
DeviceMaster® Ethernet Device Driver

This document describes the dmrts Ethernet device driver for eCos. The driver supports the Ethernet
controller built in to the Samsung KS32C5000A and S3C4510 ARM micro-controllers.

The driver provides two interfaces. The first interface is to the eCos network stack (IP/ARP/ICMP/etc.). This
interface is not visible to the application programmer. The normal BSD socket API is used at the application
level: socket(), ioctl(), send(), recv(), select(), close().

The second interface provided by the driver is a MAC layer interface that can be used to send and receive raw
Ethernet frames. This interface corresponds to raw or packet sockets on Linux and to the packet-filter API
under BSD.

The raw device interface implimented by the dmrts driver uses the standard eCos I/O device API. If you are
unfamiliar with the eCos I/O device API, see the eCos Reference Manual, Part IV: I/O Package (Device
Drivers).

dmrts Raw Frame API
The raw frame API consists of the five standard eCos system calls:

• cyg_io_lookup()
• cyg_io_read()
• cyg_io_write()
• cyg_io_get_config()
• cyg_io_set_config()

If you are unfamiliar with these calls please see the User API section of the eCos Reference Manual, Part IV:
I/O Package (Device Drivers).

Ethernet Frame Buffers
Internally, the Samsung Ethernet hardware and this driver use a pool of frame buffers. Each buffer can
contain exactly one Ethernet frame. If the user uses the standard cyg_io_read() and cyg_io_write() calls,
the allocation and deallocation of frame buffers is handled automatically and the programmer does not have
to be concerned with them. However, using the cyg_io_read() and cyg_io_write() calls will result in an
extra memory-to-memory copy operation when the data is copied to/from the Ethernet frame buffers.

In performance-critical situations it is possible to eliminate this copy operation by using the frame buffers in
the application code. To do this, the cyg_io_read() and cyg_io_write() calls are not used, and a set of calls
to the cyg_io_get_config() are used to:

• Allocate a frame buffer
• Send a frame buffer
• Receive a frame buffer
• Free a frame buffer

These four operations are described in more detail below.

The Ethernet frame buffer structure is declared in /net/etherio.h as the typedef tEthBuffer:

 //--
 // Buffer structure passed back and forth between userspace and
 // driver to avoid copying data.
 //
 // data is first so that we can typecast back/forth between BDMA
 // data buffer pointers and pointers to this struct. This means
 // that it’s important not to write off the end of the data area.

 #define MAX_ETH_FRAME_SIZE 1520

 typedef struct tEthBufferTag
dmrts Raw Frame API 1

2

 {
 unsigned char data[MAX_ETH_FRAME_SIZE+8];
 unsigned length;
 unsigned userData;
 struct tEthBufferTag *next;
 struct tEthBufferTag *prev;
 }tEthBuffer;

The length field is set by the driver for receive frames and must be set by the user for transmit
frames.

The user may use the userData, next, and prev fields as desired. The contents of those fields is
undefined when a buffer is passed to the user from the driver, and is ignored when a buffer is passed
from the user to the driver.

The data field in receive frames contains two bytes of initial padding plus two bytes of checksum
information. This is ostensibly done to improve efficiency of data handling -- the ethernet data
payload will start at a word boundary. It’s supposed to work without the padding. However, some
versions of the Samsung parts seemed to have problems without the padding, so it’s the default
configuration for the driver:

cyg_io_lookup()

The device name supported by the raw frame driver interface is /dev/reth0.

cyg_io_set_config()

The following keys are supported for the cyg_io_set_config() call:

CYG_IO_SET_CONFIG_ETHER_INFO

Sets the configuration of Ethernet driver. The configuration data is passed as a pointer to the
following structure.

typedef struct
{
 cyg_uint8 mac_address[6];
 cyg_uint16 protocol;
 cyg_uint32 flags;
} cyg_ether_info_t;

data byte Description

0-1 Padding (unused)
2-7 Dest Addr

8-13 Src Addr
14-15 Protocol/Length
16-N Data
Ethernet Frame Buffers

The fields are defined below

mac_address The Ethernet address to be configured into the Ethernet controller. If the standard
DeviceMaster boot loader is being used, it will have configured an Ethernet address and this
address will be present in this field when configuration data is read using the
cyg_io_get_config() call. To change the Ethernet address, change this field and pass the
structure back using the cyg_io_set_config() call.

protocol If non-zero, determines the Ethernet protocol number which will be received by the raw frame
I/O interface. Only frames received with this protocol number will be handled by the raw
frame API. Other frame types will either be passed to the eCos networking stack or
discarded. If set to 0xffff, all received frames will be handled by the raw frame API (no
frames will be passed to the eCos networking stack).

The default value of this field is 0: this means that no frames will be received by the raw
frame interface unless this field is changed.

Frames may be transmitted at any time with any protocol value regardless of the value of this
field.

flags Configuration flag bits:

CYG_ETHER_FLAGS_DISABLE_AUTONEG
Disable physical layer autonegotiation if manual onfiguration is supported by hardware
platform. Not supported by DeviceMaster RTS.

CYG_ETHER_FLAGS_DISABLE_100M
Disable 100Mbit operation -- forces 10Mbit operation if manual configuration is supported by
hardware platform. Not supported by DeviceMaster RTS.

CYG_ETHER_FLAGS_DISABLE_FULLDUPLEX
Disable full-duplex operation (forces half-duplex operation) if manual configuration is
supported by hardware platform. Not supported by DeviceMaster RTS.

CYG_ETHER_FLAGS_RD_NONBLOCK
Enable non-blocking read mode for the cyg_io_read() call and for the
CYG_IO_GET_CONFIG_ETHER_RECV_BUFFER operation.

CYG_ETHER_FLAGS_WR_NONBLOCK
Enable non-blocking write mode for the cyg_io_write() call and for the
CYG_IO_GET_CONFIG_ETHER_SEND_BUFFER operation.

CYG_ETHER_FLAGS_PROMISCUOUS
Place Ethernet controller in promiscuous receive mode. Not currently supported by this
driver.

cyg_io_read()

Transfers a received frame into the user buffer. The padding bytes mentioned in the Ethernet frame
description are discarded before the data is copied into the user buffer.

Reads may be blocking or non-blocking.

blocking The default state for the driver is blocking reads. When a call is made to cyg_io_read(), the
call will not return until a frame has been transferred to the user’s buffer. The call will wait
indefinitely for a frame to be received.

Each cyg_io_read() call will dequeue one received Ethernet frame. If the user data buffer is
not large enough to receive the entire frame, any extra data bytes are discarded.

non-blocking The call to cyg_io_read() will return immediately. If a received frame is available, it will be
transferred to the user’s buffer and the returned length will reflect the number of bytes
actually transferred. If no receive frame is available, no bytes will be transferred and the call
will return -EAGAIN.

cyg_io_write()

Writes may be blocking or non-blocking.

blocking The call to cyg_io_write() will return as soon as the requested data has been transferred to a
frame buffer and placed in the transmit queue. If there is insufficient room in the buffer, the
call will block indefinitely until room becomes available.
Ethernet Frame Buffers 3

4

Each call to cyg_io_write() will queue a single Ethernet frame for transmission. If
the data length is invalid (less than 14 or larger than 1540), an error status is
returned and no frame is queued.

non-blocking The call to cyg_io_write() will return immediately. If there was no room in the
trasmit queue (or if no frame buffers were available), the length will return 0, and the
status will return -EAGAIN.

cyg_io_get_config()

The following keys are supported for the cyg_io_get_config() call:

CYG_IO_GET_CONFIG_ETHER_INFO
Gets the current driver configuration -- see the set_config() section for a description of the
configuration data structure.
CYG_IO_GET_CONFIG_ETHER_LINK_STATUS
** Not supported by DeviceMaster RTS **
If physical link status is supported by the hardware platform, return the link status as an integer
composed of a bitwise "or" of the following flags:

CYG_ETHER_LINK_STATUS_UP Set if the link is up.
CYG_ETHER_LINK_STATUS_FULL_DUPLEX Set if the link is operating in full-

duplex mode.
CYG_ETHER_LINK_STATUS_100M Set if the link is operating in 100Mbit mode.

The four keys below all expect the "buf" parameter to be of the type *tEthBuffer, and the len
parameter is ignored.

CYG_IO_GET_CONFIG_ETHER_ALLOC_BUFFER
Allocates a frame buffer and writes a pointer to the address passed in the
cyg_io_get_config(). Frames allocated with this call must be deallocated by passing
them back to the driver with either the FREE_BUFFER key OR the SEND_BUFFER
key but not both.
CYG_IO_GET_CONFIG_ETHER_FREE_BUFFER
Frees a frame buffer that was obtained by the user via the ALLOC_BUFFER key or via
the RECV_BUFFER key. All frames obtained by the user by either method must be
deallocated via either the FREE_BUFFER or the SEND_BUFFER operations.
CYG_IO_GET_CONFIG_ETHER_SEND_BUFFER
Places the passed frame buffer in the transmit queue. The user must not modify the frame
buffer or perform a FREE_BUFFER operation on a frame buffer that has been placed in
the transmit queue using this operation.

The frame buffer will be automatically deallocated after it has been transmitted.

A SEND_BUFFER operation may be blocking or non-blocking.

If the driver is configured for blocking writes, the call will block indefinitely until there is
room in the transmit queue and the frame has been queued.

If the driver is configured for non-blocking writes and no room is available in the transmit
queue, the call will immediately return -EAGAIN. If that happens, the frame buffer is still
owned by the user and must either be sent again with the SEND_BUFFER operation or
deallocated using the FREE_BUFFER key.
CYG_IO_GET_CONFIG_ETHER_RECV_BUFFER
Returns a received frame buffer to the user by writing the address of the recieved frame to
the address passed in the cyg_io_get_config() call. Frames obtained in this manner must
be deallocated by passing them back to the driver with either the FREE_BUFFER key OR
the SEND_BUFFER key but not both.
Ethernet Frame Buffers

Receive frames contain two bytes of initial padding. This is done to improve efficiency of data handling --
the ethernet data payload will start at a word boundary:

A RECV_BUFFER operation may be blocking or non-blocking.
If the driver is configured for blocking reads, the call will block indefinitely until a received frame is
available.
If the driver is configured for non-blocking reads and no receive frames are available, the call will
immediately return -EAGAIN and no frame will be passed to the user.

Example Program
The sample program below echos data received with Ethernet protocol 0x5432. It demonstrates the usage of
both the regular cyg_io_read() and cyg_io_write() calls as well as the use of the Ethernet frame buffer
method that avoids an additional memory-to-memory copy operation in the driver.

 1 #include <cyg/kernel/kapi.h>

 2 #include <cyg/error/codes.h>

 3 #include <cyg/io/io.h>

 4 #include <net/etherio.h>

 5 #include <stdio.h>

 6 #include <stdlib.h>

 7 #include <network.h>

 8

The following is used to insure that output from different calls to diag_printf_m() don’t get interlaced in the
diag UART output data stream. The diag_printf() function is a very low level, busy-wait, non-buffered, non-
atomic output routine:

 9

 10 // Stuff to impliment atomic diagnostic message output

 11

 12 // printf routine that prints messages to KS32C5000 UART

 13 extern void diag_printf(const char *fmt, ...);

 14

 15 // atomic diag_printf operation -- only use in running tasks,

 16 // not in initialization code, DSR or ISR code.

 17

 18 #define UseDiagPrintfMutex 1

 19

 20 #if UseDiagPrintfMutex

 21 static cyg_mutex_t dpMutex;

 22 #define diag_printf_m(fmt, args...) \

 23 do { \

 24 cyg_mutex_lock(&dpMutex); \

 25 diag_printf(fmt, ##args); \

 26 cyg_mutex_unlock(&dpMutex); \

 27 } while (0)

Byte Description

0-1 Padding (unused)
2-7 Dest Addr
8-13 Src Addr

14-15 Protocol/Length
16-xx Data
Example Program 5

6

 28 #define diag_init() cyg_mutex_init(&dpMutex)

 29 #define diag_lock() cyg_mutex_lock(&dpMutex)

 30 #define diag_unlock() cyg_mutex_unlock(&dpMutex)

 31 #else

 32 #define diag_printf_m(fmt, args...) diag_printf(fmt, ##args)

 33 #define diag_init() /* noop */

 34 #define diag_lock() /* noop */

 35 #define diag_unlock() /* noop */

 36 #endif

 37

 38

 39 typedef unsigned char tStack[4096];

 40

We’re going to have two threads: one that echos data on the Ethernet interface, and another that
prints status messages once per second. Each thread needs a thread object, a thread handle, and a
stack:

 41 cyg_thread rawEchoThread, backgroundThread;

 42 tStack rawEchoStack, backgroundStack;

 43 cyg_handle_t rawEchoHandle, backgroundHandle;

 44 cyg_thread_entry_t rawEchoTask, backgroundTask;

 45

 46 // Here is where user execution starts

 47

 48 void cyg_user_start(void)

 49 {

 50 diag_printf("Entering cyg_user_start() function\n");

 51

 52 diag_init();

 53

Create the threads with cyg_thread_create() and mark them as runnable using the
cyg_thread_resume():

 54 cyg_thread_create(5, rawEchoTask, (cyg_addrword_t) -1,

 55 "raw echo thread", rawEchoStack, sizeof rawEchoStack,

 56 &rawEchoHandle,&rawEchoThread);

 57 cyg_thread_resume(rawEchoHandle);

 58

 59 cyg_thread_create(6, backgroundTask, (cyg_addrword_t) -1,

 60 "background thread", backgroundStack, sizeof backgroundStack,

 61 &backgroundHandle,&backgroundThread);

 62 cyg_thread_resume(backgroundHandle);

 63

 64 // returning from this function starts scheduler

 65 }

 66

 67 void done(void)

 68 {

 69 for (;;)

 70 ;

 71 }

 72
Example Program

 73 /* count of bytes echoed */

 74

 75 unsigned totalBytes;

 76

 77 #define UseCygIoReadWrite 1

 78

 79 #define protoNumber 0x5432

 80

 81 // this is a simple thread that echos data on a raw Ethernet

 82 // connection using the cyg_io_read() and cyg_io_write() calls

 83

 84 void rawEchoTask(cyg_addrword_t data)

 85 {

 86 Cyg_ErrNo status;

 87 cyg_io_handle_t ethHandle;

 88 cyg_ether_info_t ethConfig;

 89 cyg_uint32 len;

 90 unsigned short netorderProto = ntohs(protoNumber);

 91

 92 diag_printf_m("Beginning execution\n");

 93

Lookup the raw Ethernet device. It’s name is hard-wired into the driver -- and only a single device instance is
supported:

 94 status = cyg_io_lookup("/dev/reth0", ðHandle);

 95

 96 if (status != ENOERR)

 97 {

 98 diag_printf_m("ERROR, cyg_io_lookup returned %d: %s\n",status,strerror(status));

 99 done();

 100 }

 101

Get the current configuration. The bootloader will have already set the MAC address in the controller chip,
and the driver will have read that address from the chip when it was initialized.

 102 len = sizeof ethConfig;

 103 status = cyg_io_get_config(ethHandle, CYG_IO_GET_CONFIG_ETHER_INFO,
 ðConfig, &len);

 104

 105 if (status != ENOERR)

 106 {

 107 diag_printf_m("ERROR, cyg_io_get_config returned %d:
 %s\n",status,strerror(status));

 108 done();

 109 }
Example Program 7

8

 110

 111 diag_printf_m("MAC addr %02x:%02x:%02x:%02x:%02x:%02x\n",

 112 ethConfig.mac_address[0],

 113 ethConfig.mac_address[1],

 114 ethConfig.mac_address[2],

 115 ethConfig.mac_address[3],

 116 ethConfig.mac_address[4],

 117 ethConfig.mac_address[5]);

 118

Set the Ethernet protocol number for which we want to see frames, then write the configuration info
back:

 119 ethConfig.protocol = netorderProto;

 120

 121 len = sizeof ethConfig;

 122 status = cyg_io_set_config(ethHandle, CYG_IO_SET_CONFIG_ETHER_INFO,
 ðConfig, &len);

 123

 124 if (status != ENOERR)

 125 {

 126 diag_printf_m("ERROR, cyg_io_set_config returned %d:
 %s\n",status,strerror(status));

 127 done();

 128 }

 129

 130 #if UseCygIoReadWrite

 131

This for() loop uses the normal cyg_io_read() and cyg_io_write() calls. This is more in keeping
with other eCos driver usage, but it requires that the driver copy the data between the user buffers
and the driver’s internal frame buffers.

 132 for (;;)

 133 {

 134 static unsigned char rxBuf[2048];

 135 static unsigned char txBuf[2048];

 136

 137 len = sizeof rxBuf;

 138 status = cyg_io_read(ethHandle, rxBuf, &len);

 139

 140 // don’t forget data starts with 2 padding bytes

 141

 142 diag_printf_m("rx [%d]\n",len-2);

 143

 144 // blocking read shouldn’t return with len of 0, but

 145 // let’s check just the same

 146

 147 if (len == 0)

 148 continue;

 149

 150 len -= 2;

 151

 152 totalBytes += len;
Example Program

 153

 154 if (status != ENOERR)

 155 {

 156 diag_printf("ERROR, cyg_io_read returned %d: %s\n",status,strerror(status));

 157 done();

 158 }

 159

 160 // swap ethernet addresses around, and copy data to tx buffer

 161

 162 memcpy(txBuf+0, rxBuf+8, 6); // dst addr

 163 memcpy(txBuf+6, ethConfig.mac_address, 6); // src addr (ours)

 164 memcpy(txBuf+12, &netorderProto, 2); // proto

 165 memcpy(txBuf+14, rxBuf+16, len-14); // data

 166

 167

 168 status = cyg_io_write(ethHandle, txBuf, &len);

 169

 170 if (status != ENOERR)

 171 {

 172 diag_printf("ERROR, cyg_io_write returned %d: %s\n",status,strerror(status));

 173 done();

 174 }

 175

 176 diag_printf_m("tx [%d]\n",len);

 177 }

 178

 179 #else

 180

 181 #define allocPacket(h,b)
 cyg_io_get_config(h,CYG_IO_GET_CONFIG_ETHER_ALLOC_BUFFER,b,NULL)

 182 #define getRxPacket(h,b)
 cyg_io_get_config(h,CYG_IO_GET_CONFIG_ETHER_RECV_BUFFER,b,NULL)

 183 #define freePacket(h,b)
 cyg_io_get_config(h,CYG_IO_GET_CONFIG_ETHER_FREE_BUFFER,b,NULL)

 184 #define sendPacket(h,b)
 cyg_io_get_config(h,CYG_IO_GET_CONFIG_ETHER_SEND_BUFFER,b,NULL)

 185

This for() loop uses the driver’s Ethernet frame buffers instead of having the data copied to/from user buffer
space.

Notice that when passing a frame *to* the driver (to send or free the frame) you pass a pointer to the frame.
When receiving a frame *from* the driver (receive or allocate) you pass a the address of the pointer where
you want the frame address stored.

 186 for (;;)

 187 {

 188 tEthBuffer *frame;

 189 int i;

 190

 191 status = getRxPacket(ethHandle,&frame);

 192

 193 if (status != ENOERR)
Example Program 9

10
 194 {

 195 diag_printf("ERROR, get packet returned %d:
 %s\n",status,strerror(status));

 196 done();

 197 }

 198

 199 if (frame->length < 16)

 200 continue;

 201

 202 frame->length -= 2; // subtract 2 for padding,
 real data starts at frame->data+2

 203

 204 diag_printf_m("rx [%d]\n",frame->length);

 205

 206 totalBytes += frame->length;

 207

 208 memcpy(frame->data+0, frame->data+8, 6); // dst addr

 209 memcpy(frame->data+6, ethConfig.mac_address, 6); // src addr (ours)

 210 memcpy(frame->data+12, &netorderProto, 2); // proto

 211 // don’t want to depend on overlapping memcpy() for moving data

 212 for (i=14; i<frame->length; ++i)

 213 frame->data[i] = frame->data[i+2];

 214

 215 status = sendPacket(ethHandle,frame);

 216

 217 if (status != ENOERR)

 218 {

 219 diag_printf("ERROR, sendPacket returned %d:
 %s\n",status,strerror(status));

 220 done();

 221 }

 222

Note that we re-used the rx frame as the tx frame. That way we avoid having to free the rx frame
and alloc a tx frame.

 223 diag_printf_m("tx [%d]\n",frame->length);

 224 }

 225 #endif

 226 }

 227

 228

 229 // idle thread loop count provided by eCos

 230 extern volatile unsigned idle_thread_loops;

 231

 232 void backgroundTask(cyg_addrword_t data)

 233 {

 234 unsigned lastIdleThreadLoops, thisIdleThreadLoops;

 235

 236 lastIdleThreadLoops = idle_thread_loops;

 237
Example Program

 238 while (1)

 239 {

 240 cyg_thread_delay(100); // 1 second

 241 thisIdleThreadLoops = idle_thread_loops;

 242

 243 diag_lock();

 244 diag_printf("Bytes transfered: %d ",totalBytes);

 245 diag_printf(" -- Idle Loops/Sec: %d\n",
 thisIdleThreadLoops - lastIdleThreadLoops);

 246 diag_unlock();

 247

 248 lastIdleThreadLoops = thisIdleThreadLoops;

 249 }

 250 }

Trademark Notices

Comtrol and DeviceMaster are trademarks of Comtrol Corporation. Other product names mentioned herein
may be trademarks and/or registered trademarks of their respective owners.

Second Edition, June 17, 2004
Copyright © 2001 - 2004. Comtrol Corporation.
All Rights Reserved.

Comtrol Corporation makes no representations or warranties with regard to the contents of this document or
to the suitability of the Comtrol product for any particular purpose. Specifications subject to change without
notice. Some software or features may not be available at the time of publication. Contact your reseller for
current product information.

Document Number: 2000240 Rev. B
Example Program 11

	dmrts Raw Frame API
	Ethernet Frame Buffers
	Example Program

