V S DeviceMaster®
‘v—='—_"""""= RO SocketServer Extension Guide
Introduction

This document describes how to add functionality to the example SocketServer application. It does not
describe the internal workings of all of the parts of SocketServer, but it does describe how the makefile and the
directory structure work and how to add functionality in a modular fashion.

Overview

SocketServer is organized in two levels: The main directory/makefile and a set of subdirectories, each with it’s
own makefile. The main directory contains some global initialization functions that performs the following
functions:

¢ Read configuration data from I2C EPROM.
¢ Initialize the network stack.
¢ (Call module initialization entry points.

All of the other functionality (e.g. web server, socket server, SNMP, telnet server) are provided by modules in
subdirectories. This make it easy to add/remove functional modules from the build. It also make it easy to
build multiple target images that include different combinations of modules. In the sample source tree
provided, the modules are:

e snmp: starts the SNMP server included with eCos
e SocketServer: provides the socket-server functionality.

e webserv: starts the GoAhead web server and provides web support functions (entry points for JavaScript
programming and forms handling functions). Also implements framework for telnet server.

e webpages: provides the ROM-image of the web pages.
e admin: Network interface for Comtrol administration tools.
e myextension: example extension that echoes data on Port 0.

In order to reduce the modifications needed to the GoAhead distribution, it is built as a library and the
resulting library is linked in. It does not follow the conventions that the other modules do.

Module Conventions
Linkage

Each module is contained in a subdirectory. That subdirectory contains a makefile that is invoked from the
main makefile. Doing a make directly in a subdirectory may not work since some makefile variables (CFLAGS,
CC, etc.) are passed from the main makefile. The module makefile compiles the appropriate source files and
links them together into a single object file named app.o. This file is then linked in by the main makefile.

Introduction 1

Entry Points

Each module may provide two initialization entry points. One is called before the eCos scheduler is started
from the cyg_user_start() function. The other is called after the eCos scheduler is started and network stack
initialization has completed. These two entry points are placed into special linker sections using the macros
defined in dm.h. Example usage of these macros is shown below:

static void nylnitO(void)

/1 runs before schedul er has started, so not all eCos system
[/l calls are avail abl e.

[---]
}

Devi ceMast er _i nitO(nylnit0, 1000);
static void nylnitl(void)
/1 systemis up and running

[...
}
Devi ceMaster _init1(nylnitl, 1000);
A module may provider either one or both of these entry points.

Both of these initialization functions must return to the caller. The initialization routines for all modules are
called one at a time in a sequence determined by the lexicographical order of the macro’s second parameter.
This is by convention a 4-digit decimal number: 0000 is first, and 9999 is last.

You may create and initialize eCos threads in either of the initialization functions.

Note that the functions do not need to be globally visible (and generally should not be). It is a good idea to
limit the lexical scope of everything in your modules as much as possible. If you must make symbols globally
visible, prefix them with a unique module name to avoid name-space conflicts with the global symbols in
other modules.

It should be possible to isolate a module’s namespace from the rest of the program. For example, a module
might consist of multiple source files that need to share global data, but that global data must not be visible
to other modules. This can be done using a more elaborate linker command in the module makefile where
app.ois created. It is possible to tell the linker to eliminate all completely resolved symbols from the resulting
file except for a specific list of global symbols that are to remain visible. If you need to do this, see the GNU
Using 1d manual for more information.

System Resources

Serial Ports
The DeviceMaster serial ports may be accessed through facilities declared in the file dm.h:
typedef struct
{
cyg_sem<t ownership;

cyg_i o_handl e_t handl e;
}t DevMast Port ;

t DeviMast Port devMast Port[];

The global array devM astPort contains I/0 handles and ownership semaphores for each of the serial ports. You
should always perform a wait operation on the semaphore to acquire ownership of the port before accessing a
serial port. When you wish to release ownership, do a post operation on the semaphore.

#defi ne DevMast RsMbde_232 0x00
#defi ne DevMast RsMbde 232| 0x18
#defi ne DevMast RsMbde_422 0x08
#defi ne DeviMast RshMbde_485 0x10

extern void devMast Set Port Mode(int port,int node);

The function devM astSetPortM ode() is used to set the electrical interface mode on a port. This is a write-only
operation and there is no way to query the current interface mode.

System Resources 2

Configuration Data

The ident structure defined by ident.h will contain various configuration data that were read from the I12C
EPROM:

t ypedef struct
{

unsi gned | ong nodel | d;

unsi gned short progran d;

unsi gned char archl d;

unsi gned | ong boar dRev;

unsi gned char nunPorts;

unsi gned char ver si onMpj or;

unsi gned char ver si onM nor ;

unsi gned | ong i pAddr ;

unsi gned | ong net Mask;

unsi gned | ong gat eway;

unsi gned char macAddr [6] ;

unsi gned char passwor d[16] ;

unsi gned char aut hMet hod;

unsi gned char t el net Enabl e;

unsi gned char ti meout Val ue;

unsi gned char t el net Ti neout ;
} tldent;

extern tldent ident;
These values are written to the I2C EPROM by the bootloader.

Adding a Module
Adding a module requires two steps:

1. Create a subdirectory containing source files and a Makefile. For your module’s M akefile, it’s generally
easiest to copy a Makefile from another module and modify it as required.

2. Edit the main Makefilein two places.

First, add the subdirectory to the SUBDIRS variable:
SUBDIRS = snmp socketServer webserv webpages admin myextension
Second, add the app.o object file to the SOCK APPS variable:

SOCKAPPS = snmp/app.o socketServer/app.o admin/app.o webser v/app.o \ webpages/app.o goahead/ECOS/
libwebs.a myextension/app.o

Example Module

The myextension subdirectory contains a simple module example. The module will acquire ownership of serial

Port 0, configure the port for RS-232 operation at 9600 baud, and then echo data received on that port.
The myextension subdirectory contains the module’s Makefile and a single source file, task.c.
The M akefile looks like this:

all: app.o

SRCS = task.c

%o %c
$(XCC) -c -0 $@ $(CFLAGS) $(! NCLUDES) $(DEFINES) $<

app.o: task.o
$(XLD) -i -0 $@$"

cl ean:
rm-f *.0 *~ *.Ist *.map \#*\# *.bin *.elf10 core *.bak .*~

depend:
gcc -M $(1 NCLUDES) $(DEFI NES) $(SRCS) >.srcdeps

i nclude . srcdeps

The values for the XCC, XLD, CFLAGS, INCLUDES, DEFINES variables are passed from the parent make, so

you don not have to worry about defining them in module makefile. If you add source files, you should add
them to the SRCSvariable definition and corresponding object files to the dependency list for app.o.

System Resources

The source file for the module itself looks like this:

#i ncl ude <cyg/ hal / hal _cache. h>
#i ncl ude <cyg/ hal / hal _tabl es. h>
#i ncl ude <cyg/ kernel / kapi . h>
#i ncl ude <cyg/ error/codes. h>
#i ncl ude <cyg/iolio.h>

#i ncl ude <cyg/iol/serialio.h>
#i ncl ude <cyg/io/file.h>

#i ncl ude <net/etherio. h>

#i ncl ude <stdlib. h>

#i ncl ude <network. h>

#i ncl ude <stdi o. h>

#i ncl ude <errno. h>

#include "../dm h"
#include "../ident.h"

extern int select(int, fd_ set *, fd_set *, fd_set *, struct tineval *tv);

extern int cyg select_with_abort(int, fd_set *, fd_set *, fd_set *, struct timeval *tv);
extern void cyg_sel ect _abort(void);

extern int close(int);

/ prmspu e === === - prse e

/
/1 A sanple extenstion to DM Socket Server
/ — —

| ======== ==== —————=———-——————-——-——————————=——=—=—=======

/1 Notice that this file exposes no synbol nanes. Everything is static.

/1 product IDinfo (we don't use it in this nmodule, but you might want to
extern tldent ident;

/1 state for our extension threads -- we're only going to have
/1 two, but you can have nore if you like.

static cyg thread_entry_t echoTask;
static unsigned char echoStack[4096];
static cyg _handle_t echoHandl e;
static cyg_thread echoThr ead,;
static cyg thread _entry_t bgTask;
static unsigned char bgStack[4096];
static cyg_handl e_t bgHandl e;

static cyg_thread bgThr ead;

/1 global flag set by TCP/IP stack init routine, in case you
/1 want to know whether TCP/IP network is up or not

extern int TcpStackCk;

/! declare the functions that run as tasks

Note that the diag_printf() function is a non-blocking, busy-wait serial output routine. If it is called
simultaneously from multiple threads, the output data stream may be interleaved. This is may seem

inconvenient, but it means that it can be called from anywhere. Attempting to make it an atomic operation

would restrict it’s use to threads that run after the scheduler has started.

/1 diag printf routine that prints nmessages to internal UART
extern void diag_printf(const char *fnt, ...);

System Resources

Since the following routine is called before the scheduler is running, you can not use all of the available kernel
API calls. In general, calls to create or initialize kernel objects are okay. Calls that might block probably are
not.

/1 initialization routine called before scheduler is running
static void extensionlnitO(void)

diag_printf("ExtensionlnitO()\n");
cyg_thread_create(8, echoTask, (cyg_addrword_t)0, "Extension - Echo",
(void *)echoSt ack,
si zeof echoSt ack,
&echoHandl e,
&echoThr ead) ;
cyg_t hread_r esunme(echoHandl e);

cyg_thread_create(8, bgTask, (cyg_addrword_t)0, "Extension - Bg",
(void *)bgStack,
si zeof bgSt ack,
&bgHandl e,
&bgThr ead) ;
cyg_thread_resune(bgHandl e) ;

The following routine is called after the scheduler is running and the network has been initialized. You can
use any of the eCos kernel API calls -- however, remember that there may be other modules whose initl
routines are waiting to be called. Init routines are called one at a time, and if you block in this routine it may
prevent or delay other modules’ initialization.

/1 initialization routine called after scheduler is running
/1 and network initialization has conpleted (either with
/'l success or failure)

static void extensionlnitl(void)

{

diag_printf("extensionlnitl()\n");
diag_printf("TCP stack OK = %\ n", TcpSt ackCK) ;

}

/1 Put pointers to init routines into init tables using |inker
/1 trick. They will get called by main.c. Notice that the

/1 functions do _not_ need to be globally visible.

Devi ceMast er _i ni t O(ext ensi onl nit0, 9999) ;

Devi ceMaster _i nit1(extensionlnitl, 9999);

/'l somepl ace to go when we decide to give up
static void done(void)

diag_printf("extensi on done!\n");
while (1)
cyg_t hread_del ay(100);
}

/1 count of bytes echoed

static unsigned total Bytes;

Here is the function that runs as it’s own thread. You can block all you want in this routine and it will not
stop anybody else from running.

/1 this is a sinple thread that echos data on a serial port

static void echoTask(cyg_addrword_t data)
{

unsi gned char buf[512];

cyg_uint32 |en;

Cyg_ErrNo status;

cyg_i o_handl e_t ioHandl e;

cyg_serial _info_t serConfig;

System Resources 5

di ag_printf("echoTask Begi nni ng execution\n");

/1 acquire ownership of port

cyg_senmaphore_wai t (&levMast Port [0] . owner shi p) ;

/'l The socket server code may be currently bl ocked in

/'l select(), and to be polite, we should wake it up so that
/1 it can shut down |istening sockets if it wants to.

cyg_sel ect _abort();

diag_printf("echoTask acquired port 0\n");
/1 configure port
i oHandl e = devMast Port[0]. handl e;

Il en = sizeof serConfig;
status = cyg_io_get_config(ioHandl e, CYG IO GET_CONFI G_SERI AL_I NFO, &serConfig, & en);

if (status != ENCERR)
{
diag_printf("ERROR cyg_io_get_config returned %: 9%\n",status,strerror(status));
done();

serConfig.flags & ~CYG_SERI AL_FLAGS_RTSCTS;
serConfig.flags & ~CYG_SERI AL_FLAGS XONXOFF_RXFLOW
serConfig.flags & ~CYG_SERI AL_FLAGS XONXOFF_TXFLOW
serConfig.flags = CYG_SERI AL_FLAGS_RD_SEM BLOCK;

ser Confi g. baud = 9600;

serConfig.stop = CYGNUM_SERI AL_STOP_1;
serConfig.parity = CYGNUM SERI AL_PARI TY_NONE;
serConfig.word_| ength = CYGNUM SERI AL_WORD LENGTH_8;

Il en = sizeof serConfig;
status = cyg_io_set_config(ioHandl e, CYG IO SET_CONFI G_SERI AL_I NFO, &serConfig, & en);

if (status != ENCERR)
{
diag_printf("ERROR cyg_io_get_config returned %: 9%\n",status,strerror(status));
done();
/1 set port interface node to RS-232
devMast Set Por t Mode(0, DeviMast RsMode_232) ;

System Resources

Notice that the following loop never exits. If something goes wrong and it decides to go belly-up it just calls
done(), which prints a message and then goes into a delay loop.

/1l echo data
for (;3)
{

|l en = sizeof buf;
status = cyg_io_read(i oHandl e, buf, & en);

/1 diag_printf("%l[%]\n", port Num | en);

/1 sem -bl ocking read shouldn’t return with len of O,
/1 but let’s check just the sane

if (len == 0)
conti nue;

total Bytes += |en;

if (status != ENCERR && status != -EAGAIN)

{
diag_printf("ERROR, cyg_io_read returned %d: %\n",status,strerror(status));

done() ;

status = cyg_io_wite(ioHandl e, buf, & en);

if (status != ENCERR)

{
diag_printf("ERROR, cyg_io wite returned %d: 9%\n",status,strerror(status));

done() ;

A second thread that does nothing but print a message once per second that says how may bytes we have
echoed.

static void bgTask(cyg_addrword_t data)

cyg_thread_del ay(300); // wait a while...
di ag_printf("Extensi on background task running\n");
while (1)

cyg_thread_del ay(100); // 1 second del ay
diag_printf("Bytes transfered: %\ n",total Bytes);

Modifying the SocketServer Data Stream

This section is for users wish to use the SocketServer application more-or-less as-is but wish to add code to
process the serial data stream as it goes by.

Each port has a two threads associated with it. One thread handles data being transferred from the network
to the serial port, and other handles data flowing in the other direction. Both of these routines are in the file
socketSer ver /server.c.

These functions are instantiated as tasks once for each serial port on the system. Each instance receives a
parameter pointing to a status structure that contains pertinent instance data: tServer State structure. Each
pair of the instances of the data transfer functions has a private copy that pertains to their serial port.

The transmit and receive functions for port N share an instance structure, but that structure is unique to Port
N (and thus to that pair of transmit and receive function instances).

Modifying the SocketServer Data Stream 7

Some fields of interest in that structure are:
State
State of this port. If it’s ServerBusy, then we're supposed to be transferring any data we get data.
server Number
Which port number we are attached to: 0-N socket. The TCP socket associated with the serial port.
idleTimer
An idle-timout counter that is incremented once per second by somebody else.
rxCount
Count of data bytes transferred from the network socket.
txCount
Count of data bytes transferred from the serial port

Receive Data
The function that handles data being transferred from the network to the serial port is called TcpRxTask():

/*
* Tcp receive task: transfer data from socket to serial port
*/

static void TcpRxTask(cyg_addrword_t data)

int n;

char rxDat aBuf [1024];

char *p;

Cyg_ErrNo status;

tServerState *s = (tServer State*)data;
static int rxByes;

The pointer "s' above, is a pointer to the instance structure we describe previously.

while (1)
while (s->state == Server Busy)

/1 transfer data from TCP to serial port.

n = read(s->socket, rxDataBuf, sizeof rxDataBuf);
rxBytes t=n;

rw_diag_printf_m("TcpRx%: rd %\ n", s->serverNunber, n);

if (s->state != ServerBusy)
br eak;

if (n==0)

/1 Connection is gone
diag_printf_m"TcpRx%: connection closed\n", s->server Nunber) ;
s->state = Serverd osi ng;

rxBytes =0

el ée i f (n<0)

/'l read() error

diag_printf_m"TcpRx%: read(%l)==% error: %l\n",s->serverNunber,
s->socket, n, errno);

s->state = Serverd osi ng;

el se
/1 wite data to serial port

s->idl eTimer = 0;
s->rxCount += n;

Modifying the SocketServer Data Stream

At this point, we have received data from the network, but have yet to send it out the serial port. There are

"n" bytes of data in rxDataBuf. If you want to do something to the data, here is the place to do it.

p = rxDat aBuf;
whil e (n>0)
{
cyg uint32 len = n;
status = cyg_io wite(s->serial Handl e, p, & en);
rw diag printf_m"TcpRx%: w %\ n", s->serverNunber, |en);
if (status == -EINTR)
break; //somebody aborted the read/wite
if (status != ENCERR)
{
diag_printf_nm("TcpRx%d: error witing to serial port: %:
s->server Nunber, status, strerror(status));
cyg_t hread_del ay(20);
}
n-=1len
p += len;
}

}
}
diag_printf_m("TcpRx%d: waiting on semaphore\n", s->serverNunber);

cyg_senaphor e_wai t (&s- >socket Semaphore) ;
diag_printf_n{"TcpRx%: awake socket=%\n", s->serverNunber, s->socket);

}

Transmit Data

The second function which transfers data in the other direction (serial port -> TCP) is TcpTxTask(). It is
significantly more complicated than the above function because it also contains the logic to start up and shut

down the connection between a serial port and a TCP socket.
/*
* Tcp transmit task: transfers data fromserial port to Tcp connection.
*/
static void TcpTxTask(cyg_addrword_t data)
{
tServerState *s = (tServerState*) data,;
unsi gned char txDat aBuf[1024];
unsi gned txBuf Count = O;
unsi gned char *p;
cyg_uint32 |en;
Cyg_ErrNo st at us;
int senval ;
int n;
unsi gned | oops=0;
static int txBytes;

/'l stagger thread start-up just for fun
cyg_thread_del ay(11*s->server Nunber);
diag_printf_m"TcpTx%d started\n", s->serverNunber) ;
t xDat aBuf = mal | oc(TxBuf Si ze) ;
i f (!txDataBuf);
diag_printf(“ACK! malloc failed: % %\n", _FILE , _LINE);

return;

}

whi | e(1)
I/ delay for a bit -- so that we don’t swanp the net with tiny packets.
++| oops;

cyg_t hread_del ay(5);

Modifying the SocketServer Data Stream

Reducing the delay value above will reduce data latency but increase network and processor overhead by
sending smaller, more frequent packets out onto the network.

Most of the stuff in the if() statement below is deciding whether or not we need to initiate a TCP connection.

if (s->config.enabled & s->state == Serverldle)

/* check to see if we should initiate a connection */
int initiate = 0;

cyg_senmaphor e_peek(s- >owner shi p, &senval);
if (senval)

if (s->configUpdated)
initSerial Port(s->serverNunber);

if (s->config.connect Al ways)
initiate = 1;

if (s->config.connectOnDat a)

cyg_serial _buf_info_t serbufinfo;
I en = sizeof serbufinfo;
status = cyg_i o_get_config(s->serial Handl e,
CYG_| O GET_CONFI G_SERI AL_BUFFER _| NFQ,
&serbufinfo, & en);
/1diag_printf("TcpTx%l rx_count =%\ n", s- >server Number, serbufinfo.rx_count);
if (status != ENCERR)
diag_printf("TcpTx% serial get buffer info error %\ n",
s->server Nunber, status);
else if (serbufinfo.rx_count)
initiate = 1;

if (s->config.connectOnCD || s->config.connect ONDSR)

int ner;
|l en = sizeof nsr;
status = cyg_i o_get_config(s->serial Handl e, CYG_| O_GET_CONFI G_SERI AL_ MODEM
&nsr, &l en);
if ((loops¥%0) ==
diag_printf("TcpTx%l serial get nbdemstatus %94x\ n", s->server Nunber, nsr);
if (status != ENCERR)
diag_printf("TcpTx% serial get nmobdem status error %\ n",
s->server Nunber, status);
else if (((nmsr & CYG SERI AL_MODEM CD) && s->config.connectOnCD) ||
((nmer & CYG_SERI AL_MODEM DSR) && s->confi g. connect OnDSR))
initiate = 1;

) }
Here's where we initiate a connection if we have deci ded we want to.
if (initiate)
{
int sock;

struct sockaddr_in dest;

nenset (&dest, 0, sizeof(dest));

dest.sin_fam|ly = AF_I NET;

dest.sin_port = htons(s->config.connectToPort);
dest. sin_addr.s_addr = htonl (s->config.connectTol P);

sock = socket (PF_I NET, SOCK_STREAM 0);
if (sock < 0)
{

diag_printf("TcpTx%l: socket() failed: %\ n",s->serverNunber, errno);
cyg_t hread_del ay(100);
conti nue;

}

Modifying the SocketServer Data Stream 10

if (connect(sock, (struct sockaddr *)&dest, sizeof dest) < 0)

diag_printf("TcpTx%l: connect() failed: %\ n",s->serverNunber, errno);
cl ose(sock);

cyg_t hread_del ay(100);

conti nue;

}
diag_printf("TcpTx%l: initiating\n",s->serverNunber);

cyg_mut ex_l ock(&s- >server Mut ex) ;

if (s->state == Serverldle & cyg _senmaphore_trywait (s->ownership))
connectionUp(s, sock, s->config.connectTol P, s->confi g.connect ToPort, 0, 0);
el se

diag_printf("TcpTx%: acquire failure -- closing
%\ n", s- >server Nunber, sock) ;
cl ose(sock);

cyg_nut ex_unl ock(&- >server Mit ex) ;

}

Now we're going to decide if we need to shut down an existing connection.

if (s->state == ServerBusy && s->config.di sconnOnldle &&
(s->idleTiner > s->config.idleTineout))

diag_printf("TcpTx%l: idle timeout\n",s->serverNunber);
s->state = Serverd osi ng;

}
if (s->state == ServerBusy && (s->config.di sconnOnNoCD || s->config.di sconnOnNoDSR))
{

int ner;
len = sizeof nsr;
status = cyg_i o_get_config(s->serial Handl e, CYG_| O GET_CONFI G_SERI AL_MODEM
&msr, & en);
#if 0
if ((loops¥%0) == 0)
diag_printf("TcpTx%l serial get npdem status %94x\n",s->server Nunber, nsr);
#endi f
if (status != ENCERR)
diag_printf("TcpTx%l serial get nodem status error %\ n",
s->server Nunber, status);
else if (((~nmsr & CYG SERI AL_MODEM CD) && s->config.di sconnOnNoCD) ||
((~m8r & CYG_SERI AL_MODEM DSR) && s->confi g.di sconnOnNoDSR))
s->state = Serverd osi ng;

}
if (s->state==ServerBusy && Socket| sd osed(s->socket))

diag_printf("TcpTx%l: socket closed by renote host\n", s->serverNunber);
s->state = Serverd osi ng;

}
if (s->state == ServerBusy && !s->config. enabl ed)
s->state = Serverd osing;

Modifying the SocketServer Data Stream 11

And here is where we actually shut down the connection.
if (s->state==Serverd osing)

cyg_nut ex_I| ock(&s->server Mut ex) ;

diag_printf("TcpTx%l: closing %\ n", s->serverNunber, s->socket);

cl ose(s->socket);

s->socket = -1;
s->loclP = 0O;
s->l ocPort = 0;
s->em P = 0;
s->renPort = 0;

s->idl eTinmer = 0;
s->state = Serverldle;

cyg_io_get_config(s->serial Handl e, CYG | O GET_CONFI G SERI AL_| NPUT_FLUSH, NULL,

0);

cyg_i o_get _config(s->serial Handl e, CYG | 0O GET_CONFI G SERI AL_OUTPUT FLUSH, NULL, 0);

if (s->config.dtrControl == DTRon)
portDtr(s->serial Handl e, 1) ;

el se
portDtr(s->serial Handl e, 0) ;

cyg_rut ex_unl ock(&s- >ser ver Mit ex) ;

cyg_senmaphor e_post (s- >owner shi p) ;

cyg_sel ect _abort(); // wake up the accept task

}

/!l read data fromserial port and shove into TCP
/1 connection until there is none |eft

whi | e (s->state==ServerBusy && s->config. enabl ed)

{
if (s->configUpdated)
initSerial Port(s->serverNunber);

I en = TxBuf Si ze - txBuf Count;
status = cyg_i o_read(s->serial Handl e, txDataBuf, & en);

if (status != ENCERR &&
status != - EAGAI N &&
status != -EEOL &&
status != -ETI MDOUT &&
status ! = - El NTERCHARTI MEQUT)
{

diag _printf_m“TcpTx%: cyg_io_read of %08x returned %: %s\n",
s->server Nunber, s->serial Handl e, status,

cyg_t hread_del ay(10);
}

if (status ==-EAGAIN && | en ==
br eak;

if (len)

rw diag printf_m“TcpTx5d: rd % (%)\n", s->serverNunber,

t xBuf Count += | en;
s->t xCount += | en;

strerror(-status));

status);

At this point we’ve read some data from the serial port but have not written it to the TCP socket. There are

len bytes of data in txDataBuf. If you want to manipulate the data stream, this is the place to do it.

s->idl eTinmer = 0;

/1 1f we're waiting for I C Timeout and tined
/1 out waiting for one, then | eave data in buffer.
if (status == -ETI MEDOUT)
br eak;
p = txDat aBuf;
whi | e (txBuf Count)

n = wite(s->socket,p,len);

Modifying the SocketServer Data Stream

12

if (n<0)

diag_printf_nm("TcpTx%: wite() returned %: %\n",
s->server Nunber, n,strerror(n));

if (s->state == ServerBusy)
s->state = Serverd osi ng;
br eak;

txBytes += n;
rw diag_printf_n(“TcpTx%: w %l total %l\n”, s->serverNunber, n, txBytes);

p +=n;
t xBuf Count -= n;
}
}
}
GoAhead Web Server

The SocketServer program uses the GoAhead web server, version 2.1.3, with a few bug fixes. These bug fixes
have been submitted to GoAhead, but have not yet been incorporated into the GoAhead distribution. The
goahead directory contains the fixed GoAhead distribution (except for the web pages). The makefilein the
EC?S directory has been modified to build only the webserver library, libwebs.a, and not build the demo eCos
application.

The webserver itself is run by a thread in webserv/webserv.c. This file contains much of the same functionality
that is present in the demonstration eCos app that is provided with the GoAhead distribution.

The custom JavaScript/ASP interface and the forms handling functions are in the file webser v/websupp.c.

For documentation on the JavaScript/ASP interface, see the GoAhead documentation at http://
webserver.goahead.com/webserver/webserver.htm.

The source files for the web pages themselves are in the webpages/root directory. These pages are combined
into a single data structure contained in the file webrom.c by the webcomp program. The webrom.c file is then
compiled and linked in using the normal module M akefile methods.

Trademark Notices

Comtrol and DeviceMaster are trademarks of Comtrol Corporation. Other product names mentioned herein
may be trademarks and/or registered trademarks of their respective owners.

Second Edition, June 30, 2004
Copyright © 2001 - 2004. Comtrol Corporation.
All Rights Reserved.

Comtrol Corporation makes no representations or warranties with regard to the contents of this document or
to the suitability of the Comtrol product for any particular purpose. Specifications subject to change without
notice. Some software or features may not be available at the time of publication. Contact your reseller for
current product information.

Document Number: 2000222 Rev. B

GoAhead Web Server 13

http://webserver.goahead.com/webserver/webserver.htm
http://webserver.goahead.com/webserver/webserver.htm

	Introduction
	Overview
	Module Conventions
	Linkage
	Entry Points

	System Resources
	Serial Ports
	Configuration Data
	Adding a Module
	1. Create a subdirectory containing source files and a Makefile. For your module’s Makefile, it’s...
	2. Edit the main Makefile in two places.

	Example Module

	Modifying the SocketServer Data Stream
	Receive Data
	Transmit Data

	GoAhead Web Server

