semaphore

14.47 14.13 21.33 0.43 96% 96% Post/Wait semaphore

1.44 1.07 3.47 0.29 56% 71% Create counter
0.62 0.27 1.07 0.14 62% 3% Get counter value
0.56 0.27 1.60 0.17 50% 25% Set counter value
3.39 3.20 4.27 0.16 53% 40% Tick counter
0.83 0.53 1.87 0.14 68% 15% Delete counter

2.02 1.87 4.00 0.21 93% 68% Create alarm
5.06 4.27 11.73 0.46 78% 18% Initialize alarm
0.73 0.27 2.40 0.22 84% 3% Disable alarm
4.82 4.27 11.47 0.48 81% 65% Enable alarm
1.19 0.80 3.47 0.22 87% 9% Delete alarm
3.63 3.47 5.60 0.20 96% 59% Tick counter [1 alarm]

15.01 14.93 16.53 0.13 87% 87% Tick counter [many alarms]
5.50 5.33 8.00 0.22 96% 65% Tick & fire counter [1 alarm]

74.27 74.13 76.80 0.21 96% 78% Tick & fire counters [>1 together]
16.90 16.53 19.47 0.23 81% 15% Tick & fire counters [>1 separately]
16.70 16.53 36.27 0.33 98% 98% Alarm latency [0 threads]
17.85 16.53 34.40 0.47 73% 0% Alarm latency [2 threads]
63.26 58.40 80.00 2.64 52% 32% Alarm latency [many threads]
30.37 29.33 124.80 1.68 98% 97% Alarm -> thread resume latency

7.37 5.07 17.87 0.00 Clock/interrupt latency

9.00 4.53 26.93 0.00 Clock DSR latency

106 0 376 (main stack: 764) Thread stack used (992 total)
All done, main stack : stack used 764 size 4112
All done : Interrupt stack used 176 size 4096
All done : Idlethread stack used 352 size 2048

Timing complete - 30310 ms total

PASS:<Basic timing OK>
EXIT: <done>

221

Appendix B. Real-time characterization

Board: Hitachi HS7729PCI HS7729 SH3
Board: Hitachi HS7729PCI HS7729 SH3

CPU: Hitachi SH3/7729 132MHz

Startup, main stack : stack used 464 size 4112
Startup : Interrupt stack used 92 size 4096
Startup : Idlethread stack used 94 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 18.10 microseconds (149 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
18.33 15.52 28.24 1.47 53% 28% Create thread

3.08 2.91 6.79 0.13 78% 89% Yield thread [all suspended]
3.23 3.03 6.18 0.16 59% 70% Suspend [suspended] thread
2.70 2.55 6.18 0.15 54% 82% Resume thread
4.12 4.00 7.52 0.16 96% 81% Set priority
0.61 0.48 1.33 0.07 57% 28% Get priority
9.14 8.61 18.91 0.42 85% 57% Kill [suspended] thread
3.04 2.91 4.48 0.07 68% 20% Yield [no other] thread
5.12 4.73 7.88 0.29 60% 53% Resume [suspended low prio] thread
2.54 2.42 3.03 0.09 39% 40% Resume [runnable low prio] thread
5.00 4.36 9.45 0.21 75% 1% Suspend [runnable] thread
3.04 2.91 4.61 0.07 65% 21% Yield [only low prio] thread
2.91 2.79 3.27 0.08 43% 31% Suspend [runnable->not runnable]
8.82 8.12 15.39 0.36 68% 29% Kill [runnable] thread
5.07 4.48 12.73 0.37 76% 50% Destroy [dead] thread

11.17 10.55 22.91 0.52 78% 67% Destroy [runnable] thread
22.43 21.45 32.73 0.61 81% 50% Resume [high priority] thread

7.99 7.88 13.58 0.14 98% 86% Thread switch

0.37 0.36 1.33 0.02 97% 97% Scheduler lock
1.74 1.70 2.06 0.06 70% 70% Scheduler unlock [0 threads]

1.75 1.70 2.06 0.07 92% 64% Scheduler unlock [1 suspended]

222

Appendix B. Real-time characterization

1.71 1.70 2.42 0.03 89% 89% Scheduler unlock [many suspended]
1.76 1.70 3.64 0.08 96% 64% Scheduler unlock [many low prio]

4.23 3.88 10.67 0.41 96% 93% Unlock [locked] mutex
3.12 2.91 6.91 0.29 96% 87% Trylock [unlocked] mutex
2.54 2.42 2.91 0.11 18% 46% Trylock [locked] mutex
0.88 0.73 3.15 0.14 65% 96% Destroy mutex

22.33 22.06 25.94 0.23 81% 62% Unlock/Lock mutex

1.92 1.82 4.73 0.19 96% 93% Create mbox
0.61 0.48 1.70 0.15 84% 75% Peek [empty] mbox
4.00 3.64 9.45 0.36 96% 87% Put [first] mbox
0.30 0.24 0.73 0.09 84% 75% Peek [1 msg] mbox
3.82 3.64 6.67 0.22 90% 84% Put [second] mbox
0.32 0.24 1.33 0.12 81% 81% Peek [2 msgs] mbox
4.19 3.76 9.21 0.34 84% 50% Get [first] mbox
3.91 3.76 5.21 0.16 84% 75% Get [second] mbox
3.51 3.27 8.12 0.34 93% 87% Tryput [first] mbox
3.25 2.91 7.15 0.30 62% 56% Peek item [non-empty] mbox
3.86 3.52 8.73 0.37 93% 84% Tryget [non-empty] mbox
2.87 2.79 3.76 0.12 84% 71% Peek item [empty] mbox
3.15 3.03 4.24 0.10 46% 40% Tryget [empty] mbox
0.34 0.24 1.33 0.10 43% 46% Waiting to get mbox
0.36 0.24 1.45 0.09 53% 37% Waiting to put mbox
4.49 4.24 10.91 0.41 96% 96% Delete mbox

12.67 12.36 19.52 0.43 96% 96% Put/Get mbox

0.87 0.85 1.45 0.05 93% 93% Init semaphore
2.74 2.55 4.48 0.18 50% 50% Post [0] semaphore
3.39 3.15 4.24 0.14 78% 50% Wait [1] semaphore
2.62 2.42 5.33 0.21 96% 65% Trywait [0] semaphore
2.76 2.67 3.27 0.08 46% 43% Trywait [1] semaphore
1.09 0.85 2.91 0.19 68% 56% Peek semaphore
0.97 0.73 3.39 0.17 90% 65% Destroy semaphore

13.09 12.85 16.12 0.19 84% 65% Post/Wait semaphore

1.57 1.45 3.88 0.15 96% 93% Create counter
0.91 0.73 2.18 0.16 46% 68% Get counter value
0.55 0.48 0.97 0.09 90% 62% Set counter value
4.19 4.00 5.82 0.13 84% 75% Tick counter
0.87 0.73 3.15 0.16 93% 93% Delete counter

2.50 2.30 5.21 0.18 81% 90% Create alarm
6.16 5.70 12.97 0.47 96% 71% Initialize alarm
0.50 0.36 1.70 0.11 62% 34% Disable alarm
5.16 4.85 8.73 0.29 78% 78% Enable alarm
1.18 1.09 2.30 0.12 84% 65% Delete alarm
5.22 5.09 7.39 0.14 96% 93% Tick counter [1 alarm]

52.37 52.12 52.73 0.20 37% 56% Tick counter [many alarms]
6.73 6.55 8.24 0.13 78% 68% Tick & fire counter [1 alarm]

108.65 108.61 109.21 0.07 87% 87% Tick & fire counters [>1 together]
54.25 54.06 54.79 0.11 65% 18% Tick & fire counters [>1 separately]
17.36 17.09 29.82 0.23 82% 57% Alarm latency [0 threads]
19.75 17.09 28.00 1.65 46% 40% Alarm latency [2 threads]
39.02 34.06 50.67 2.00 53% 15% Alarm latency [many threads]

223

Appendix B. Real-time characterization

29.31 28.36 105.09 1.27 98% 97% Alarm -> thread resume latency

5.08 3.88 11.15 0.00 Clock/interrupt latency

7.32 5.09 16.73 0.00 Clock DSR latency

6 0 380 (main stack: 820) Thread stack used (992 total)
All done, main stack : stack used 820 size 4112
All done : Interrupt stack used 196 size 4096
All done : Idlethread stack used 360 size 2048

Timing complete - 29960 ms total
PASS:<Basic timing OK>
EXIT: <done>

Board: Hitachi Solution Engine 7751 SH4 (se7751)
Board: Hitachi Solution Engine 7751 SH4 (se7751)

CPU: Hitachi SH4/7751 162MHz

Startup, main stack : stack used 464 size 4112
Startup : Interrupt stack used 92 size 4096
Startup : Idlethread stack used 94 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 14.27 microseconds (96 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
8.06 5.63 12.15 1.37 46% 29% Create thread
1.15 1.04 5.19 0.15 98% 98% Yield thread [all suspended]
1.13 0.89 5.04 0.27 89% 62% Suspend [suspended] thread

224

Appendix B. Real-time characterization

1.11 0.89 5.19 0.26 89% 71% Resume thread
1.45 1.19 3.56 0.23 53% 53% Set priority
0.21 0.15 1.19 0.10 90% 79% Get priority
4.15 3.56 13.04 0.53 68% 64% Kill [suspended] thread
1.12 1.04 3.70 0.12 98% 70% Yield [no other] thread
1.75 1.33 8.00 0.38 59% 65% Resume [suspended low prio] thread
1.10 0.89 4.59 0.25 87% 73% Resume [runnable low prio] thread
1.59 1.33 5.93 0.33 81% 79% Suspend [runnable] thread
1.13 1.04 4.30 0.13 98% 71% Yield [only low prio] thread
1.09 0.89 3.56 0.21 89% 70% Suspend [runnable->not runnable]
4.96 4.30 11.70 0.44 68% 39% Kill [runnable] thread
1.95 1.48 8.00 0.34 75% 57% Destroy [dead] thread
4.41 3.85 10.37 0.47 53% 57% Destroy [runnable] thread

13.15 11.41 23.85 1.11 73% 39% Resume [high priority] thread
3.10 2.96 6.22 0.11 41% 39% Thread switch

0.13 0.00 1.33 0.06 74% 21% Scheduler lock
0.76 0.74 1.78 0.03 96% 96% Scheduler unlock [0 threads]
0.76 0.74 1.78 0.03 96% 96% Scheduler unlock [1 suspended]
0.77 0.74 2.67 0.05 95% 95% Scheduler unlock [many suspended]
0.76 0.74 2.37 0.04 95% 95% Scheduler unlock [many low prio]

0.52 0.15 2.67 0.26 65% 34% Init mutex
1.23 1.04 5.63 0.32 93% 93% Lock [unlocked] mutex
1.45 1.19 5.33 0.31 90% 87% Unlock [locked] mutex
1.13 0.89 4.15 0.28 90% 84% Trylock [unlocked] mutex
1.00 0.89 2.96 0.17 87% 87% Trylock [locked] mutex
0.37 0.30 1.78 0.13 90% 84% Destroy mutex
9.09 8.59 12.59 0.43 71% 71% Unlock/Lock mutex
0.93 0.59 4.30 0.40 84% 71% Create mbox
0.26 0.00 1.19 0.17 71% 59% Peek [empty] mbox
3.03 2.52 6.37 0.47 50% 59% Put [first] mbox
0.23 0.00 0.74 0.14 68% 15% Peek [1 msg] mbox
2.93 2.52 4.74 0.46 71% 59% Put [second] mbox
0.22 0.00 0.59 0.13 68% 15% Peek [2 msgs] mbox
2.07 1.63 5.93 0.37 84% 59% Get [first] mbox
2.06 1.63 4.74 0.34 78% 59% Get [second] mbox
1.48 1.04 5.48 0.37 62% 53% Tryput [first] mbox
1.31 1.04 4.89 0.32 96% 75% Peek item [non-empty] mbox
1.47 1.04 5.78 0.38 84% 65% Tryget [non-empty] mbox
1.15 0.89 3.11 0.18 71% 56% Peek item [empty] mbox
1.20 1.04 3.85 0.21 93% 84% Tryget [empty] mbox
0.21 0.00 0.74 0.14 68% 18% Waiting to get mbox
0.19 0.00 0.44 0.10 43% 15% Waiting to put mbox
2.19 1.93 5.78 0.27 93% 71% Delete mbox

10.23 9.93 11.56 0.15 53% 37% Put/Get mbox

0.37 0.15 1.33 0.26 71% 71% Init semaphore
0.98 0.89 2.52 0.13 96% 68% Post [0] semaphore
1.08 0.89 3.26 0.15 68% 93% Wait [1] semaphore
0.98 0.89 3.41 0.16 93% 93% Trywait [0] semaphore
0.73 0.59 1.63 0.07 71% 25% Trywait [1] semaphore
0.33 0.30 1.33 0.07 93% 93% Peek semaphore
0.34 0.30 1.78 0.09 96% 96% Destroy semaphore
9.36 8.74 10.37 0.33 56% 31% Post/Wait semaphore

225

Appendix B. Real-time characterization

0.54 0.15 3.26 0.23 59% 37% Create counter
0.13 0.00 0.59 0.07 68% 25% Get counter value
0.14 0.00 0.59 0.07 68% 25% Set counter value
3.74 3.56 5.33 0.17 53% 75% Tick counter
0.32 0.15 2.07 0.12 71% 21% Delete counter

1.59 1.19 3.11 0.29 71% 43% Create alarm
1.89 1.48 6.37 0.44 87% 78% Initialize alarm
0.20 0.15 0.74 0.09 87% 84% Disable alarm
1.62 1.33 5.63 0.41 87% 84% Enable alarm
0.40 0.30 1.33 0.13 87% 62% Delete alarm

4.03 3.70 5.78 0.27 68% 56% Tick counter [1 alarm]
14.18 13.93 15.70 0.27 81% 75% Tick counter [many alarms]

4.81 4.59 5.93 0.13 81% 15% Tick & fire counter [1 alarm]
30.77 30.52 33.63 0.20 75% 65% Tick & fire counters [>1 together]
15.10 14.52 17.04 0.23 71% 3% Tick & fire counters [>1 separately]

8.78 8.59 18.22 0.20 97% 89% Alarm latency [0 threads]
11.29 9.33 17.48 1.02 56% 22% Alarm latency [2 threads]
18.70 15.70 26.37 1.45 54% 22% Alarm latency [many threads]
19.40 18.81 57.48 0.65 97% 97% Alarm -> thread resume latency

4.18 2.81 8.89 0.00 Clock/interrupt latency

3.98 2.52 11.56 0.00 Clock DSR latency

6 0 380 (main stack: 728) Thread stack used (992 total)
All done, main stack : stack used 728 size 4112
All done : Interrupt stack used 196 size 4096
All done : Idlethread stack used 360 size 2048

Timing complete - 29790 ms total

PASS:<Basic timing OK>
EXIT: <done>

Board: PC
Board: PC

CPU: 433MHz Celeron

Startup, main stack : stack used 124 size 2912
Startup : Interrupt stack used 280 size 4108
Startup : Idlethread stack used 62 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 8 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.75 microseconds (8 raw clock ticks)

226

Appendix B. Real-time characterization

Testing parameters:
Clock samples: 32
Threads: 64
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
3.93 1.68 8.38 0.93 68% 3% Create thread
0.71 0.00 3.35 0.84 59% 59% Yield thread [all suspended]
0.65 0.00 5.03 0.84 64% 64% Suspend [suspended] thread
0.63 0.00 1.68 0.79 62% 62% Resume thread
0.76 0.00 1.68 0.83 54% 54% Set priority
0.39 0.00 1.68 0.60 76% 76% Get priority
1.34 0.00 6.70 0.67 73% 25% Kill [suspended] thread
0.68 0.00 1.68 0.81 59% 59% Yield [no other] thread
0.92 0.00 1.68 0.83 54% 45% Resume [suspended low prio] thread
0.63 0.00 1.68 0.79 62% 62% Resume [runnable low prio] thread
0.84 0.00 1.68 0.84 100% 50% Suspend [runnable] thread
0.73 0.00 1.68 0.82 56% 56% Yield [only low prio] thread
0.58 0.00 1.68 0.76 65% 65% Suspend [runnable->not runnable]
1.26 0.00 3.35 0.67 71% 26% Kill [runnable] thread
0.86 0.00 3.35 0.86 98% 50% Destroy [dead] thread
1.44 0.00 1.68 0.40 85% 14% Destroy [runnable] thread
4.45 3.35 6.70 0.89 53% 40% Resume [high priority] thread
1.62 0.00 1.68 0.10 96% 3% Thread switch

0.41 0.00 1.68 0.61 75% 75% Scheduler lock
0.48 0.00 1.68 0.69 71% 71% Scheduler unlock [0 threads]
0.59 0.00 1.68 0.76 64% 64% Scheduler unlock [1 suspended]
0.45 0.00 1.68 0.65 73% 73% Scheduler unlock [many suspended]
0.45 0.00 1.68 0.65 73% 73% Scheduler unlock [many low prio]

0.52 0.00 1.68 0.72 68% 68% Init mutex
0.79 0.00 5.03 0.93 96% 59% Lock [unlocked] mutex
0.84 0.00 5.03 0.94 96% 56% Unlock [locked] mutex
0.63 0.00 1.68 0.79 62% 62% Trylock [unlocked] mutex
0.52 0.00 1.68 0.72 68% 68% Trylock [locked] mutex
0.58 0.00 1.68 0.76 65% 65% Destroy mutex
3.40 3.35 5.03 0.10 96% 96% Unlock/Lock mutex

0.99 0.00 1.68 0.81 59% 40% Create mbox
0.47 0.00 1.68 0.68 71% 71% Peek [empty] mbox
0.79 0.00 5.03 0.93 96% 59% Put [first] mbox
0.42 0.00 1.68 0.63 75% 75% Peek [1 msg] mbox
0.79 0.00 1.68 0.83 53% 53% Put [second] mbox
0.37 0.00 1.68 0.57 78% 78% Peek [2 msgs] mbox

227

Appendix B. Real-time characterization

0.73 0.00 3.35 0.87 59% 59% Get [first] mbox
0.73 0.00 1.68 0.82 56% 56% Get [second] mbox
0.79 0.00 3.35 0.88 56% 56% Tryput [first] mbox
0.68 0.00 3.35 0.85 62% 62% Peek item [non-empty] mbox
0.73 0.00 3.35 0.87 59% 59% Tryget [non-empty] mbox
0.63 0.00 1.68 0.79 62% 62% Peek item [empty] mbox
0.68 0.00 1.68 0.81 59% 59% Tryget [empty] mbox
0.26 0.00 1.68 0.44 84% 84% Waiting to get mbox
0.63 0.00 1.68 0.79 62% 62% Waiting to put mbox
0.73 0.00 3.35 0.87 59% 59% Delete mbox
3.25 1.68 3.35 0.20 93% 6% Put/Get mbox

0.63 0.00 1.68 0.79 62% 62% Init semaphore
0.63 0.00 1.68 0.79 62% 62% Post [0] semaphore
0.63 0.00 1.68 0.79 62% 62% Wait [1] semaphore
0.52 0.00 1.68 0.72 68% 68% Trywait [0] semaphore
0.52 0.00 1.68 0.72 68% 68% Trywait [1] semaphore
0.52 0.00 1.68 0.72 68% 68% Peek semaphore
0.21 0.00 1.68 0.37 87% 87% Destroy semaphore
3.30 1.68 3.35 0.10 96% 3% Post/Wait semaphore

0.79 0.00 3.35 0.88 56% 56% Create counter
0.42 0.00 1.68 0.63 75% 75% Get counter value
0.37 0.00 1.68 0.57 78% 78% Set counter value
0.73 0.00 1.68 0.82 56% 56% Tick counter
0.63 0.00 1.68 0.79 62% 62% Delete counter

0.89 0.00 3.35 0.89 96% 50% Create alarm
0.84 0.00 1.68 0.84 100% 50% Initialize alarm
0.52 0.00 1.68 0.72 68% 68% Disable alarm
0.89 0.00 3.35 0.89 96% 50% Enable alarm
0.58 0.00 1.68 0.76 65% 65% Delete alarm
0.63 0.00 1.68 0.79 62% 62% Tick counter [1 alarm]
5.03 3.35 6.70 0.10 93% 3% Tick counter [many alarms]
0.94 0.00 1.68 0.82 56% 43% Tick & fire counter [1 alarm]

11.16 10.06 11.73 0.76 65% 34% Tick & fire counters [>1 together]
5.19 5.03 6.70 0.28 90% 90% Tick & fire counters [>1 separately]
0.01 0.00 1.68 0.03 99% 99% Alarm latency [0 threads]
0.13 0.00 1.68 0.24 92% 92% Alarm latency [2 threads]
0.94 0.00 3.35 0.85 53% 45% Alarm latency [many threads]
1.75 1.68 6.70 0.15 96% 96% Alarm -> thread resume latency

41 0 368 (main stack: 1036) Thread stack used (1712 total)
All done, main stack : stack used 1036 size 2912
All done : Interrupt stack used 368 size 4108
All done : Idlethread stack used 288 size 2048

Timing complete - 28520 ms total

PASS:<Basic timing OK>
EXIT: <done>

228

Appendix B. Real-time characterization

Board: NEC V850 Cosmo Evaluation Board
Board: NEC V850 Cosmo Evaluation Board

CPU: NEC CEB-V850/SA1 17MHz

Startup, main stack : stack used 552 size 2936
Startup : Interrupt stack used 120 size 4096
Startup : Idlethread stack used 206 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 27 ‘ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 280.04 microseconds (1190 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
288.71 280.24 297.18 4.84 42% 28% Create thread

70.76 70.59 70.82 0.10 71% 28% Yield thread [all suspended]
59.06 59.06 59.06 0.00 100% 100% Suspend [suspended] thread
60.00 60.00 60.00 0.00 100% 100% Resume thread
77.38 77.18 77.41 0.06 85% 14% Set priority

3.13 3.06 3.29 0.10 71% 71% Get priority
187.46 187.29 187.53 0.10 71% 28% Kill [suspended] thread

70.76 70.59 70.82 0.10 71% 28% Yield [no other] thread
104.40 103.29 104.71 0.32 85% 14% Resume [suspended low prio] thread

59.06 59.06 59.06 0.00 100% 100% Resume [runnable low prio] thread
97.11 91.06 98.12 1.73 85% 14% Suspend [runnable] thread
70.76 70.59 70.82 0.10 71% 28% Yield [only low prio] thread
59.06 59.06 59.06 0.00 100% 100% Suspend [runnable->not runnable]

187.46 187.29 187.53 0.10 71% 28% Kill [runnable] thread
95.63 95.29 97.18 0.44 85% 85% Destroy [dead] thread

241.28 236.94 242.12 1.24 85% 14% Destroy [runnable] thread
378.55 370.35 427.06 13.86 85% 85% Resume [high priority] thread
198.77 183.76 452.94 18.77 96% 96% Thread switch

2.59 2.59 2.59 0.00 100% 100% Scheduler lock
41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [0 threads]
40.82 40.71 40.94 0.12 100% 50% Scheduler unlock [1 suspended]
41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [many suspended]

229

Appendix B. Real-time characterization

41.29 41.18 41.41 0.12 100% 50% Scheduler unlock [many low prio]

17.94 17.88 18.12 0.09 75% 75% Init mutex
68.71 68.71 68.71 0.00 100% 100% Lock [unlocked] mutex
72.10 72.00 73.41 0.15 96% 71% Unlock [locked] mutex
57.88 57.88 57.88 0.00 100% 100% Trylock [unlocked] mutex
52.24 52.24 52.24 0.00 100% 100% Trylock [locked] mutex
12.41 12.24 12.47 0.09 75% 25% Destroy mutex

427.06 427.06 427.06 0.00 100% 100% Unlock/Lock mutex

34.94 34.82 35.06 0.12 100% 50% Create mbox
0.76 0.71 0.94 0.09 75% 75% Peek [empty] mbox

75.29 75.29 75.29 0.00 100% 100% Put [first] mbox
1.24 1.18 1.41 0.09 75% 75% Peek [1 msg] mbox

75.76 75.76 75.76 0.00 100% 100% Put [second] mbox
0.76 0.71 0.94 0.09 75% 75% Peek [2 msgs] mbox

80.12 80.00 80.24 0.12 100% 50% Get [first] mbox
79.65 79.53 79.76 0.12 100% 50% Get [second] mbox
70.12 70.12 70.12 0.00 100% 100% Tryput [first] mbox
65.76 65.65 65.88 0.12 100% 50% Peek item [non-empty] mbox
78.00 77.88 78.12 0.12 100% 50% Tryget [non-empty] mbox
63.12 63.06 63.29 0.09 75% 75% Peek item [empty] mbox
67.82 67.76 68.00 0.09 75% 75% Tryget [empty] mbox

1.94 1.88 2.12 0.09 75% 75% Waiting to get mbox
1.47 1.41 1.65 0.09 75% 75% Waiting to put mbox

75.59 75.53 75.76 0.09 75% 75% Delete mbox
252.76 252.71 252.94 0.09 75% 75% Put/Get mbox

20.24 20.24 20.24 0.00 100% 100% Init semaphore
54.35 54.35 54.35 0.00 100% 100% Post [0] semaphore
66.59 66.59 66.59 0.00 100% 100% Wait [1] semaphore
52.24 52.24 52.24 0.00 100% 100% Trywait [0] semaphore
53.41 53.41 53.41 0.00 100% 100% Trywait [1] semaphore
10.65 10.59 10.82 0.09 75% 75% Peek semaphore
12.65 12.47 12.71 0.09 75% 25% Destroy semaphore

276.94 276.94 276.94 0.00 100% 100% Post/Wait semaphore

14.94 14.82 15.06 0.12 100% 50% Create counter
2.18 2.12 2.35 0.09 75% 75% Get counter value
3.06 3.06 3.06 0.00 100% 100% Set counter value

78.12 78.12 78.12 0.00 100% 100% Tick counter
13.82 13.65 13.88 0.09 75% 25% Delete counter

26.94 26.82 27.06 0.12 100% 50% Create alarm
104.18 104.00 104.24 0.09 75% 25% Initialize alarm

7.65 7.53 7.76 0.12 100% 50% Disable alarm
104.94 104.94 104.94 0.00 100% 100% Enable alarm

19.47 19.29 19.53 0.09 75% 25% Delete alarm
88.53 88.47 88.71 0.09 75% 75% Tick counter [1 alarm]

418.61 411.29 645.41 14.17 96% 96% Tick counter [many alarms]
139.59 139.53 139.76 0.09 75% 75% Tick & fire counter [1 alarm]

2150.21 2096.71 2367.53 83.59 78% 78% Tick & fire counters [>1 together]
478.15 462.35 733.41 29.61 93% 93% Tick & fire counters [>1 separately]
219.89 218.59 369.88 2.34 99% 99% Alarm latency [0 threads]

230

Appendix B. Real-time characterization

292.11 218.59 371.53 37.85 50% 25% Alarm latency [2 threads]
292.96 218.59 370.59 38.12 49% 25% Alarm latency [many threads]
540.90 495.76 1677.41 17.76 98% 0% Alarm -> thread resume latency

79.01 78.59 104.71 0.00 Clock/interrupt latency

123.41 85.88 1982.82 0.00 Clock DSR latency

522 516 536 (main stack: 1124) Thread stack used (1912 total)
All done, main stack : stack used 1124 size 2936
All done : Interrupt stack used 288 size 4096
All done : Idlethread stack used 488 size 2048

Timing complete - 32540 ms total

Board: NEC V850 Cosmo Evaluation Board
Board: NEC V850 Cosmo Evaluation Board

CPU: NEC CEB-V850/SB1 16MHz (in internal Flash)

Startup, main stack : stack used 572 size 2936
Startup : Interrupt stack used 132 size 4096
Startup : Idlethread stack used 210 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 8 ’ticks’ overhead
... this value will be factored out of all other measurements
Clock interrupt took 118.15 microseconds (472 raw clock ticks)

Testing parameters:
Clock samples: 32
Threads: 7
Thread switches: 128
Mutexes: 32
Mailboxes: 32
Semaphores: 32
Scheduler operations: 128
Counters: 32
Alarms: 32

Confidence
Ave Min Max Var Ave Min Function

====== ====== ====== ====== ========== ========
113.68 111.00 116.50 1.63 42% 28% Create thread

30.00 30.00 30.00 0.00 100% 100% Yield thread [all suspended]
29.57 29.50 29.75 0.10 71% 71% Suspend [suspended] thread
27.43 27.25 27.50 0.10 71% 28% Resume thread
34.11 34.00 34.25 0.12 57% 57% Set priority

231

Appendix B. Real-time characterization

1.57 1.50 1.75 0.10 71% 71% Get priority
72.96 72.75 73.00 0.06 85% 14% Kill [suspended] thread
30.00 30.00 30.00 0.00 100% 100% Yield [no other] thread
42.75 42.75 42.75 0.00 100% 100% Resume [suspended low prio] thread
27.00 27.00 27.00 0.00 100% 100% Resume [runnable low prio] thread
43.64 41.25 44.25 0.68 85% 14% Suspend [runnable] thread
30.00 30.00 30.00 0.00 100% 100% Yield [only low prio] thread
29.57 29.50 29.75 0.10 71% 71% Suspend [runnable->not runnable]
72.93 72.75 73.00 0.10 71% 28% Kill [runnable] thread
44.89 44.75 45.75 0.24 85% 85% Destroy [dead] thread

103.00 101.50 103.25 0.43 85% 14% Destroy [runnable] thread
175.21 171.50 197.50 6.37 85% 85% Resume [high priority] thread

84.11 79.50 197.25 1.77 98% 0% Thread switch

1.00 1.00 1.00 0.00 100% 100% Scheduler lock
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [0 threads]
20.00 20.00 20.00 0.00 100% 100% Scheduler unlock [1 suspended]
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [many suspended]
20.06 20.00 20.25 0.09 75% 75% Scheduler unlock [many low prio]

4.00 4.00 4.00 0.00 100% 100% Init mutex
33.00 33.00 33.00 0.00 100% 100% Lock [unlocked] mutex
36.77 36.75 37.25 0.03 96% 96% Unlock [locked] mutex
28.13 28.00 28.25 0.13 100% 50% Trylock [unlocked] mutex
25.13 25.00 25.25 0.13 100% 50% Trylock [locked] mutex

4.88 4.75 5.00 0.13 100% 50% Destroy mutex
187.00 187.00 187.00 0.00 100% 100% Unlock/Lock mutex

10.00 10.00 10.00 0.00 100% 100% Create mbox
0.69 0.50 0.75 0.09 75% 25% Peek [empty] mbox

34.75 34.75 34.75 0.00 100% 100% Put [first] mbox
0.69 0.50 0.75 0.09 75% 25% Peek [1 msg] mbox

35.00 35.00 35.00 0.00 100% 100% Put [second] mbox
0.69 0.50 0.75 0.09 75% 25% Peek [2 msgs] mbox

36.00 36.00 36.00 0.00 100% 100% Get [first] mbox
36.00 36.00 36.00 0.00 100% 100% Get [second] mbox
31.00 31.00 31.00 0.00 100% 100% Tryput [first] mbox
29.50 29.50 29.50 0.00 100% 100% Peek item [non-empty] mbox
35.25 35.25 35.25 0.00 100% 100% Tryget [non-empty] mbox
27.69 27.50 27.75 0.09 75% 25% Peek item [empty] mbox
31.06 31.00 31.25 0.09 75% 75% Tryget [empty] mbox

0.94 0.75 1.00 0.09 75% 25% Waiting to get mbox
0.94 0.75 1.00 0.09 75% 25% Waiting to put mbox

37.81 37.75 38.00 0.09 75% 75% Delete mbox
112.00 112.00 112.00 0.00 100% 100% Put/Get mbox

3.19 3.00 3.25 0.09 75% 25% Init semaphore
25.38 25.25 25.50 0.13 100% 50% Post [0] semaphore
32.63 32.50 32.75 0.13 100% 50% Wait [1] semaphore
24.25 24.25 24.25 0.00 100% 100% Trywait [0] semaphore
25.00 25.00 25.00 0.00 100% 100% Trywait [1] semaphore

4.00 4.00 4.00 0.00 100% 100% Peek semaphore
4.88 4.75 5.00 0.13 100% 50% Destroy semaphore

124.50 124.50 124.50 0.00 100% 100% Post/Wait semaphore

232

Appendix B. Real-time characterization

6.50 6.50 6.50 0.00 100% 100% Create counter
1.25 1.25 1.25 0.00 100% 100% Get counter value
1.44 1.25 1.50 0.09 75% 25% Set counter value

36.25 36.25 36.25 0.00 100% 100% Tick counter
5.25 5.25 5.25 0.00 100% 100% Delete counter

12.25 12.25 12.25 0.00 100% 100% Create alarm
49.13 49.00 49.25 0.13 100% 50% Initialize alarm

2.81 2.75 3.00 0.09 75% 75% Disable alarm
48.50 48.50 48.50 0.00 100% 100% Enable alarm

8.25 8.25 8.25 0.00 100% 100% Delete alarm
46.50 46.50 46.50 0.00 100% 100% Tick counter [1 alarm]

485.42 482.25 580.00 5.91 96% 96% Tick counter [many alarms]
64.00 64.00 64.00 0.00 100% 100% Tick & fire counter [1 alarm]

1109.76 1100.50 1198.00 16.53 90% 90% Tick & fire counters [>1 together]
505.85 502.00 621.00 7.20 96% 96% Tick & fire counters [>1 separately]

96.26 95.75 161.25 1.02 99% 99% Alarm latency [0 threads]
159.20 95.75 160.75 2.52 97% 0% Alarm latency [2 threads]
159.73 110.50 161.75 1.53 97% 0% Alarm latency [many threads]
218.45 211.25 445.75 3.55 97% 1% Alarm -> thread resume latency

28.24 25.25 43.25 0.00 Clock/interrupt latency

60.15 40.50 221.50 0.00 Clock DSR latency

472 424 572 (main stack: 1052) Thread stack used (1912 total)
All done, main stack : stack used 1052 size 2936
All done : Interrupt stack used 280 size 4096
All done : Idlethread stack used 516 size 2048

Timing complete - 30590 ms total

PASS:<Basic timing OK>
EXIT: <done>

233

Appendix B. Real-time characterization

234

Appendix C. GNU General Public License
Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

235

Appendix C. GNU General Public License

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

236

Appendix C. GNU General Public License

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete

237

Appendix C. GNU General Public License

machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further

238

Appendix C. GNU General Public License

restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

239

Appendix C. GNU General Public License

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

240

Appendix C. GNU General Public License

to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C)<year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

241

Appendix C. GNU General Public License

proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

242

	eCos User Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	I. Introduction
	Chapter 1. Key Features
	Chapter 2. eCos Overview
	Chapter 3. eCos Licence Overview
	Questions and answers
	Previous License

	Chapter 4. Notation and Conventions
	GDB and GCC Command Notation
	Directory and File System Conventions
	Version Conventions

	Chapter 5. Documentation Roadmap
	II. Installing eCos
	Chapter 6. System Requirements
	Chapter 7. Installation on Linux
	Chapter 8. Installation on Windows
	Chapter 9. Target Setup
	Connecting Via Serial Line
	Connecting Via Ethernet
	Using A Simulator Target
	Using A Synthetic Target

	III. Programming With eCos
	Chapter 10. Programming With eCos
	The Development Process
	eCos Configuration
	Integrity check of the eCos configuration
	Application Development Target Neutral Part
	Application Development Target Specific Part

	Chapter 11. Configuring and Building eCos from Source
	eCos Startup Configurations
	Configuration Tool on Windows and Linux Quick Start
	Ecosconfig on Windows and Linux Quick Start
	Selecting a Target

	Chapter 12. Running an eCos Test Case
	Using the Configuration Tool
	Using the command line
	Testing Filters

	Chapter 13. Building and Running Sample Applications
	eCos Hello World
	eCos hello world program listing

	A Sample Program with Two Threads
	eCos twothreaded program listing

	Chapter 14. More Features Clocks and Alarm Handlers
	A Sample Program with Alarms

	IV. The eCos Configuration Tool
	Chapter 15. Getting Started
	Introduction
	Invoking the eCos Configuration Tool
	On Linux
	On Windows

	The Component Repository
	eCos Configuration Tool Documents
	Configuration Save File
	Save the currently active document
	Open an existing document
	Open a document you have used recently
	Create a new blank document based on the Component Registry
	Save to a different file name

	Build and Install Trees

	Chapter 16. Getting Help
	Contextsensitive Help for Dialogs
	Contextsensitive Help for Other Windows
	Contextsensitive Help for Configuration Items
	Methods of Displaying HTML Help

	Chapter 17. Customization
	Window Placement
	Settings
	Settings: Display tab
	Labels
	Integer Items
	Font
	Miscellaneous

	Settings: Viewers tab
	View header files
	View documentation

	Chapter 18. Screen Layout
	Configuration Window
	Disabled items
	RightClicking

	Conflicts Window
	Output Window
	Properties Window
	Short Description Window

	Chapter 19. Updating the Configuration
	Adding and Removing Packages
	Platform Selection
	Using Templates
	Resolving conflicts
	Automatic resolution

	Chapter 20. Searching
	Chapter 21. Building
	Selecting Build Tools
	Selecting User Tools

	Chapter 22. Execution
	Properties
	Download Timeout
	Run time Timeout
	Connection
	Executables Tab
	Output Tab
	Summary Tab

	Chapter 23. Creating a Shell
	Keyboard Accelerators

	V. eCos Programming Concepts and Techniques
	Chapter 24. CDL Concepts
	About this chapter
	Background
	Configurations

	Component Repository
	Component Definition Language
	Packages
	Configuration Items
	Expressions
	Properties
	Inactive Items

	Conflicts
	Templates

	Chapter 25. The Component Repository and Working Directories
	Component Repository
	Purpose
	How is it modified?
	When is it edited manually?
	User Applications
	Examples of files in this hierarchy:

	Build Tree
	Purpose
	How is it modified?
	User applications
	Examples of files in this hierarchy

	Install Tree
	Purpose
	How is it modified?
	When is it edited manually?
	User applications
	Examples of files in this hierarchy

	Application Build Tree

	Chapter 26. Compiler and Linker Options
	Compiling a C Application
	Compiling a C++ Application

	Chapter 27. Debugging Techniques
	Tracing
	Kernel Instrumentation

	VI. Configuration and the Package Repository
	Chapter 28. Manual Configuration
	Directory Tree Structure
	Creating the Build Tree
	ecosconfig qualifiers
	ecosconfig commands

	Conflicts and constraints
	Building the System
	Packages
	Coarsegrained Configuration
	Finegrained Configuration
	Editing an eCos Savefile
	Header
	Toplevel Section
	Conflicts Section
	Data Section
	Tcl Syntax

	Editing the Sources
	Modifying the Memory Layout

	Chapter 29. Managing the Package Repository
	Package Installation
	Using the Administration Tool
	Using the command line

	Package Structure

	VII. Appendixes
	Appendix A. Target Setup
	MN10300 stdeval1 Hardware Setup
	MN10300 Architectural Simulator Setup
	AM33 STB Hardware Setup
	Use with GDB Stub ROM
	Use with the JTAG debugger
	Building the GDB stub ROM image

	TX39 Hardware Setup
	TX39 Architectural Simulator Setup
	TX49 Hardware Setup
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Installing GDB stubs into FLASH

	VR4300 Hardware Setup
	VRC4375 Hardware Setup
	Atlas/Malta Hardware Setup
	PowerPC Cogent Hardware Setup
	Installing the Stubs into ROM
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	PowerPC MBX860 Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM
	Installing the Stubs into FLASH
	Program FLASH

	PowerPC Architectural Simulator Setup
	SPARClite Hardware Setup
	Ethernet Setup
	BOOTP/DHCP service on Linux
	BOOTP/DHCP boot process

	Serial Setup

	SPARClite Architectural Simulator Setup
	ARM PID Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig
	Building the FLASH Tool with the eCos Configuration Tool
	Building the FLASH Tool with ecosconfig
	Prepare the Board for FLASH Programming
	Program the FLASH
	Programming the FLASH for bigendian mode

	Installing the Stubs into ROM

	ARM AEB1 Hardware Setup
	Overview
	Talking to the Board
	Downloading the Stubs via the Rom Menu
	Activating the GDB Stubs
	Building the GDB Stub FLASH ROM Images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig

	ARM Cogent CMA230 Hardware Setup
	Building the GDB Stub FLASH ROM images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig

	Cirrus Logic ARM EP7211 Development Board Hardware Setup
	Building programs for programming into FLASH
	Building the GDB Stub FLASH ROM images
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig
	Loading the ROM Image into Onboard Flash
	Building the Flash Downloader on Linux
	Developing eCos Programs with the ARM MultiICE

	Cirrus Logic ARM EP7212 Development Board Hardware Setup
	Cirrus Logic ARM EP7312 Development Board Hardware Setup
	90MHz Operation

	Cirrus Logic ARM EP7209 Development Board Hardware Setup
	Cirrus Logic ARM CLPS7111 Evaluation Board Hardware Setup
	StrongARM EBSA285 Hardware Setup
	Building the GDB Stub FLASH ROM images
	Building the GDB Stubs with the eCos Configuration Tool
	Building the GDB Stub ROMs with ecosconfig
	Loading the ROM Image into Onboard Flash
	Running your eCos Program Using GDB and the StubROM

	Compaq iPAQ PocketPC Hardware Setup
	SH3/EDK7708 Hardware Setup
	Installing the Stubs into FLASH
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	SH3/CQ7708 Hardware Setup
	Preparing the board
	eCos GDB Stubs
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Programming the stubs in EPROM/FLASH

	SH3/HS7729PCI Hardware Setup
	SH3/SE77x9 Hardware Setup
	SH4/CQ7750 Hardware Setup
	Preparing the board
	eCos GDB Stubs
	Preparing the GDB stubs
	Building the GDB stub image with the eCos Configuration Tool
	Building the GDB stub image with ecosconfig

	Programming the stubs in EPROM/FLASH

	SH4/SE7751 Hardware Setup
	NEC CEBV850/SA1 Hardware Setup
	Installing the Stubs into ROM
	Preparing the Binaries
	Building the ROM images with the eCos Configuration Tool
	Building the ROM images with ecosconfig

	Installing the Stubs into ROM or FLASH

	Debugging with the NEC V850 I.C.E.
	INITIAL SETUP
	BUILD PROCEDURES
	V850ICE.EXE EXECUTION
	V850ELFGDB EXECUTION
	MDI INTERFACE VS. GDB INTERFACE
	eCos THREAD DEBUGGING

	NEC CEBV850/SB1 Hardware Setup
	i386 PC Hardware Setup
	RedBoot Support
	Floppy Disk Support
	GRUB Bootloader Support
	Debugging FLOPPY and GRUB Applications

	i386/Linux Synthetic Target Setup
	Tools

	Appendix B. Realtime characterization
	Board: ARM AEB1 Revision B Evaluation Board
	Board: Atmel AT91/EB40
	Board: Intel StrongARM EBSA285 Evaluation Board
	Board: Cirrus Logic EDB71112 Development Board
	CPU : Cirrus Logic EP7211 73MHz
	CPU : Cirrus Logic EP7212 73MHz

	Board: ARM PID Evaluation Board
	CPU : ARM 7TDMI 20 MHz
	CPU : ARM 920T 20 MHz

	Board: Intel IQ80310 XScale Development Kit
	Board: Toshiba JMR3904 Evaluation Board
	Board: Toshiba REF 4955
	Board: Matsushita STDEVAL1 Board
	Board: Fujitsu SPARClite Evaluation Board
	Board: Cogent CMA MPC860 (PowerPC) Evaluation
	Board: NEC VR4373
	Board: Intel SA1110 (Assabet)
	Board: Intel SA1100 (Brutus)
	Board: Motorola MBX
	Board: Hitachi EDK7708
	Board: CQ CqREEK SH3 Evaluation Board (cq7708)
	Board: Hitachi HS7729PCI HS7729 SH3
	Board: Hitachi Solution Engine 7751 SH4 (se7751)
	Board: PC
	Board: NEC V850 Cosmo Evaluation Board
	Board: NEC V850 Cosmo Evaluation Board

	Appendix C. GNU General Public License

